Data Releases and Preservation

Luke Pickering

Measuring neutrino interactions for next-generation oscillation experiments ECT*, Trento, 2024/10/25

Supported by ROYAL URF\R1\211661

Data Releases

Why Release?

- Data is very valuable (and expensive: economic and human time)
- Improving interaction models without high-quality, accessible measurements to predict is both very difficult and ~pointless
- For neutrino oscillations: We need improved models for the headline precision physics goals

What do we want from data releases?

• An unambiguous prescription for making a prediction of a measurement and calculating a goodness of fit for the prediction

Data Releases

Why Release?

- Data is very valuable (and expensive: economic and human time)
- Improving interaction models without high-quality, accessible measurements to predict is both very difficult and ~pointless
- For neutrino oscillations: We need improved models for the headline precision physics goals

What do we want from data releases?

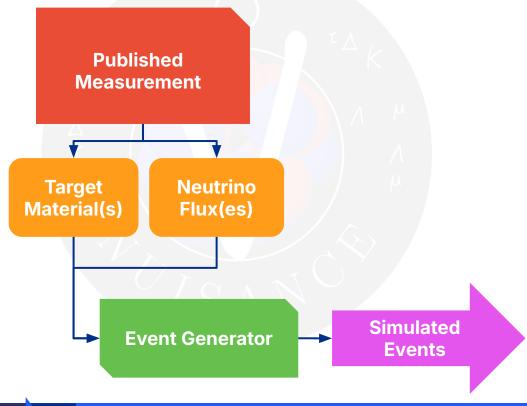
- An unambiguous prescription for making a prediction of a measurement and calculating a goodness of fit for the prediction
- Simple, right?

This Talk

• This talk is mostly my understanding of the **problem domain** of publishing and using scattering data

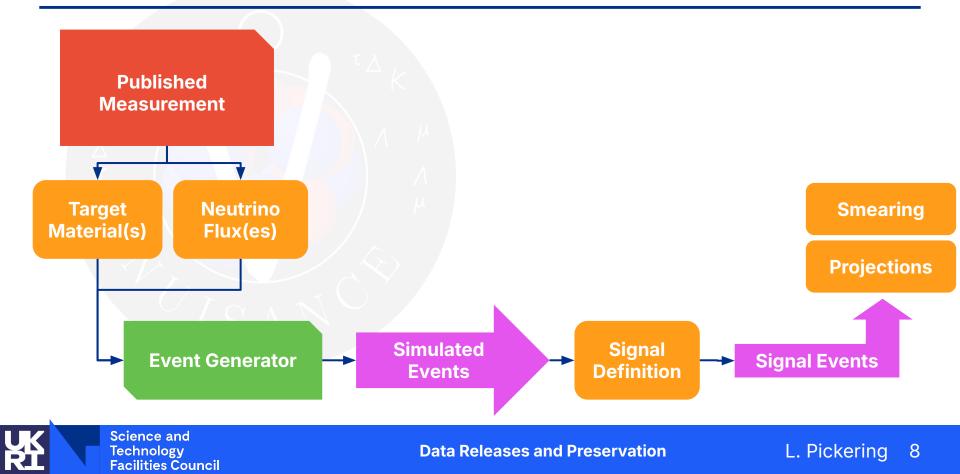
Science and Technology Facilities Council

