What can electron constraints do for neutrino

interaction uncertainties? (And what they cannot)

Measuring neutrino interactions for next-generation oscillation experiments workshop @ ECT*

Adi Ashkenazi

adishka@tauex.tau.ac.il

The challenge - next generation high precision

The challenge - next generation high precision

$$N(E_{rec},L) \propto \int \Phi(E,L)\sigma(E)f_{\sigma}(E,E_{rec})dE$$

Measurement

Incoming true flux Modelling input

The challenge - next generation high precision

$$N(E_{rec},L) \propto \int \Phi(E,L)\sigma(E)f_{\sigma}(E,E_{rec})dE$$

Measurement

Incoming true flux Modelling input

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions
 (vector vs. vector + axial)

Useful to constrain model uncertainties

e

eav Why electrons?

Electrons and Neutrinos have:

- Identical initial nuclear state
- Same Final State Interactions
- Similar interactions
 (vector vs. vector + axial)

Useful to constrain model uncertainties

Electrons have known energies

Useful to test incoming energy reconstruction methods,

Complementary efforts

Collaborations	Kinematics	Targets	Scattering	Publications
E12-14-012 (JLab)	$E_e = 2.222 \mathrm{GeV}$	Ar, Ti	(e, e')	Phys Rev C 99 054608
(Data collected: 2017)	$ heta_e=$ 15.5, 17.5,	Al, C	(e,e'p)	Phys.Rev.D 105 112002
	20.0, 21.5			•
lofforcon Lab	$ heta_p=$ -39.0, -44.0,			
Jerrer Son Lab	-44.5, -47.0			
	-50.0			
e4nu/CLAS (JLab)	$E_e=$ 1, 2, 4, 6 GeV	H, D, He,	(e, e')	
(Data collected: 1999, 2022)	$ heta_e > 5$	C, Ar, ⁴⁰ Ca,	e,p,n,π,γ	Nature 599 , 565
		⁴⁸ Ca, Fe, Sn	in the final state	Phys.Rev.D 103 113003
Jefferson Lab				
A1 (MAMI)	$E_e=1.6{ m GeV}$	H, D, He	(e,e')	
(Data collected:2020)		C, O, Al	2 additional	
(More data planned)		Ca, Ar, Xe	charged particles	
LDMX (SLAC)	$E_e = 4.0 \mathrm{GeV}$		(e,e')	
(Planned)	$ heta_e <$ 40		e,p,n,π	
JLAC			in the final state	
eALBA	$E_e=$ 500 MeV	C, CH	(e,e')	
(Planned) ALBA	- few GeV	Be, Ca		

Adaptation from Proceedings of the US Community Snowmass2021 arXiv:2203.06853v1 [hep-ex]

e4v demonstrate best coverage.

The only effort with data already taken and expected exclusive measurements.

eav Data from CLAS

	Scintillators (timing)000 <t< th=""><th colspan="2"></th></t<>		
	CLAS6	CLAS ₁₂	
Run years	1996-2013	2017 - ?	
Luminosity			
Targets	C & Fe	H, D, , C, (O), ⁴⁰ Ar and more	
Beam Energy	1.1, 2.2, 4.4 GeV	(1), 2, 4, 6 GeV	
Electron acceptance	$\theta_e > 15^\circ$	$\theta_e > 5^{\circ}$	
Solid angle coverage	$\sim 2\pi$	$\sim 3\pi$	
Magnetic field	V	V	
Particle thresholds	150 (300) MeV/c for (p/)	9 200 (400) MeV/c for ⁹ (p/n)	
Events	M C(e,e') events	⁴⁰ Ar (e,e') events	

Know electron scattering data limitation, we'll always need neutrino data Find variables which are sensitive to specific parameters

