


Neutron stars are cool
Neutron stars are dead “stars”: they are the extremely compact
remnants of gravitational core-collapse supernova explosions.

Nuclear physics:
M ~ 1 - 2M@

R ~ 10 km
=p~10"gcm3
Energy scale: MeV

“cold” < 1010 K < “hot”

Neutron stars are initially very hot (~ 102 K) but cool down to
~ 10° K within days by releasing neutrinos.

Their dense matter is thus expected to undergo various phase
transitions, as observed in terrestrial materials at low-temperatures.



Neutron stars are “condensed” matter
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picture taken from Haensel, Potekhin, Yakovlev, “Neutron Stars” (Springer, 2007)

Despite their name, neutron stars are not only made of neutrons!
Blaschke&Chamel, Astrophys. Space Sci. Lib. 457, eds L. Rezzolla, P Pizzochero, D.
I. Jones, N. Rea, I. Vidana p. 337-400 (Springer, 2018), arXiv:1803.01836
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@ Overview of nuclear superfluidity in neutron stars

> From theory
> To observations

@ Neutron superfluidity in neutron-star crusts

> Small superflow: superfluid density and sound modes
> Large superflow: critical velocities, gapless superfluidity, vortices
> Astrophysical implications

© Conclusions & perspectives



Nuclear superfluidity and superconductivity

The implications of the BCS theory (published in January 1957) for
atomic nuclei were first discussed by A. Bohr, B. R. Mottelson, and D.
Pines during the Summer of 1957.

D. Pines in “BCS: 50 Years” (World Scientific, 2011), pp.85-105

They speculated that pairing might ~ *[ - . © oo
explain the energy gap in the o oo
excitation spectra of nuclei. °
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Phys. Rev. 110, 936 (1958)
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They also anticipated that nuclear pairing could explain odd-even
mass staggering, and the reduced moments of inertia of nuclei.



Superfluidity and superconductivity in neutron stars
In the 1960’s, several superconductors had been found but *He was
the only superfluid known.

Bogoliubov developed a microscopic theory of
superfluidity and superconductivity, and was the
first to explore its application to nuclear matter.
Dokl. Ak. nauk SSSR 119, 52 (1958)

Neutron-star superfluidity was predicted by
Arkady Migdal in 1959, and first studied by
Ginzburg & Kirzhnits in 1964 before the
discovery of pulsars in 1967.

Migdal, Nucl. Phys. 13, 655 (1959)

Ginzburg & Kirzhnits, Zh. Eksp. Teor. Fiz. 47, 2006 (1964)




Superstars
The huge gravity of neutron stars produces the highest- T, and largest
superfluids and superconductors known in the Universe!

Thin atmosphere:

e, ... Outer crust: ions, electrons
¢ Inner crust: ion lattice, soaked Neutron stars ~ 1010 K
in superfluid neutrons (SFn)

Outer core liquid: e~ -, SFn,
superconducting protons

LaH10:|:X 260 K

Inner core: unknown Cuprates 1-130K
Electrons in metals 1-25K
~10%gm> Helium-4 217K
Swdeadenity Helium-3 2.491 x 1073 K
Bosonic condensates ~107%K
{Xr“l?(‘l'egaffge';my Fermionic condensates ~ 108K
4x10" g cm

“neutron drip”

Predicted long ago, these quantum condensates can be probed

through astrophysical observations.
Chamel, J. Astrophys. Astron. 38, 43 (2017)



https://doi.org/10.1007/s12036-017-9470-9

Rapid cooling of neutron stars and superfluidity

Observations of the youngest known neutron star in Cassiopeia A
provide evidence for neutron superfluidity in its core: J
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The neutrino emission is enhanced by Cooper pair breaking and
formation at T, leading to fast cooling.

Page et al., PRL 106, 081101; Shternin et al., MNRAS 412, L108 (2011) 8
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Pulsar frequency glitches and superfluidity

Pulsars are spinning very rapidly with extremely stable periods
P > 102", outperforming the best atomic clocks!
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Still, some pulsars have been found to suddenly
spin up (in less than a minute!).