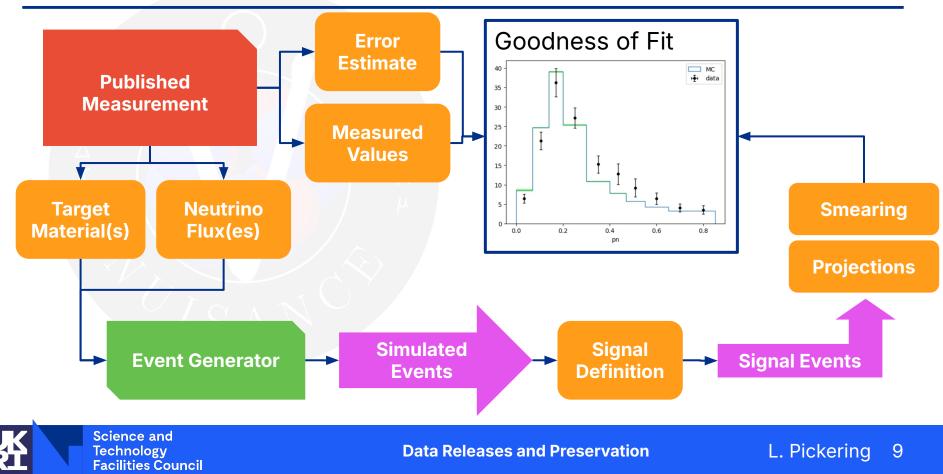
This Talk

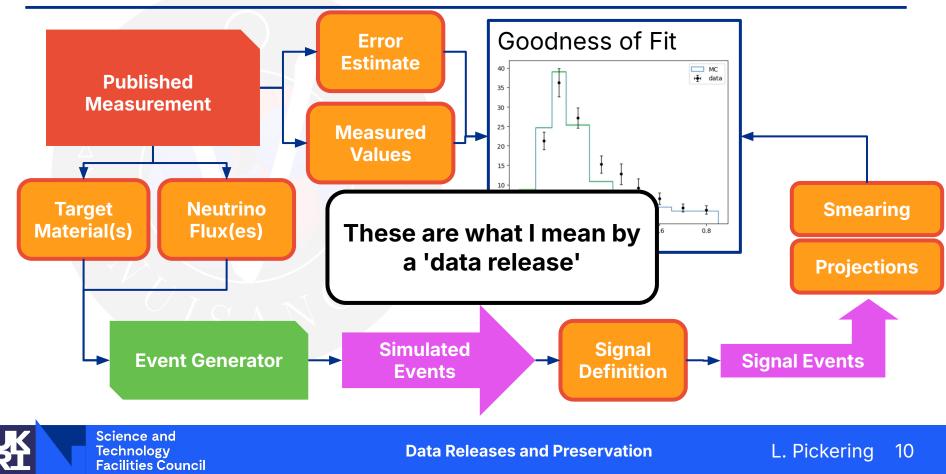

- This talk is mostly my understanding of the problem domain of publishing and using scattering data
 - Ultimately, the problem is not difficult to solve unlike other problems discussed at this workshop:
 - Whats are best measurements to make?
 - Which statistical meat grinder to use to summarise measurement?
 - How to model neutrino-nucleus interactions in the few-GeV region
 - ...

This Talk

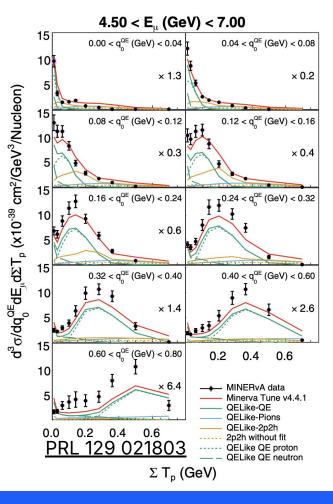
- This talk is mostly my understanding of the problem domain of publishing and using scattering data
 - Ultimately, the problem is not difficult to solve unlike other problems discussed at this workshop:
 - Whats are best measurements to make?
 - Which statistical meat grinder to use to summarise measurement?
 - How to model neutrino-nucleus interactions in the few-GeV region
 - ...
- I will also show a quick example of a possible solution that we've been working on
- BUT: The most useful solution is the one that is used, so this is also a call to engage!



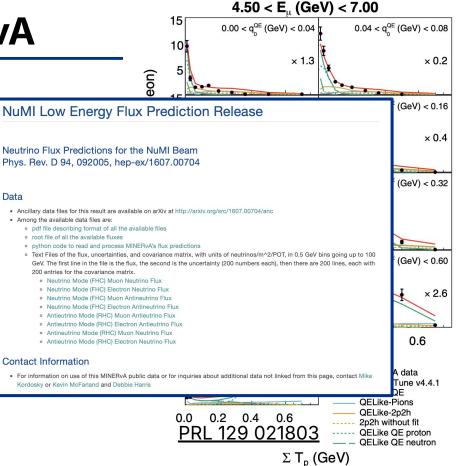




Science and Technology Facilities Council



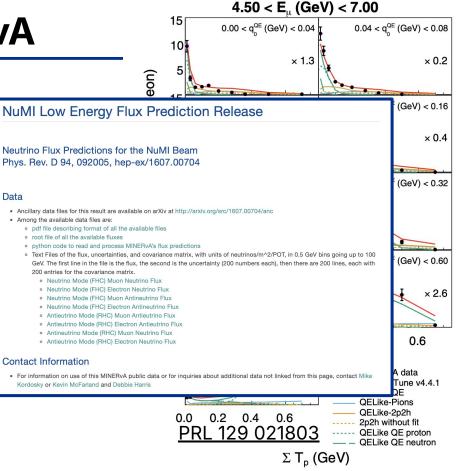
Data histogram (bins, values)



Science and Technology Facilities Council

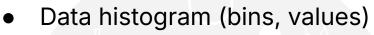
Data Releases and Preservation

- Data histogram (bins, values)
- Errors (covariance in bin number)
- Flux shape



Science and Technology Facilities Council

Data Releases and Preservation


- Data histogram (bins, values)
- Errors (covariance in bin number)
- Flux shape
- Target: CH

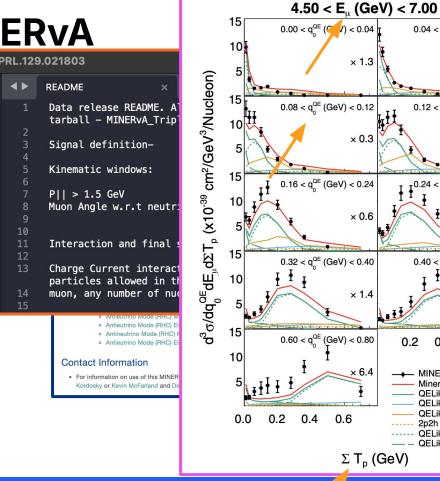
Science and Technology Facilities Council

