

Finanziato dall'Unione europea NextGenerationEU

BOSE-EINSTEIN CONDENSATION OF QUANTUM MIXTURES

Gabriele Spada

University of Camerino

Universal themes in Bose-Einstein Condensation ECT* Trento, 2024-11-07

Based on:

SG, Pilati & Giorgini. Attractive Solution of Binary Bose Mixtures: Liquid-Vapor Coexistence and Critical Point. *Phys. Rev. Lett.* 131, 173404 (2023)

SG, Pilati & Giorgini. Quantum Droplets in Two-Dimensional Bose Mixtures at Finite Temperature. *Phys. Rev. Lett.* **133**, 083401 (2024)

Sebastiano Pilati University of Camerino

Stefano Giorgini University of Trento

Introduction 1 States of matter for 3D quantum systems

⁴He

- > Liquid at T = 0
- > BEC phase is in true equilibrium *
- * Another such case is obtained for H atoms in a strong magnetic field (parallel electronic spins)

- No thermodynamically stable BEC phase
 - Three-body recombination events Molecules ⇒ **Solid**

Other atomic systems

- No thermodynamically stable BEC phase
 - Three-body recombination events Molecules ⇒ Solid
- > BEC phase in **metastable** conditions
 - Low density (rare three-body collisions)
 - Gas distant from walls

Other atomic systems

Other atomic systems

Velocity distribution of ⁸⁷Rb atoms (Anderson at. al., 1995)

- > No thermodynamically stable BEC phase
 - Three-body recombination events Molecules ⇒ **Solid**
- > BEC phase in **metastable** conditions
 - Low density (rare three-body collisions)
 - Gas distant from walls

Very dilute, cold gas in magnetic trap

⁴He

Other atomic systems

Introduction 2

Mean-field analysis of Liquid-Gas transitions

Mean-field analysis of quantum Liquid-Gas transitions

Landau's theory for helium-like system

liquid-gas order parameter (real), Z₂

$$\Omega(\phi, |\psi|) = \frac{t}{2}\phi^2 + \frac{u}{4}\phi^4 - h\phi + (t + \tilde{m})|\psi|^2 + \frac{\lambda}{2}|\psi|^4 - \phi|\psi|^2$$
condensate order parameter (complex), U(1)

Son, Stephanov & Yee, J. Stat. Mech (2021)

Mean-field analysis of quantum Liquid-Gas transitions

Landau's theory for helium-like system

 $\Omega(\phi, |\psi|) = \frac{t}{2}\phi^{2} + \frac{u}{4}\phi^{4} - h\phi + (t + \widetilde{m})|\psi|^{2} + \frac{\lambda}{2}|\psi|^{4} - \phi|\psi|^{2}$ condensate order parameter (complex), *U*(1)

confirmed by numerical simulations Kora, Boninsegni, Son & Zhang, PNAS (2020)

Son, Stephanov & Yee, J. Stat. Mech (2021)

Mean-field analysis of quantum Liquid-Gas transitions

Son, Stephanov & Yee, J. Stat. Mech (2021)

Introduction 3 Binary Bose mixtures

Binary Bose mixtures

2

$$H = \int d\mathbf{r} \left[\sum_{i=1,2} \left(-\frac{\hbar}{2m_i} \psi_i^{\dagger} \nabla_i^2 \psi_i + \frac{g_{ii}}{2} |\psi_i|^4 \right) + g_{12} |\psi_1|^2 |\psi_2|^2 \right]$$

Binary Bose mixtures

2

$$H = \int d\mathbf{r} \left[\sum_{i=1,2} \left(-\frac{\hbar}{2m_i} \psi_i^{\dagger} \nabla_i^2 \psi_i + \frac{g_{ii}}{2} |\psi_i|^4 \right) + g_{12} |\psi_1|^2 |\psi_2|^2 \right]$$

Stabilization of attractive mixtures: T = 0

Petrov, Phys. Rev. Lett. (2015)

Liquid droplets at low T

> BMF theories: imaginary dispersion of density waves \longrightarrow thermodynamics?