682 glitches have been detected in 225 pulsars.
http://www.jb.man.ac.uk/pulsar/glitches.html

Recent review: Antonopoulou, Haskell, Espinoza, Rep.
Prog. Phys. 85, 126901 (2022)

Experimental glitches with ultracold atoms
Poli et al., PRL 131, 223401 (2023)

Pulsar glitches provide strong evidence for the existence of a neutron
superflow in neutron-star crusts driven by the pinning of quantized
vortices. But the superfluid dynamics remains poorly understood.



http://www.jb.man.ac.uk/pulsar/glitches.html
https://iopscience.iop.org/article/10.1088/1361-6633/ac9ced
https://iopscience.iop.org/article/10.1088/1361-6633/ac9ced
https://doi.org/10.1103/PhysRevLett.131.223401

Time-dependent Hartree-Fock-Bogoliubov theory

The dynamics of nuclear superfluids (g = n, p) is here described by
the time-dependent Hartree-Fock-Bogoliubov equations:

<hq(r,t)—>\q Aq(r, t) ) e\ _ 0 (0
Bg(rt) —ho(r. )"+ 2q) \u(r.0)) — 0 \0(r.1)



Time-dependent Hartree-Fock-Bogoliubov theory

The dynamics of nuclear superfluids (g = n, p) is here described by
the time-dependent Hartree-Fock-Bogoliubov equationS'

(hq(r,n—Aq Aq(r, 1) )w&‘”mt) _ 0 (U0
Dg(r,t) —hg(r, )" +Ag) \ @l (r, 1) ot \p{(r, 1)

They resemble the Bogoliubov-de Gennes equations BUT

@ both hy(r, t) and A4(r, t) are internal fields,

@ the Hamiltonian hy(r, t) takes a much more complicated form,
@ the BdG equations for neutrons and protons are coupled.




Time-dependent Hartree-Fock-Bogoliubov theory

The dynamics of nuclear superfluids (g = n, p) is here described by
the time-dependent Hartree-Fock-Bogoliubov equations:

<hq(r,t)—>\q Aq(r, t) ) e\ _ 0 (0
Bg(rt) —ho(r. )"+ 2q) \u(r.0)) — 0 \0(r.1)
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Time-dependent Hartree-Fock-Bogoliubov theory

The dynamics of nuclear superfluids (g = n, p) is here described by
the time-dependent Hartree-Fock-Bogoliubov equations:

<hq(r,t)—>\q Aq(r, 1) ) e\ _ 0 (0
Bolr ) —ha(r. ) +20) \wi?(r,t)) — 0t \ug?(r.1)

h? i
h =-V-—V+Uyr,t)— = {lg(r,t),V} +...
h? 0E 0E 0E
= Ug(r,t) = ———, Ig(r,t) = ———
2mg (r,t)  o7q(r,t)’ a(r: 1) dng(r, t) a(r. 1) jg(r, 1)
0E A
A t == 2,‘,7 == A t 14) (r’t)

all these fields are not external but self-induced via thermal averaged
matrix densities expressible in terms of 1{?(r, t) and ¥{?(r, )

ng(r,o;r',o’;t) =< cq(r',o’; t)Tcy(r,o; t) >
ng(r,o;r',o’;t) = —o’ < cq(r',—o’;t)cy(r,o; t) >



Superfluid velocity, momentum and mass transport
The superfluid velocity defined through the phase of the pairing field

. h
Dg(r. 1) = |Dg(r, 1) "0 = Vy(r,t) = 5 —Veq(r,1)
q
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Superfluid velocity, momentum and mass transport
The superfluid velocity defined through the phase of the pairing field

. h
Dg(r,t) = [Ag(r, 1[99 = Vy(r t) = ~—Voq(r, 1)
2mq
is neither equal to %jg/pq Where jg is the momentum density