Data Releases and Preservation

- Errors (covariance in bin number
- Flux shape
- Target: CH
- Signal definition

	4.50 < E_{μ} (GeV) < 7.00			
RvA	15 10	0 < q ₀ ^{QE} (GeV) < 0.04	0.04 < q ₀ ^{QE} (GeV) < 0.08	
29.021803			× 0.2	
README ×			+	
Data release README. All fil tarball – MINERvA_TripleDiff			ed compressed <0.16	
Signal definition-			× 0.4	
Kinematic windows:				
P > 1.5 GeV Muon Angle w.r.t neutrino <	20 degrees		< 0.32	
Interaction and final state	information:			
Charge Current interaction of particles allowed in the fir		neutrino with the	following < 0.60	
muon, any number of nucleons	s, gammas <10 M	eV (nuclear deexci	tation) × 2.6	
Antieurnho Mode (IHL) Mutch Antieu Antieutrino Mode (IHLC) Electron Anti Antineutrino Mode (IHLC) Antieutrino Mode (IHLC) Lectron Neu Antieutrino Mode (IHLC) Electron Neu	eutrino Flux ino Flux		0.6	
Contact Information	and an effect to an effect of the sector of		A data	
 For information on use of this MINERvA public of Kordosky or Kevin McFarland and Debbie Harris 		ional data not linked from this page, o	Tune v4.4.1 QE	
	0.0 0.2 PRL 12	0.4 0.6 9 021803	QELike-Pions QELike-2p2h 2p2h without fit QELike QE proton QELike QE neutron	
		ΣT_{p} (Ge)	V)	

10 10



Science and Technology Facilities Council

Data Releases and Preservation

- Data histogram (bins, values)
- Errors (covariance in bin number
- Flux shape
- Target: CH
- Signal definition
- Projection operators

36	
37	###
38	SumTp vs q0_qe vs Muon E
39	###
40	

Science and Technology Facilities Council

Data Releases and Preservation

L. Pickering 15

 $0.04 < q_{o}^{QE}$ (GeV) < 0.08

0.12 < q_e^{QE} (GeV) < 0.16

< q^{QE} (GeV) < 0.32

 $0.40 < q^{QE}$ (GeV) < 0.60

0.4

MINERvA data

2p2h without fit QELike QE proton QELike QE neutron

QELike-QE QELike-Pions QELike-2p2h

Minerva Tune v4.4.1

× 0.2

× 0.4

× 2.6

0.6

An Exampl

Data histogra

Flux shape

Signal definit

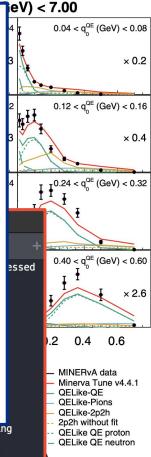
Projection op

Target

NuMI Low Energy Flux Prediction Release

Neutrino Flux Predictions for the NuMI Beam Phys. Rev. D 94, 092005, hep-ex/1607.00704

Errors (covar Data


Ancillary data files for this result are available on arXiv at http://arxiv.org/src/1607.00704/anc

Among the available data files are:

- pdf file describing format of all the available files
- root file of all the available fluxes
- python code to read and process MINERvA's flux predictions
- Text Files of the flux, uncertainties, and covariance matrix, with units of neutrinos/m^2/POT, in 0.5 GeV bins going up to 100 GeV. The first line in the file is the flux, the second is the uncertainty (200 numbers each), then there are 200 lines, each with 200 entries for the covariance matrix.
 - Neutrino Mode (FHC) Muon Neutrino Flux
 - Neutrino Mode (FHC) Electron Neutrino Flux
 - Neutrino Mode (FHC) Muon Antineutrino Flux
 - Neutrino Mode (FHC) Electron Antineutrino Flux
 - Antieutrino Mode (RHC) Muon Antieutrino Flux
 - Antieutrino Mode (RHC) Electron Antieutrino Flux
 - Antineutrino Mode (RHC) Muon Neutrino Flux
 - Antieutrino Mode (RHC) Electron Neutrino Flux

Contact Information

- · For information on use of this MINERvA public data or for inquiries about additional data not linked from this page, contact Mike Kordosky or Kevin McFarland and Debbie Harris
 - Charge Current interaction of a muon type neutrino with the following particles allowed in the final state: 14
 - muon, any number of nucleons, gammas <10 MeV (nuclear deexcitation)

Science and Technology **Facilities** Council

Data Releases and Preservation

Overview of Encountered Approaches

Cross section data/Flux predictions/Erro

• Plots in papers

Requires manual digitisation, infeasible for many bin measurements

I've tried asking ChatGPT to do it... don't recommend

Science and Technology Facilities Council

Overview of Encountered Approaches

Cross section data/Flux predictions/Erro

- Plots in papers
- Tables in papers

ChatGPT is probably better at this one, but it still requires human effort to 'get' the data

Science and Technology Facilities Council

Data Releases and Preservation

Overview of Encountered

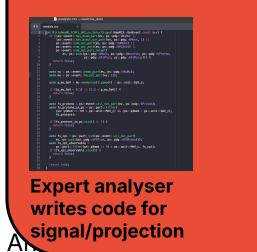
Cross section data/Flux predictions/Erro

- Plots in papers
- Tables in papers
- Text tables in supplementary materials
- ROOT files in supplementary materials
- File storage on experiment webspace/third party repository

Science and Technology Facilities Council

Data Releases and Preservation

Better! As there is no standard format between or within experiments, requires (sometimes significant) effort on the part of the user to understand the form of the data


- Vaguely hinted at throughout paper text
- Clearly signposted signal definition in paper and mathematical representation of independent projections
- Official example implementation (in NUISANCE or elsewhere)

Science and Technology Facilities Council

PHYSICAL REVIEW LETTERS 129, 021803 (2022

Paper committee describes analyser code in English

- Vaguely hinted at throughout paper text
- Clearly signposted signal definition in paper and mathematical representation of independent projections
- Official example implementation (in NUISANCE or elsewhere)

