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DISCLAIMER: OPINIONS!
● Necessarily more familiar with some methods compared 

to others
– Biased sample of methods previously/currently in use
– Very biased sample of potential future developments

● If anything seems fishy, probably my fault
● Many subtleties at every step

– I do not have the time to get into
● Open to Bayesian methods, but biased towards 

Frequentism
● Most probable answer in statistics: “It depends”
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SOME NOTATION
● ν

i
 = Σ

j
 R

ij
 μ

j

– Expected number of observed 
events νi in reco bin i

– Expected number of true 
events μj in truth bin j

– Response matrix R is N x M 
matrix

● Observed events:
n

i
 ~ Poisson(ν

i
)

● True events:
m

j
 ~ Poisson(μ

j
)

● Binned in multiple variables
● Not necessarily same physical 

meaning
– track_length_reco = R * 

momentum_true
● Purely mathematical approach:

R = P(event in reco i | event in truth j) 
= S * eff

● Background handling approaches
– Subtract from observed events:

n
i
 = o

i
 – b

i
● “Breaks” Poisson statistics

– Add to expectation
ν

i
 = ς

i
 + β

i
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EVENT RATES VS CROSS SECTIONS
● μ

j
 = Σ

k
 T (dσ/dy)

jk
 Φ

k
 Δyj = T (dσ/dy)

j,Φ-avg
 Φ Δyj

– For “thin” targets
● For a neutrino,  “thin” can mean a lightyear of lead

– Assuming cross section is sufficiently constant over bin!
● Conceptual steps:

– Measure ni → Use it as proxy for νi

– Unfold and efficiency correct to μj

– Convert event rates to cross sections
● Uncertainties break neat factorisation

– E.g. detector smearing depends on neutrino flux uncertainty?
● Details vary a lot: “It depends”
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JUST LOOK AT RECO
● Implicitly compare n

i
 with μ

j
– Pretend y

reco
 and y

truth
 are the same

● Ancient past: Don’t even put error 
bars
– Not as unreasonable as it sounds

● n vs. ν
● Slight improvement: bin-by-bin 

efficiency correction: n
i
 / eff

i
– Only does what you expect if R is 

diagonal → No smearing
H. Geiger, On the scattering of the α-particles by matter, 
https://doi.org/10.1098/rspa.1908.0067
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NAIVE APROACH: JUST INVERT R
● Usually we have smearing
● ν = Rμ  so why not just calculate μ = R-1 ν ≈ R-1 n
● Possible when N = M

– Choose suitable left-inverse when N > M

● Solves least squares problem:
– Minimize |ν – n|2 = |Rμ – n|2

– μ� = (RTR)-1RT n = R-1 n

– Equivalent to maximum likelihood solution when uncertainties Gaussian 
with known variances

● Can lead to large variance and strong anticorrelations in result
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THE ILL POSED PROBLEM
● Strong correlations stem from fact 

that very different μ can lead to 
very similar ν

● Small fluctuations in n lead to 
large swings in “best guess” at μ

● Many different solutions are 
virtually indistinguishable
– Pick a nicer looking one!

● Impose a slight preference for 
“nice looking” results
– Can be interpreted as Bayesian 

prior or Frequentist external 
constraint

μ

μ

ν

ν

R

R

μ
νR
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RIDGE REGRESSION / TIKHONOV 
REGULARISATION

● Modify optimisation problem
– Add a penalty term for “bad looking” solutions
– Minimize |Rμ – n|2 + |Cμ|2

– |Cμ|2 = μTCTCμ = μTQμ
● Tikhonov matrix C, or penalty matrix Q

– Notations vary
– Choice of C/Q determines what is penalised and how 

strongly, e.g.
● Q = τ I  →  L2 norm of μ

● μTQμ = τ Σ(μj - μ(j+1))
2 

→ Squared differences of neighbouring bins
● New solution

– μ� = (RTR + Q)-1RT n
– Adding Q makes RTR “less problematic” to invert Borrowed from S. Dolan
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HOW STRONGLY TO REGULARISE
● Regularisation can be seen

as prior/external constraint
– Should be well defined

● Mostly it is introduced ad-hoc
– Might know what we dislike, but not how much

– Regularisation strength τ not known a priori

● Regularisation introduces bias
– Also messes with coverage properties

● Usually some heuristic method to “balance” bias and variance of result
– e.g. L-curve method

● Can define an objective function and optimize with respect to it
– What should be optimized can be subjective