Ja(rit) = fé > /d3r' o(r—r')(V —V')ng(r,o;r ,o; 1)

o==1
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Superfluid velocity, momentum and mass transport
The superfluid velocity defined through the phase of the pairing field

: h
Dg(r,t) = |Dg(r, 1)[€99D = V(r,t) = —Voq(r, 1)
2mq
is neither equal to %jg/pq Where jg is the momentum density
Ja(r,t) = ,é > / Brs(r—r)V —V)ng(r,o;r,o;t)
o==+1
nor to the velocity associated with mass transport

_ Mg hjg(r,t) | lg(r.1) Opq _ _
R N ) R R T L
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Superfluid velocity, momentum and mass transport
The superfluid velocity defined through the phase of the pairing field

: h
Dg(r,t) = |Dg(r, 1)]€99D = V(r t)= 5m- Voa(rt)
q

is neither equal to hjq/pq where jq is the momentum density

Ja(r, ) Z /d3r’5 (r—r)YV = V')ny(r,o;r,o; t)
o==+1
nor to the velocity associated with mass transport
Mg hjg(r,t)  Iy(r,t) op
V(r,t)= —21 4 a “E9 LT (pgvg) =0
alr 1) mg (r. t) pa(r,t) ho ot +V - (pava)
All these velocities only coincide for a one-component superfluid:
v=V= hj
P

Chamel & Allard, PRC100, 065801 (2019); Allard & Chamel, PRC103, 025804 (2021)
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Entrainment and dissipation in neutron-star cores

Neutrons and protons are mutually entrained: pqvq = Z Pag Vg J
q/
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Entrainment and dissipation in neutron-star cores

Neutrons and protons are mutually entrained: pqvq = Z Pag Vg J

q/
B V,=0
| —— Neutron vortices thus carry a fractional
Vi magnetic quantum flux
EE R ¢*=%A~d£:kcbo, k:@,cbo:—
— T ............. ) Ppp 2e
m | m ------ 5" Sedrakyan&Shakhabasyan, Astrofizika 8, 557 (1972)
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Entrainment and dissipation in neutron-star cores

Neutrons and protons are mutually entrained: pqvq = Z Pag Vg J

q/
B V,=0
—— Neutron vortices thus carry a fractional
Vi magnetic quantum flux
h
@:fA.de:kcbo, k=" gy =2
Ppp 2e

Sedrakyan&Shakhabasyan, Astrofizika 8, 557 (1972)

Due to electrons scattering off the magnetic field of the vortex lines,
the core superfluid is strongly coupled to the crust.
Alpar, Langer, Sauls, ApJ 282, 533 (1984)
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Entrainment and dissipation in neutron-star cores

Neutrons and protons are mutually entrained: pqvq = Z Pag Vg
q/

Neutron vortices thus carry a fractional
magnetic quantum flux

Ppn _
¢*=%A~de:k¢o, k:77¢ = —
o’ 2e

Sedrakyan&Shakhabasyan, Astrofizika 8, 557 (1972)

Due to electrons scattering off the magnetic field of the vortex lines,
the core superfluid is strongly coupled to the crust.
Alpar, Langer, Sauls, ApJ 282, 533 (1984)

At the scale of the star, general relativity leads to additional fluid

couplings due to frame-dragging effects!
B. Carter, Ann. Phys. 95, 53 (1975);Sourie et al., MNRAS 464, 4641(2017)



https://ui.adsabs.harvard.edu/abs/1972Afz.....8..557S/abstract
https://doi.org/10.1086/162232
https://doi.org/10.1016/0003-4916(75)90043-3
https://doi.org/10.1093/mnras/stw2613

Neutron superfluidity in neutron-star crusts

The breaking of translational symmetry leads to the depletion of
the superfluid reservoir.
Leggett, PRL 25, 1543 (1970)
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Neutron superfluidity in neutron-star crusts

The breaking of translational symmetry leads to the depletion of
the superfluid reservaoir.
Leggett, PRL 25, 1543 (1970)

In the presence of a superflow with velocity V,, the average neutron
mass current in the rest frame of the neutron-star crust is

o . -
Pz [ Crodr et = 3 sV
J

. = mp =
Treating the crust as a polycrystal pp = pnsVn = pn# Vi.
n

The superfluid density p,s < p, (M, > my) is a
current-current response function.