Science and Technology Facilities Council

Data Releases and Preservation

- Clearly signposted signal definition in paper and mathematical representation of independent projections
- Official example implementation (in NUISANCE or elsewhere)

Science and Technology Facilities Council

PHYSICAL REVIEW LETTERS 129, 021803 (2022 reasurement of ΣT_{a} and of photon showers from $\pi^{0} \rightarrow \gamma \gamma$, described in Refs. [10,11,50]. Intranuclear final-state inte

actions of produced hadrons are modeled using th

Occasionally, final-state neutrons leave a small amount of

Lossy projection operator

III-posed unfolding problem

<pre>provide a set of the set of</pre>
<pre>13 at a pricetuitinguide, prigationality 24 at a pricetuitinguide, pricetuitinguide, pricetuitinguide 24 at a pricetuitinguide pricetuitinguide 24 at a pricetuitinguide pricetuitinguide 24 at a pricetuitinguide 24 at a pricetuitinguide 24 at a pricetuitinguide 25 at a pricetuitinguide 26 at a pricetuitinguide 27 at a pricetuitinguide 28 at a pricetuitinguide 29 at a pricetuitinguide 20 at</pre>
<pre>1</pre>
36) 37 return true: 38 / .

signal/projection

describes analyser code in English

rom future import print function fcxx = None fhdr = None ffvd = None

Non-expert user implements prediction code

- Vaguely hinted at throughout paper text
- Clearly signposted signal definition in paper and mathematical representation of independent projections
- Official example implementation (in NUISANCE or elsewhere)

Science and Technology **Facilities** Council

Overview of Encountered Approaches

Cross section data/Flux predictions/Error matrices/Smearing matrices:

- Plots in papers
- Tables in papers
- Text tables in supplementary materials
- ROOT files in supplementary materials

Conceptually simple to release: Values + minimal metadata (bin definitions, variable units, ...)

Just needs standardisation!

L. Pickering

24

• File storage on experiment webspace/third party repository

Analysis Steps:

- Vaguely hinted at throughout paper text
- Clearly signposted signal definition in paper and mathematical representation of independent projections
- Official example implementation (in NUISANCE or elsewhere)

Science and Technology Facilities Council

Overview of Encountered Approaches

Cross section data/Flux predictions/Error matrices/Smearing matrices:

- Plots in papers
- Tables in papers
- Text tables in supplementary materials
- ROOT files in supplementary materials
- File storage on experiment webspace/thi

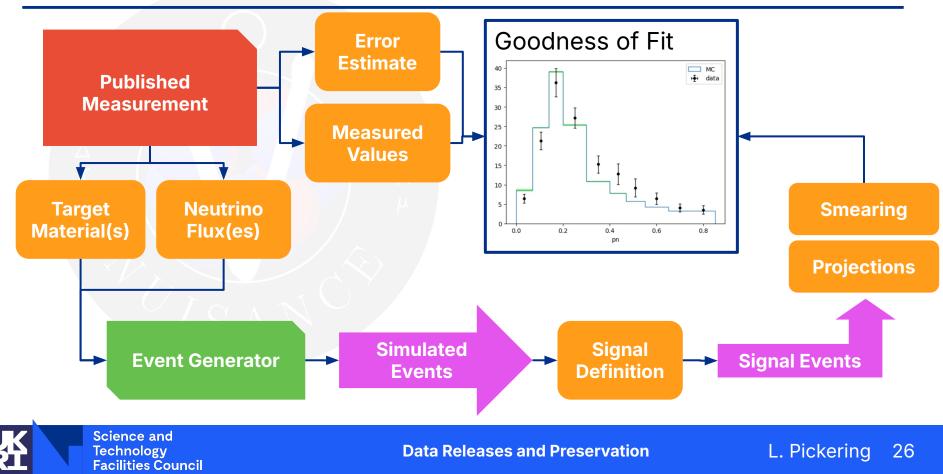
Analysis Steps:

- Vaguely hinted at throughout paper text
- Clearly signposted signal definition in paper and mathematical representation of independent projections
- Official example implementation (in NUISANCE or elsewhere)

Science and Technology Facilities Council

Data Releases and Preservation

Conceptually simple to release: Values + minimal metadata (bin definitions, variable units, ...)

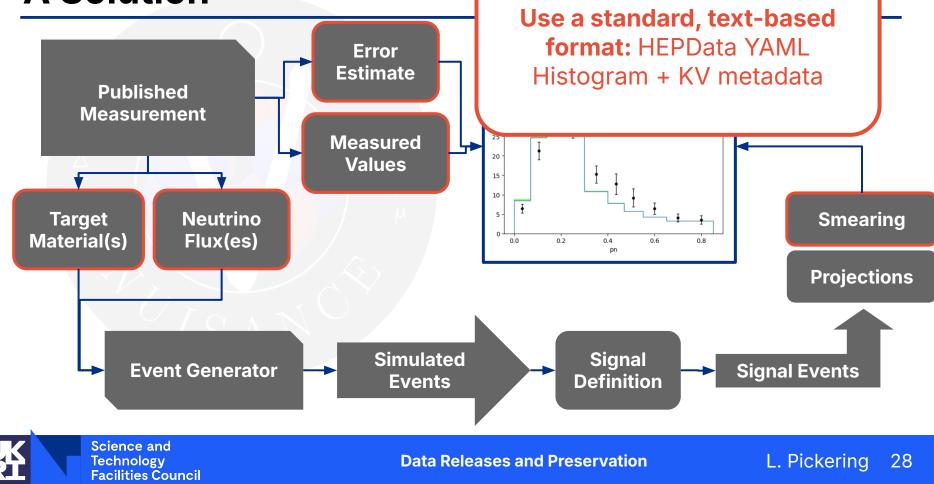

Just needs standardisation!