Droplet destabilized by temperature

Ota & Astrakharchik, *SciPost Phys.* (2020) Wang, Hu & Liu, *New Journal of Physics* (2020)

Summary: droplets at low temperature

Experiments

Cabrera, Tanzi, Sanz, et al., Science (2018) Semeghini, Ferioli, Masi, et al., Phys. Rev. Lett. (2018) D'Errico, Burchianti, Prevedelli, et al., Phys. Rev. Res. (2019) 3D Bose mixtures at finite temperature

Bose mixtures at T > 0

Path Integral Monte Carlo (PIMC) simulations from microscopic Hamiltonian

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N_1} \nabla_i^2 - \frac{\hbar^2}{2m} \sum_{i'=1}^{N_2} \nabla_{i'}^2 + \sum_{i
Hard sphere with range *a*
Partition function: high-*T* expansion
$$Z = \text{tr} e^{-\beta H} = \frac{1}{N!} \sum_p \int d\mathbf{R} \rho(\mathbf{R}, P\mathbf{R}, \beta)$$

$$= \frac{1}{N!} \sum_p \int d\mathbf{R} d\mathbf{R}_2 \cdots d\mathbf{R}_M \rho(\mathbf{R}, \mathbf{R}_2, \frac{\beta}{M}) \cdots \rho(\mathbf{R}_M, P\mathbf{R}, \frac{\beta}{M})$$

Expectation values
$$\langle O \rangle = \frac{1}{Z} \frac{1}{N!} \sum_p \int d\mathbf{R} O(\mathbf{R}) \rho(\mathbf{R}, P\mathbf{R}, \beta)$$$$

Ceperley, *Rev. Mod. Phys.* (1995), Boninsegni, Prokof'ev & Svistunov, *Phys. Rev. E* (2006) SG, Giorgini & Pilati, *Condensed Matter* (2022)

Pressure along isothermal lines (T = const)

pressure
$$p = -\left(\frac{\partial F}{\partial V}\right)_T = k_B T \left(\frac{\partial \log Z}{\partial V}\right)_T$$

compressibility $\kappa_T = -\left[V\left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$

SG, Pilati & Giorgini, Phys. Rev. Lett. (2023)

Pressure along isothermal lines (T = const**)**

pressure
$$p = -\left(\frac{\partial F}{\partial V}\right)_{T} = k_{B}T\left(\frac{\partial \log Z}{\partial V}\right)_{T}$$
 compressibility $\kappa_{T} = -\left[V\left(\frac{\partial p}{\partial V}\right)_{T}\right]^{-1}$

$$= \left(\int_{0}^{\infty} \frac{k_{B}T = 6.91 \cdot 10^{-4} \frac{\hbar^{2}}{ma^{2}}}{10^{4}}\right)_{T}$$
Normal phase $(n < n_{\text{BEC}})$
 $= \int_{0}^{\infty} \frac{m^{3/2}(k_{B}T)^{5/2}}{\sqrt{2\pi^{3/2}\hbar^{3}}}g_{5/2}(e^{\beta \mu})$
 $= \int_{0}^{\infty} \frac{m^{3/2}(k_{B}T)^{5/2}}{10^{4}} g_{5/2}(e^{\beta \mu})$
 $= \int_{0}^{\infty} \frac{m^{3/2}(k_{B}T)^{5/2}}{1/na^{3}}g_{5/2}(e^{\beta \mu})$

Pressure along isothermal lines (T = const**)**

pressure
$$p = -\left(\frac{\partial F}{\partial V}\right)_T = k_B T \left(\frac{\partial \log Z}{\partial V}\right)_T$$
 compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial \log Z}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial \log Z}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial \log Z}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial \log Z}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial \log Z}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\sim 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\rightarrow 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\rightarrow 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\rightarrow 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$ compressibility $\kappa_T = -\left[V \left(\frac{\partial p}{\partial V}\right)_T\right]^{-1}$
 $\rightarrow 10^{-9}$
 $\left(\frac{1}{9}\right)_T = k_B T \left(\frac{\partial p}{\partial V}\right)_T$
 $\rightarrow 10^{-9}$
 $\left(\frac{1}{9}\right)_T = \frac{1}{9}$
 $\left(\frac{1}{9}\right)_T =$

Liquid-gas coexistence region

 $p(n_L) = p(n_G), \quad \mu(n_L) = \mu(n_G)$

Liquid-gas coexistence region

Equilibrium $p(n_L) = p(n_G), \quad \mu(n_L) = \mu(n_G)$

Maxwell construction

$$\int_{n_G^{-1}}^{n_L^{-1}} p \, \mathrm{d}(1/n) = 0$$

Phase diagram and critical point

> Jump in the condensate fraction (first-order transition)