This “is a derived concept and is not the density
of anything’.

Feynman, Statistical Mechanics: A Set of Lectures.

Review: Chamel, J. Low Temp. Phys. 189, 328 (2017)
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Neutron superfluidity in neutron-star crusts

- R
In the presence of neutron superflow V, = FQ:
n

) 1/}1 ak(r) = ei (k+@)-r 1;1 ak(r)
'(/}2(11((’) = ei tk=Qyr thxk(r)
o where 1 5.k(r) are periodic

« is the band index
k is the Bloch wave vector

3D HFB computations remain very challenging:
@ lattice spacing can be large ~ 100 fm vs cluster size ~ 10 fm,
@ huge number of neutrons in the Wigner-Seitz cell (~ 102 — 10%).




Neutron superfluid density

In most regions of the crust, superfluid neutrons are in the weak
coupling BCS regime.

For small currents, the neutron superfluid density is given by

m 3 2 Ak
=—" d°k [Vkeq @
Pns = 57372 %:/BZ IVkeak|

3
(sak - ,UJ)2 + Aik

Carter,Chamel,Haensel,Nucl.Phys.A748,675 (2005); Nucl.Phys.A759,441(2005)
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Neutron superfluid density

In most regions of the crust, superfluid neutrons are in the weak
coupling BCS regime.

For small currents, the neutron superfluid density is given by

m 3 2 Ak
=—" d°k [Vkeq @
Pns = 57372 %:/BZ IVkeak|

Gk~ + 8%,
Carter,Chamel,Haensel,Nucl.Phys.A748,675 (2005); Nucl.Phys.A759,441(2005)
In the limit A k/eg — 0
m 3 2
s~ Tardre 2 | ek~ 1) Vi
reduces to the expression obtained for a dilute Fermi superfluid in a

1D external optical potential
Pitaevskii, Stringari, Orso, Phys. Rev. A 71, 053602 (2005)
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Neutron superfluid fraction in shallow region

Neutron band structure (s.p. energy in MeV vs k) in a body-centered
cubic (bce) lattice at 7 = 0.0003 fm—2 (Z = 50, A = 200):

. - with clusters without
First Brillouin zone: RE\NSY AT 4] e

Chamel,Phys.Rev.C85,035801(2012)

The spectrum is similar that of free neutrons: pns/pn = 83%.
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Neutron superfluid fraction in deep region
Neutron band structure (s.p. energy in MeV vs k) in a body-centered
cubic (bce) lattice at 7 = 0.03 fm—3 (Z = 40, A = 1590):

. . . with clusters without
First Brillouin zone: e TS

MW kU 9

Chamel,Phys.Rev.C85,035801(2012)

The spectrum is very different: p,s/pn = 7%. Neutron superfluidity is
almost entirely suppressed!


https://doi.org/10.1103/PhysRevC.85.035801

Band structure and Fermi surface

cluster size ~ \¢ < lattice spacing
potential depth ~ 2e¢ > A ) \ . y

Bragg scattering leads to strong
distortions of the Fermi surface. J

Avoided band crossings where -
|Vk€ak‘ ~0
e
translate into necks and holes
reducing the Fermi surface S. ‘
Both effects suppress the .
superfluid density: = ==
periuia ey 8 8 o7
M (@) v
=1 d
s = Tabie 3 [ IVhcanlds Q)

Chamel,Phys.Rev.C85,035801(2012)
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Superfluid reservoir and giant pulsar glitches

The fractional moment of inertia of the superfluid in the crust can be
inferred from pulsar glitches.
Chamel&Carter, MNRAS368,796(2006)

- gggé From pulsar timing: spin frequency Q()

—sky 1 including glitches AQ;
ls S 1

[T

The allowed mass is much lower than
expected from measured masses and
supernova simulations.