“v
ar

ia
nc

e”

“bias”

τ=0

τ=100

“good enough”



25/10/24 Lukas Koch 10

STATISTICAL SHRINKAGE
● Why is it reasonable to penalise large |μ|2 ?
● E.g. want to estimate mean value of normal distirbution
● Single sample x from N(μ, σ)

– Maximum likelihood estimator (MLE): μZ = x
– E[(x-μ)2] = σ2

● Multiply x by shrinkage factor a
– Shrinkage esitmator (SE): μZ = ax
– E[(ax-μ)2] = (a-1)2μ2 + a2 σ2

– Minimal at a = μ2 / ( σ2 + μ2) < 1
● SE reduces expected squared deviation from true mean 

compared to MLE!
– At cost of biasing point estimate towards 0

● Choosing a point estimator does not affect the likelihood function

μaμ
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POINT ESTIMATE VS LIKELIHOOD 
FUNCTION

● But all information of experiment is (should be) inside likelihood function
– Often approximated as MLE and covariance matrix
– It is what it is, even if we do not like how it looks

● Understand regularisation as shrinkage
– Picking a “reasonable” point estimate
– Not to regularise the likelihood function

● Regularised covariance just a visualisation tool?
– Pick a subset of the allowed region around the point estimate
– Less correlations, less confusing plots

● Need both for full picture
– Unregularised data release for “undiluted” likelihood function
– Regularised result as “better” point estimate
– Consensus for long time that it would be good to publish likelihood functions

● Used both in Bayesian and Frequentist analyses

MLESE

cov
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WIENER SVD
● Singular Value Decompostion (SVD) can be used to 

get left inverse of R and solve the least squares 
problem

● Apply Wiener filter which maximises signal to noise 
ratio
– Assuming a given signal shape
– Inspired by signal processing
– This is the regularisation

●  No tunable regularisation strength
– Already “optimized” for the signal to noise ratio

https://doi.org/10.1088/1748-0221/12/10/P10002

https://doi.org/10.1088/1748-0221/12/10/P10002
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RELATION TO UNREGULARISED 
RESULT
● Wiener SVD yields “additional smearing matrix” A
● It relates regularised result to unregularised one

– μ’ = A μ
● Does this remind you of the shrinkage estimator?

– V’ = AVAT

● No need to privde two separate results!
– Just publish A together with either (μ, V) or (μ’, V’)

● Better call A “regularisation matrix”?
– Does not conserve event numbers and can have negative 

elements
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ITERATIVE UNFOLDING /
D’AGOSTINI METHOD

● Also known as Bayesian unfolding
– Should we be calling it that?
– It is Bayesian update of priors for 1 iteration
– It approaches matrix inversion result for inf 

iterations
(as long as all μ� are positive)

– “Squeezing the data multiple times” for everything 
in between?

● # of iterations determines regularisation!
– Low # →”remembers” first prior → strong 

regularisation
– (# → inf) → “forgets” first prior → no 

regularisation
● Assuming no smoothing in between iterations

μ

P(truth = j | reco = i) = ν
ij
 / ν

i

= (R
ij 
µ

j
)/(Σ

k
 R

ik
 μ

k
)

μ’
j
 = (1/eff

j
) Σ

i
 n

i
 P(j | I)

= µ
j
 (1/eff

j
) Σ

i
 R

ij
 (n

i
 / ν

i
)

Simplified:

https://arxiv.org/abs/1010.0632

https://arxiv.org/abs/1010.0632
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LIKELIHOOD FITTING
● Explicitly treat problem as parameter fit

– Poisson likelihood in reco bins

– Parameters of interest θ that scale
cross section in truth bins

– Systematic nuisance parameters φ
● Constrained by “priors” = external constraints

– “Just” need a function -2 log L(θ, φ | n) and a 
minimizer

– Get MLE & parabolic approximation (covariance)

● Add regularisation / penalty terms explicitly
–

E.g. https://arxiv.org/abs/2303.14228

https://arxiv.org/abs/2303.14228


25/10/24 Lukas Koch 16

FREQUENTIST FIT, BAYESIAN 
PROPAGATION?