More difficult to release: How to publish operators that are executable over a simulated event stream?

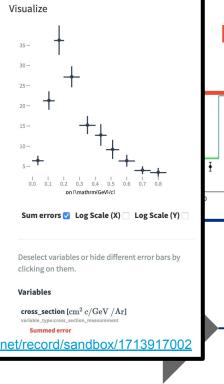
Just learn NUISANCE?

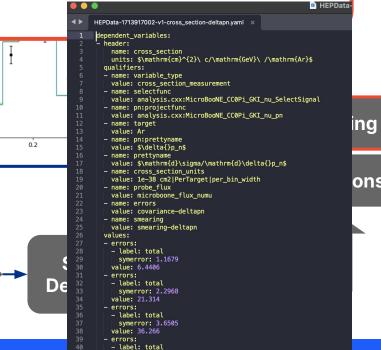
L. Pickering

25



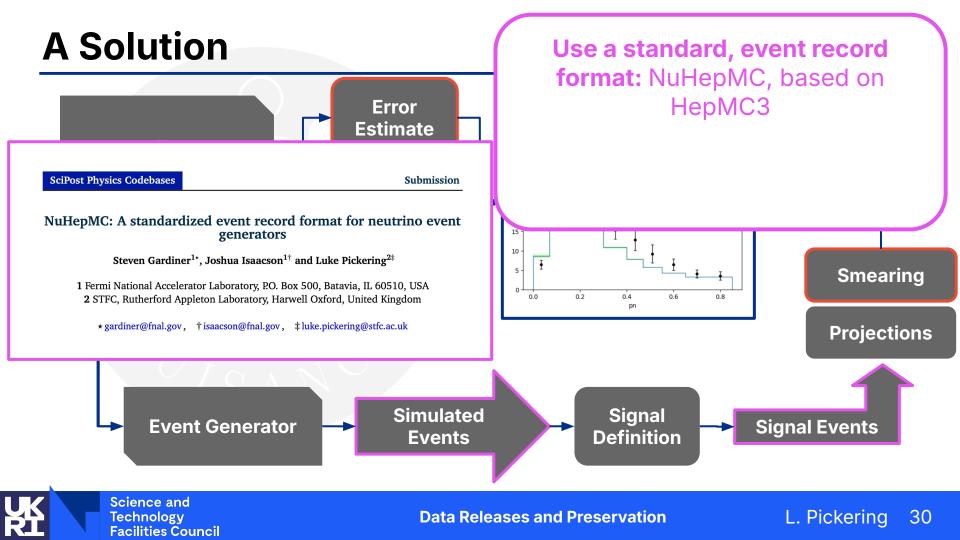
Personal View: The Way Forward

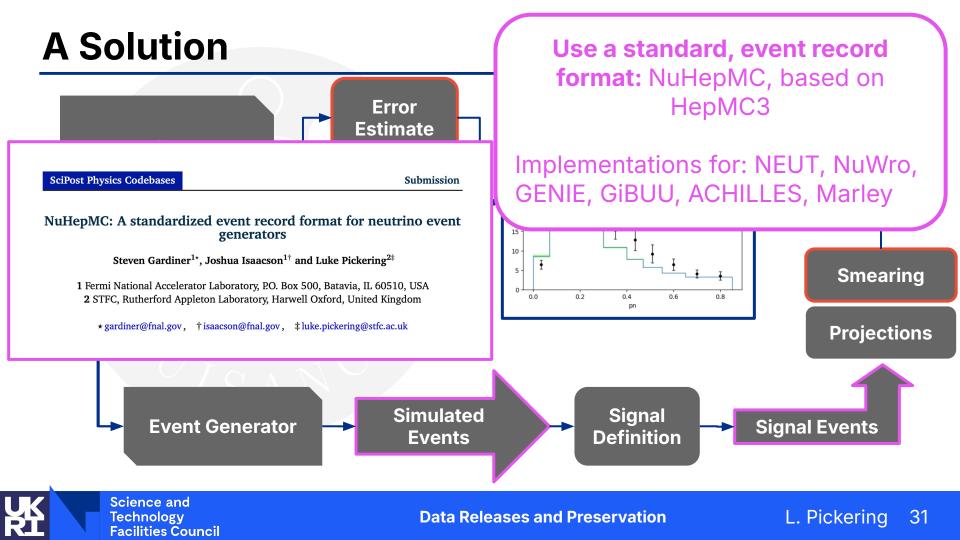

- Common Formats, Standards, Documentation:
 - Data Release Aphorism: Most of human progress has been driven by shared "languages"
- We need more community engagement on the 'boring' bits, so we can all do the interesting bits.
- Standardised, machine-readable formats for data with appropriate metadata
- Well-documented, open source, community tools to build/validate standardised data releases
- Measurements are getting more complicated, and more powerful!