82704 06 08 1 12 14 16 18 Delsate et al., PRD 94, 023008 (2016)

M [solar masses]

The superfluid in the crust does not carry enough angular momentum.
Chamel, PRL 110, 011101 (2013)J
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Core induced glitches?

Timing of the Crab and Vela pulsars have recently revealed very
peculiar evolutions of their spin frequency during the rise of a glitch. J

@ Analyses of a Vela glitch in 2016 suggest a rotational-frequency
overshoot and a fast relaxation (~ min) following the glitch.
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Ashton, Lasky, Graber, Palfreyman, Nature Astronomy 3, 1143 (2019)
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Core induced glitches?

Timing of the Crab and Vela pulsars have recently revealed very
peculiar evolutions of their spin frequency during the rise of a glitch.

@ Analyses of a Vela glitch in 2016 suggest a rotational-frequency
overshoot and a fast relaxation (~ min) following the glitch.
Ashton, Lasky, Graber, Palfreyman, Nature Astronomy 3, 1143 (2019)
@ A delayed spin-up has been detected in the 1989, 1996 and
2017 Crab glitches.
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Shaw et al., MNRAS, 478, 3832 (2018) g
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Role of vortex pinning to fluxoids
These differences can be interpreted from the interactions between
superfluid vortices and proton fluxoids in neutron-star cores.
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The number N, of fluxoids attached to vortices turns out to be a key
parameter governing the global dynamics of the star:

@ N, < N5t: overshoot AQoer < AQ/(1 — I7¢/1),
o N, < Ngfi‘: smooth spin-up on a longer timescale.
Sourie&Chamel, MNRAS 493, L98 (2020)
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Speeds [c]

Superfluid density and sound propagation

The suppression of the superfluid fraction impacts sound modes:
@ transverse lattice phonons (clusters are effectively heavier),
@ longitudinal lattice and superfluid phonons are mixed:

Chamel,Page, Reddy,PRC87,035803(2013); J.Phys.Conf.Ser.665, 012065(2016)

0.12 o superfluid bosons T '
++ longitudinal lattice phonons

0.1 A
0.081- ,: B
0.06f . e no suppression of pp s and no mixing:
00al e | @ lattice phonon velocity v?
0ol . 1 @ superfluid phonon velocity vJ

0 1(;'2 1(;” 1(;“

plgem’]
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Superfluid density and sound propagation

The suppression of the superfluid fraction impacts sound modes:
@ transverse lattice phonons (clusters are effectively heavier),
@ longitudinal lattice and superfluid phonons are mixed:

Chamel,Page, Reddy,PRC87,035803(2013); J.Phys.Conf.Ser.665, 012065(2016)
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suppression of p, s and no mixing:

i
v = Pcluster Vg < Vg
Pcluster + Pn — Pn,s
Ve = 22509 < 9
Pn
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Superfluid density and sound propagation

The suppression of the superfluid fraction impacts sound modes:
@ transverse lattice phonons (clusters are effectively heavier),
@ longitudinal lattice and superfluid phonons are mixed:
Chamel,Page, Reddy,PRC87,035803(2013); J.Phys.Conf.Ser.665, 012065(2016)
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Speeds [c]
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a— highest mixed mode

suppression of p, s and mixing:
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Superfluid density and sound propagation

The suppression of the superfluid fraction impacts sound modes:
@ transverse lattice phonons (clusters are effectively heavier),
@ longitudinal lattice and superfluid phonons are mixed:

Chamel,Page,Reddy,PRC87,035803(2013); J.Phys.Conf.Ser.665, 012065(2016)
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This has implications for the oscillations and cooling of neutron stars.
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Finite superflow and Landau’s critical velocity

What happens for large superflows?
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Finite superflow and Landau’s critical velocity

What happens for large superflows?