● Result of fit contains many nuisance parameters
● Correlated uncertainties need to be propagated to XSECs
● Ideal Frequentist approach

– For each M-dimensional XSEC, maximise likelihood over parameters
● Profile likelihood

– Not trivial
● Pragmatic aproach

– Throw parameters according to MLE & covariance
– Calculate XSEC for each throw
– Usually calculate central value and covariance from sample

● Could also publish throws in case of non-Gaußian results
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ADD REGULARISATION AFTER THE 
FACT?
● Take inspiration from Wiener SVD

– Apply regularisation as a matrix 
multiplication to the unregularised 
result

● Given any likelihood described as 
MLE & covariance, adding a 
Thikonov penalty term leads to a 
new result

● Can be applied to any 
unregularised result → post hoc
– As long as regularised result is 

close to unregularised one
● Parabola approximation of log 

likelihood stays valid

https://doi.org/10.1088/1748-0221/17/10/P10021

−2 ln (L(θ)) ≈(θ−θ̂)TV−1(θ−θ̂)+const .
P (θ) =θTQθ

−2 ln (L' (θ)) =−2 ln (L(θ))+P (θ)
≈(θ−θ̂ ' )TV '−1(θ−θ̂ ' )+const .

θ̂ ' =A θ̂
V ' =AV AT

A =(V−1+Q)−1V−1

https://doi.org/10.1088/1748-0221/17/10/P10021
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OMNIFOLD (AS I UNDERSTAND IT)
● Use Machine Learning (ML) 

techniques to create MC reweighter 
to match MC to measured reco data
– Based on un-binned event properties

● Re-weighted MC is the “unfolded” 
result!
– Can be binneed in any way desired to 

report a XSEC

● Cutting edge research
– Just about ready for production use?

– We will hear more this week!

MC recoReal data

ML

train

reweight

“unfolded” MC events

MC truth

iterate

Simplified:
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BACK TO THE ROOTS
● Possible to do science without unfolding
● Compare models with data in reco space

– But consider detector effects: Forward folding
– Allows full statistical analysis
– The data is exactly what we saw: n is aperfectly 

known fixed number
– Test whether models are compatible, i.e the 

predicted ν 
● How to facilitate use of data by external 

consumers?
– Not experts on the detector response
– No access to (often complicated) simulation 

frameworks
– Data needs low entry barrier to be used by many 

people
●
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SOFWARE AVAILABLE
● Delphes

– https://cp3.irmp.ucl.ac.be/projects/delphes
– Developed for collider experiments

● Rivet
– https://rivet.hepforge.org/
– Developed for collider experiments

● ReMU – Response Matrix Utilities
– https://remu.readthedocs.io
– Developed for neutrino interaction measurements
– Builds response matrices and uncertainties from MC
– Fully developed statistical model of detector, flux, and MC stat 

uncertainties
https://iopscience.iop.org/article/10.1088/1748-0221/14/09/P0
9013

https://cp3.irmp.ucl.ac.be/projects/delphes
https://rivet.hepforge.org/
https://remu.readthedocs.io/
https://iopscience.iop.org/article/10.1088/1748-0221/14/09/P09013
https://iopscience.iop.org/article/10.1088/1748-0221/14/09/P09013
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DISCUSSION STARTERS
● Unregularised result is best 

approximation of Likelihood
– e.g. for fits and statistical tests of 

models
● Regularisation should be used to 

pick a representative point estimate
– e.g. for plots

● We should always make likelihood 
function available
– Unregularised result or something 

more complicated
– Wiener SVD and post-hoc 

regularisation make this trivially easy
● Added bonus: regularisd and 

unregularised result are directly related

● Include as many method details as 
possible in your papers
– Lots of nuances, caveats, 

assumptions…
– Not practical to spell out every single 

check/study/approximation
● Or ist it?
● Dedicated method paper?

– Have to take papers at face value
● Trust in what is written
● Assume the worst about

what is not written?
● Assume the best?
● Hope for the best

but expect the worst?
–
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Thanks!

“Good physicists do have priors and always use them!
(Only the perfect idiot has no priors.)

– G. D’Agostini
arXiv:1010.0632

“Note that venerable proverb:
Children and fools always speak the truth.

– Mark Twain
On the Decay of the Art of Lying
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Backup
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EXAMPLE PENALTY MATRICES
Penalise bin-to-bin differences

Penalise bin-to-bin model 
scaling differences
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TWO WAYS OF INTERPRETING A
● Coordinate transformation
● New result describes exactly the same 

distribution, but with different axes
– No information lost

● Intuitive in 2D
● Axes of histograms no longer make sense

● Modification of result
● Coordinate axes stay the 

same, but distribution changes
– Change of result

● Axes and bin values retain 
same meaning
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