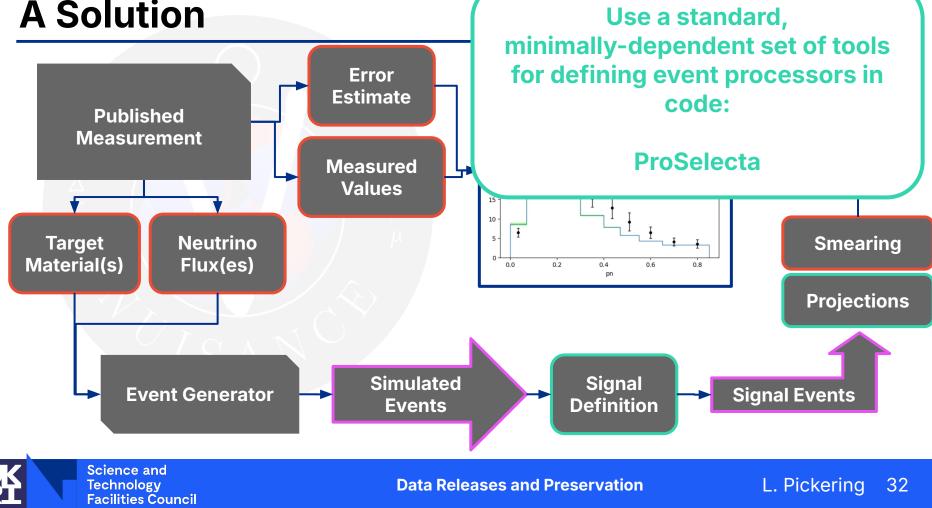


variable_type	cross_section_measurement
selectfunc	$analysis.cxx: {\tt MicroBooNE_CCOPi_GKI_nu_SelectSignal}$
pn:projectfunc	analysis.cxx:MicroBooNE_CC0Pi_GKI_nu_pn
target	Ar
pn:prettyname	δp_n
prettyname	$\mathrm{d}\sigma/\mathrm{d}\delta p_n$
cross_section_units	1e-38 cm2 PerTarget per_bin_width
probe_flux	microboone_flux_numu
errors	covariance-deltapn
smearing	smearing-deltapn
pn [GeV/c]	cross_section [cm² $c/{\rm GeV}~/{\rm Ar}]$
0.0 - 0.07	6.4406 ±1.1679 total
0.07 - 0.14	21.314 ±2.2968 total
0.14 - 0.2	36.266 ±3.6505 total
0.2 - 0.3	27.206 ±2.6118 total
0.3 - 0.4	15.223 ±2.2399 total
0.4 - 0.47	12.758 ±2.6894 total https://www.hepdat

Use a standard, text-based format: HEPData YAML Histogram + KV metadata

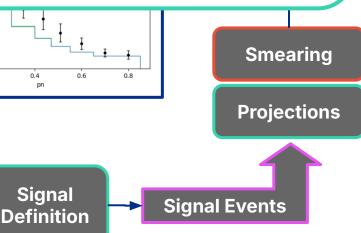





Science and Technology **Facilities** Council

symerror: 2.6118 **Data Releases and Preservation**

ons


Facilities Council

RI

		Error Estimate		nally-de of tools n even
🛞 HEPData	QSearch HEPData	Search 😵 Sandbox	❶ About ⊕ Submission Help □	
Q Browse all EView all Public Hide Publication Information Resources Abstract No abstract available.	cation Data 🖉 ProSelecta	File analysis.cxx License: CC0 Selection and projection function examples. Can be executued in the ProSelecta environment v1.0. int T2K_nueCCPiplus_2024_Select(HepMC3::GenEvent const &ev) { using namespace ps::pdg; if (!ps::event::has_beam_part(ev, kNuE) !ps::event::has_at_least_out_part(ev, ps::pids[kElectron, kPiPlus),	La	.4 pn
		<pre>if (!ps::event::has_out_part(ev, kNUE) !ps::event::has_out_part(ev, kElectron)) { return ps::KMissingDatum=double>; } return ps::event::hm_out_part(ev, kElectron)->momentum().p3mod() / ps::unit::GeV; } </pre>		Signal Definitio
	Technolog		eases and Pre	eservation

Use a standard, minimally-dependent, declarative set of tools for writing portable event processors:

ProSelecta

MicroBooNE GKI in Action

Example notebook

https://www.hepdata.net/record/sandbox/1713917002

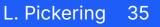
- 1. Download and parse HEPData record:
 - a. Read data, errors, smearing, compile selection/projection operations. Fully automated.

```
•[2]: import pyNUISANCE as pn
```

11-1 ----- 1- T. DOOT C 20/04

Science and Technology Facilities Council

MicroBooNE GKI in Action


https://www.hepdata.net/record/sandbox/1713917002

- 1. Download and parse HEPData record:
 - a. Read data, errors, smearing, compile selection/projection operations. Fully automated.
- 2. Interrogate for available analyses

```
print(hepdata_rec.get_analyses())
```

['cross_section-deltapn', 'cross_section-deltaalpha3dq', 'cross_section-deltaphi3d', 'cross_section-deltapnpar', 'cro ss_section-deltapnperp', 'cross_section-deltapnperpx', 'cross_section-deltapnperpy', 'cross_section-serialdeltapn_del taalpha3dq', 'cross_section-serialdeltaalpha3dq_deltapn']

MicroBooNE GKI in Action

import matplotlib.pyplot as plt

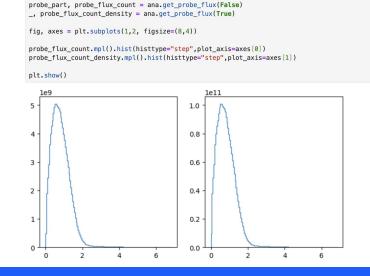
https://www.hepdata.net/record/sandbox/1713917002

- 1. Download and parse HEPData record:
 - a. Read data, errors, smearing, compile selection/projection operations. Fully automated.