Ignoring spatial inhomogeneities, the HFB equations can be solved
analytically. An effective superfluid velocity naturally emerges:

I
Vo= —2 Vq+"
mg h
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Finite superflow and Landau’s critical velocity

What happens for large superflows? J

Ignoring spatial inhomogeneities, the HFB equations can be solved
analytically. An effective superfluid velocity naturally emerges:

I
Vo= —2 Vq+"
mg h

The order parameter A, of the superfluid phase remains unchanged
provided V4 < V4, the critical velocity from Landau’s criterion

A A
Vig=V, 1+( ") 1|l =9
ta Fq\leq Hq hkrq

Allard & Chamel, Phys. Rev. C 108, 015801 (2023)

obtained for a one-component Fermi gas

This is the generalization to nuclear superfluids of the expression
Combescot, Yu Kagan, Stringari, Phys. Rev. A 74, 042717 (2006) J
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Gapless superfluidity

Superfluidity is not destroyed for super Landau superflow V, > V4,
but A, decreases and eventually vanishes for Vg = Vg = 1.36V 4. In
this intermediate regime, superfluidity becomes gapless:

~4 . . 1.0
§’, - BCS 0.9
o
==
33 . ] 0.8
=71 gap 0.7
= ! @00'6
o 2f <05
! Foa S
= < 0. BCS S,
I o fz
w‘ . 2]
= 0.1

8.0 0.5 1.0 15 20 25 3.0 35 '8.0 0.2 0.4 0.6 0.8 1.0

8/ Aq qu/ “/cq


https://doi.org/10.1103/PhysRevC.108.015801
https://doi.org/10.1103/PhysRevC.108.045801

Gapless superfluidity

Superfluidity is not destroyed for super Landau superflow V, > V4,
but A, decreases and eventually vanishes for Vg = Vg = 1.36V 4. In
this intermediate regime, superfluidity becomes gapless:

~4 . . 1.0
= - Bes 0.9
E=r e 0.25V;4

@ 3 0.8

= 0.7

= 5,06

o 2 <05

! Foa S
= < 0. BCS )
i e g.z 5
OJ . 2]
= ; 0.1

.0 05 10 15 2.0 25 3.0 35 .0 0.2 0.4 0.6 0.8 1.0

g/ Aq qu/ “/cq


https://doi.org/10.1103/PhysRevC.108.015801
https://doi.org/10.1103/PhysRevC.108.045801

Gapless superfluidity

Superfluidity is not destroyed for super Landau superflow V, > V4,
but A, decreases and eventually vanishes for Vg = Vg = 1.36V 4. In
this intermediate regime, superfluidity becomes gapless:

£

0, V))/2{(0)

Dq(&, Mg(T

N

[

- BCS
——. 0.50¥4

S

1 " " " " "
8005 10 15 20 25 30 35

&/,

1.0
0.9
0.8
0.7
€00'6
ﬂc 0.5
< 0.4
0.3
0.2
0.1

0.

BCS

ssordeb

0.2

0.4

qu/ “/cq

0.6

0.8

1.0

24


https://doi.org/10.1103/PhysRevC.108.015801
https://doi.org/10.1103/PhysRevC.108.045801

Gapless superfluidity

Superfluidity is not destroyed for super Landau superflow V, > V4,
but A, decreases and eventually vanishes for Vg = Vg = 1.36V 4. In
this intermediate regime, superfluidity becomes gapless:

IN

=0,1,))/2{(0)

[

,/.
R
7

Dq(&, Ag(T

P

- BCS
—-- 075V

O
8005 1o

15 2.0 25 3.0 35
&/Dq

1.0
0.9
0.8
0.7
€00'6
ﬂc 0.5
< 0.4
0.3
0.2
0.1

0.