> Tricritical point estimated from $\Delta n = n_L - n_G \rightarrow 0$

Phase diagram and critical point

Liquid-gas coexistence

Experimental signatures

Trapping potential (e.g. harmonic $V_{\text{ext}}(\mathbf{r}) = m\omega^2 \mathbf{r}^2/2$)

Local Density Approximation

$$\mu_{\text{local}}(\mathbf{r}) + V_{\text{ext}}(\mathbf{r}) = \mu$$

Jump $\Delta n = n_L - n_G$ at the critical chemical potential

 $\mu_c = \mu_L(n_L) = \mu_G(n_G)$

Observed at the position \mathbf{r}_c

$$\mu_c + V_{\rm ext}(\mathbf{r}_c) = \mu$$

Landau's functional

Qualitative description near the tricritical point

$$\mathcal{L}(|\psi|) = \alpha |\psi|^2 + \beta |\psi|^4 + \gamma |\psi|^6$$

Three-body interaction terms > Gn_i^3 for i = 1, 2> $\widetilde{G}(n_1n_2^2 + n_1^2n_2)$

- > Irrelevant at T = 0
- > Small shift of n_L
- Dominant at large n

$$\begin{split} \mathbf{H} &= \sum_{i=1,2} \left(-\frac{\hbar^2}{2m_i} \psi_i^{\dagger} \nabla^2 \psi_i - \mu_i \psi_i^{\dagger} \psi_i \right) + \frac{1}{2} \sum_{i,j} g_{ij} \psi_i^{\dagger} \psi_j^{\dagger} \psi_j \psi_i \\ &+ \frac{1}{6} \sum_{i=1,2} G_{ii} \psi_i^{\dagger} \psi_i^{\dagger} \psi_i^{\dagger} \psi_i \psi_i \psi_i + \frac{1}{2} \sum_{i \neq j} G_{ij} \psi_i^{\dagger} \psi_i^{\dagger} \psi_j \psi_i \psi_i \end{split}$$

2D Bose mixtures at finite temperature

Berezinskii-Kosterlitz-Thouless transition

Mermin-Wagner Theorem

No spontaneous breaking of continuous symmetries in 2D at finite temperature

- > thermal fluctuations destroy BEC
- > one-body density matrix vanishes according to a power law $n^{(1)}(r) \propto r^{-\nu}$

Berezinskii-Kosterlitz-Thouless (BKT) transition

From bound vortex-antivortex pairs at low temperatures to unpaired vortices and anti-vortices above the critical temperature

$$T_{\rm BKT} = \frac{\pi}{2k_B} \rho_s \frac{\hbar^2}{m^2}$$
$$n_{\rm BKT} = \frac{mk_B T}{2\pi\hbar^2} \log \frac{\xi}{g_0}, \qquad \xi \approx 380$$

Strong transverse confinement: from 3D to 2D

Harmonic confinement

$$V(z) = \sum_{i} \frac{1}{2}m\omega_z^2 z_i^2$$

Quasi-2D kinematic conditions $k_B T \ll \hbar \omega_z$, $a_{3D} \ll a_z = \sqrt{\hbar/m\omega_z}$

Bose mixtures: from 3D to 2D

3D simulations with harmonic confinement: Attractive mixtures form droplets

Bose mixtures: from 3D to 2D

3D simulations with harmonic confinement: Attractive mixtures form droplets

Bose mixtures: from 3D to 2D

Pure 2D simulations: the role of quantum anomaly

Density-dependent 2D interaction

$$g = \frac{g_0}{1 + \frac{g_0}{4\pi} \log(A/na_z^2)}, \qquad g_0 = \sqrt{8\pi}a_{3D}/a_z, \quad A \approx 0.2284$$

Complex Quantum Matter @ UNICAM

Q

Left to right: Giovanni Midei, Victor Velasco, Luis Ardila, Sebastiano Pilati, Andrea Perali, Nicola Pinto, Simone Cantori, Luca Brodoloni, Andrea Della Valle and Verdiana Piselli. CQM-Unicam, May 30 2024. Not Included: Carlo Lucheroni, Filippo Pascucci, Meenakshi Sharma and Gabriele Spada.

https://cqm.unicam.it/

Finanziato dall'Unione europea NextGenerationEU

Thank you