Data Releases and P

- 2. Interrogate for available analyses
- 3. Interrogate analysis for flux/target information

[6]: ana = hepdata_rec.analysis("cross_section-deltapnperpx")


[10]: [str(tgt) for tgt in ana.get_target()]

Science and

Technology

Facilities Council

[10]: ['{ A = 40, Z = 18, weight_by_mass = 1 }']

import matplotlib.pyplot as plt

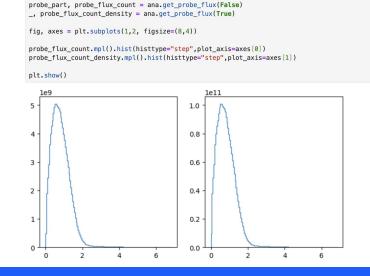
https://www.hepdata.net/record/sandbox/1713917002

- 1. Download and parse HEPData record:
 - a. Read data, errors, smearing, compile selection/projection operations. Fully automated.

Data Releases and P

- 2. Interrogate for available analyses
- 3. Interrogate analysis for flux/target information

[6]: ana = hepdata_rec.analysis("cross_section-deltapnperpx")


[10]: [str(tgt) for tgt in ana.get_target()]

Science and

Technology

Facilities Council

[10]: ['{ A = 40, Z = 18, weight_by_mass = 1 }']

https://www.hepdata.net/record/sandbox/1713917002

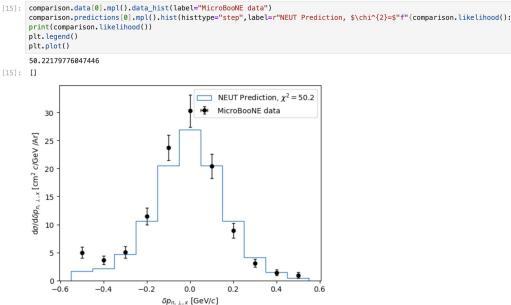
- 1. Download and parse HEPData record:
 - a. Read data, errors, smearing, compile selection/projection operations. Fully automated.
- 2. Interrogate for available analyses
- 3. Interrogate analysis for flux/target information
- 4. Load in event stream

[13]: neut_events = pn.EventSource("events_for_inspirehep_2709091v1.hepmc3.gz")
if not neut_events:
 print("Failed to read file")

https://www.hepdata.net/record/sandbox/1713917002

- 1. Download and parse HEPData record:
 - a. Read data, errors, smearing, compile selection/projection operations. Fully automated.
- 2. Interrogate for available analyses
- 3. Interrogate analysis for flux/target information
- 4. Load in event stream
- 5. Build comparison

[14]: comparison = ana.process(neut_events)



Science and Technology Facilities Council

https://www.hepdata.net/record/sandbox/1713917002

- 1. Download and parse HEPData record:
 - a. Read data, errors, smearing, compile selection/projection operations. Fully automated.
- 2. Interrogate for available analy: 151
- 3. Interrogate analysis for flux/ta
- 4. Load in event stream
- 5. Build comparison
- 6. Make plots

Science and Technology Facilities Council

How to Get Involved

Experimentalists:

- Publish new measurement data releases in a standardised format
 - **Bonus points:** convince your experimental collaboration to use a standard format
- **Be brave:** Read the ProSelecta specification and use it in defining your measurement

Theorists:

- If a measurement you want to use isn't in the common format, convert it! We can help.
- Be brave:
 - Use HepMC3, use ProSelecta, use a container if you're worried about building the software
 - Get outside your comfort zone, that's where the useful data is and will continue to be

Science and Technology Facilities Council

Data Releases and Preservation

L. Pickering 41

How to Get Involved

Package	Architecture	Version	Repository	Size
Installing:				
root	aarch64	6.32.06-1.el9	epel	156 k
Installing dependencies:				
annobin	aarch64	12.31-2.el9	appstream	1.0 M
dwz	aarch64	0.14-3.el9	appstream	125 k 🔵
efi-srpm-macros	noarch	6-2.el9_0.0.1	appstream	21 k
file	aarch64	5.39-16.el9	baseos	48 k
fonts-srpm-macros	noarch	1:2.0.5-7.el9.1	appstream	27 k
gcc-plugin-annobin	aarch64	11.4.1-3.el9.alma.1	appstream	43 k
ghc-srpm-macros	noarch	1.5.0-6.el9	appstream	7.8 k
glibc-gconv-extra	aarch64	2.34-100.el9_4.3	baseos	1.6 M
gnu-free-fonts-common	noarch	20120503-25.el9	epel	122 k
gnu-free-mono-fonts	noarch	20120503-25.el9	epel	414 k
gnu-free-sans-fonts	noarch	20120503-25.el9	epel	740 k
gnu-free-serif-fonts	noarch	20120503-25.el9	epel	1.4 M
go-srpm-macros	noarch	3.2.0-3.el9	appstream	26 k
json-devel	aarch64	3.11.3-1.el9	epel	156 k 🗛
kernel-srpm-macros	noarch	1.0-13.el9	appstream	15 k
lua-srpm-macros	noarch	1-6.el9	appstream	8.4 k
ocaml-srpm-macros	noarch	6-6.el9	appstream	7.7 k
openblas-srpm-macros	noarch	2-11.el9	appstream	7.3 k
perl-srpm-macros	noarch	1-41.el9	appstream	8.1 k
<pre>pyproject-srpm-macros</pre>	noarch	1.12.0-1.el9	appstream	12 k
python-srpm-macros	noarch	3.9-53.el9	appstream	17 k
qt5-srpm-macros	noarch	5.15.9-1.el9	appstream	7.8 k
redhat-rpm-config	noarch	207-1.el9.alma.1	appstream	66 k 🖯
root-cling	aarch64	6.32.06-1.el9	epel	27 M
root-core	aarch64	6.32.06-1.el9	epel	68 M