BCS

ssordeb

0.2

0.4

qu/ “/cq

0.6

0.8

1.0

24


https://doi.org/10.1103/PhysRevC.108.015801
https://doi.org/10.1103/PhysRevC.108.045801

Gapless superfluidity

Superfluidity is not destroyed for super Landau superflow V, > V4,
but A, decreases and eventually vanishes for Vg = Vg = 1.36V 4. In
this intermediate regime, superfluidity becomes gapless:

IN

=0,1,))/2(0)

[

Dq(&, Ag(T

no gap

- BCS
— 1.00V4

&/,

8005 10 15 20 25 30 35

1.0
0.9
0.8
0.7
€00'6
ﬂu— 0.5
< 0.4
0.3
0.2
0.1

0.

BCS

ssordeb

0.2

0.4

qu/ “/cq

0.6

0.8

1.0

24


https://doi.org/10.1103/PhysRevC.108.015801
https://doi.org/10.1103/PhysRevC.108.045801

Gapless superfluidity

Superfluidity is not destroyed for super Landau superflow V, > V4,
but A, decreases and eventually vanishes for Vg = Vg = 1.36V 4. In
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A normal fluid of quasiparticles excitations is present even at T = 0.
Allard & Chamel, Phys. Rev. C 108, 015801 (2023); Phys. Rev. C 108, 045801 (2023) J
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Microscopic dynamics of a vortex
Full HFB calculations of a neutron superfluid vortex:

@ In the vortex core, V, > Vi,:
@ Cooper pairs are broken
\ (A — 0 but pj, finite)
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Pecak, Chamel, Magierski, Wlazlowski, Phys. Rev. C 104, 055801 (2021)
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Transiently accreting neutron stars
Superfluidity can be probed from the cooling of neutron-star crusts
after the end of an accretion episode
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Wijnands, Degenaar, Page, J. Astrophys. Astron. 38, 49, (2017)
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Observational evidence of gapless superfluidity

Some sources appeared colder than expected:
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Observational evidence of gapless superfluidity

Some sources appeared colder than expected:
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Gapless superfluidity can naturally explain the observed late-time
cooling due to the huge enhancement of the neutron specific heat.
Allard & Chamel, PRL 132, 181001 (2024); Allard & Chamel, EPJA 60, 116 (2024)
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Stability of the super Landau superflow?

Fully self-consistent time-dependent HFB simulations of the motion
of a single cluster through the neutron superfluid:

o t=1400 [fm/c] < t=2900 [fm/c]

!

>
P, [fm]

0.0 0.028 0.055 0.083 0.11

The gapless superfluid is stable in deep crust but in shallow layers
Cooper pair breaking leads to the formation of vortex rings: onset
of quantum turbulence? Glitch triggering mechanism?

Pecak, Chamel, Magierski, Wiazlowski, Phys. Rev. C 104, 055801 (2021)
Pecak, Chamel, Zdanowicz et al., Phys. Rev. X in press
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Summary

Neutron stars are the most extreme superfluids and
superconductors (supersolid?) known in the Universe.

Thin atmosphere:
H, He, C...

Outer crust: ions, electrons

i Inner crust: ion lattice, soaked
in superfluid neutrons (SFn)

Outer core liquid: e~ -, SFn,
superconducting protons

Inner core: unknown

~10"gcm

~2x nuclear density

2x10%gam=>
~nuclear density

4x10" g cm

NE2052 “neutron drip”

Nucleonic condensates are
supported by independent
observations (glitches, cooling).

However, many aspects still
remain poorly understood.

Additional challenge to relate the
local dynamics of vortices to the
global dynamics of the star.
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Nucleonic condensates are
supported by independent
observations (glitches, cooling).

However, many aspects still
remain poorly understood.

Additional challenge to relate the
local dynamics of vortices to the
global dynamics of the star.

The neutron-star physics is very rich. Insights from terrestrial J

experiments are crucially needed!
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