• Get outside your comfort zone, that's where the useful data is and will continue to be

Science and Technology Facilities Council

Data Releases and Preservation

L. Pickering 42

Linky Dinky Dump

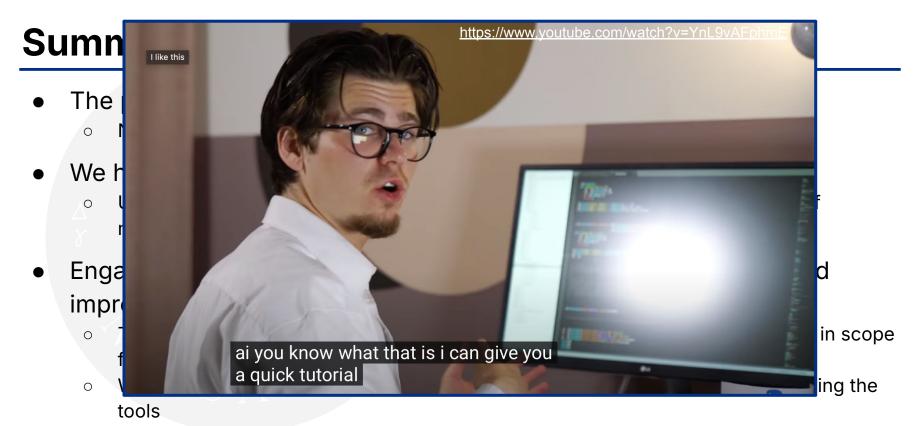
- ProSelecta: https://github.com/NUISANCEMC/ProSelecta
- NuHepMC:
 - HepMC3: <u>https://gitlab.cern.ch/hepmc/HepMC3</u>
 - Specification: <u>https://arxiv.org/pdf/2310.13211</u>
 - C++/python tools: <u>https://github.com/NuHepMC/cpputils</u>
- HEPData:
 - Example HEPData Record: <u>https://www.hepdata.net/record/sandbox/1713917002</u>
 - HEPData YAML format: <u>https://hepdata-submission.readthedocs.io/en/latest/submission_yaml.html</u>
 - HEPData python tools: <u>https://github.com/HEPData/hepdata_lib/</u>
 - NUISANCE conventions and tools: <u>https://github.com/NUISANCEMC/HEPData</u>
 - Some example of converted neutrino data sets: <u>https://github.com/NUISANCEMC/neutrino_data</u>
- NUISANCE slack: <u>https://www.nuisance-xsec.slack.com</u>

Science and Technology Facilities Council

//What I Didn't Cover

- Standards for releasing and using data and MC events from experiments
 - c.f. MINERvA data-preservation effort
 - Fantastic effort, I think the problem domain isn't yet fully explored, so the solution requires more work. That should be done!
 - Here's we're talking about easy things that we should just agree how to do and do them

Science and Technology Facilities Council



Summary

- The problem domain is clear
 - No new research is needed
- We have sketched a solution that seems promising:
 - Unless a better one appears, we will work on converting the historical corpus of measurements to this format for use in NUISANCE3
- Engagement will improve the tools, reduce your cognitive load, and improve your productivity if you produce or use scattering data:
 - There is some upfront cost, but I think the increased productivity and reduction in scope for bugs/misinterpretation is worth it
 - We are committed to writing training material, supporting the tools and users using the tools
 - If you have ideas for training materials, please let us know: API docs, readthedocs, jupyter examples, youtube videos of Luke programing...

Science and Technology Facilities Council

If you have ideas for training materials, please let us know: API docs, readthedocs, jupyter examples, youtube videos of Luke programing...

Science and Technology Facilities Council

Summary

- The problem domain is clear
 - No new research is needed
- We have sketched a solution that seems promising:
 - Unless a better one appears, we will work on converting the historical corpus of measurements to this format for use in NUISANCE3
- Engagement will improve the tools, reduce your cognitive load, and improve your productivity if you produce or use scattering data:
 - There is some upfront cost, but I think the increased productivity and reduction in scope for bugs/misinterpretation is worth it
 - We are committed to writing training material, supporting the tools and users using the tools
 - If you have ideas for training materials, please let us know: API docs, readthedocs, jupyter examples, youtube videos of Luke programing...

Science and Technology Facilities Council

Backup

Science and Technology Facilities Council