Focus on nuclear model and FSI where we know the electron model is sufficient

Towards new Inclusive results on Ar

²H at 6GeV $\theta_e \in [10.5, 39.5]^\circ$ with 1° steps

Matan Goldenberg

Towards new Inclusive results on C, Ar

Towards new Inclusive results on Ar

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

Different interaction lead to multi-hadron final states

Gaps can make them loop like QE-like events with outgoing $1\mu 1p$

Radiative effects

When comparing electron scattering to prediction, radiative effects $e^{(k_1)} e^{(k_2) \gamma(k)}$

Implemented and validated in GENIE

$\overrightarrow{\mathcal{C4V}}$ 1p0 π Event Selection

Focus on Quasi Elastic events:

- 1 proton above 300 MeV/c
- no additional hadrons above detection threshold:

150 MeV/c for $P_{\pi^{+/-}}$

500 MeV/c for P_{π^0}

Reconstructed Calorimetric Energy

²⁵ Nature **599**, 565 (2021)

Reconstructed Calorimetric Energy

²⁶ Nature **599**, 565 (2021)

Reconstructed Calorimetric Energy

²⁷ Nature **599**, 565 (2021)

Focusing on different reaction mechanisms Standard Transverse Variables

δα_T Sensitive to Final State Interactions

δp_T

-p^µ

 $\delta \alpha_{T}$

p^p_T

 $\vec{P}_T = \vec{P}_T^{e'} + \vec{P}_T^p$ Sensitive to hit nucleon momentum

Transverse missing momentum

• Nature **599**, 565 (2021)

p_T sensitivity to interaction mechanisms

³⁰ Nature **599**, 565 (2021)

Transparency Measurement

Noah Steinberg

Transparency

h-A data

- Probability that a struck proton leaves the nucleus without significant rescattering
- Complement to hadron nucleus interaction
- Study proton FSI similarly to neutrino scattering

Sensitive to both FSI and nuclear structure (PRD 104 053006 (2021))

Strong need for new data, especially at low proton momentum

Transparency Measurement

 $\mathbf{T}_{\mathbf{A}} = \mathbf{N}(\mathbf{e}, \mathbf{e'p})_{\mathbf{o}\pi} / \mathbf{N}(\mathbf{e}, \mathbf{e'})_{\mathbf{QEL}}$

Transparency Measurement

Noah Steinberg

Presenting first measurement on He Transparency decreases with A

First Look at Pions

Deuterium @ 4.2 GeV

First Look at Pions

First Look at Pions - coming up

Inspired by MiniBooNE measurement Based on simple kinematics in events with 1p1pi

37

Brittany Cohen

$$E_{rec} = \frac{2m_{e'}^2 + 2m_{\pi}^2 - 2M_N(E_{e'} + E_{\pi} + 2p_{e'} \cdot p_{\pi})}{2(E_{e'} + E_{\pi} - |p_{e'}| \cos \Theta_{e'} - |p_{\pi}| \cos \Theta_{\pi} - M_N)},$$

 $1p1\pi$ - and $1p1\pi$ + and no other hadrons or photons

1p1 π - Possible at free nucleon level

 $1p1\pi$ + needs two or more nucleons and or undetected particles (FSI)

Julia Tena Vidal

Julia Tena Vidal

Shape-only comparison Data corrected for bkg. Not radiative corrected yet Only statistical errors

Shape is well described by GENIE with FSI

Low momentum protons are not well described They are very sensitive to FSI

 α_T most sensitive to FSI is very well described

First Look at 1p1\pi^+

For $1p1\pi^+$ most events are due to FSI Well described

Reconstructed incoming energy for 1p1\pi

Tail, due to missing particles, not well described

Future Plans

Working on:

New dataset including Argon

1*p* MC

(scaled to unity)

1n MC

(scaled to unity)

1.8

Ar(e,e'N)_{0π} E_{cal} [GeV]

2

1p Data

scaled to unit

1.6

1.4

Multi differential analysis

Pion production

PRE-PRELIMINARY

1.2

Two nucleon final state

Arbitrary Units

0.3

0.25

0.2

0.15

0.1

0.05

0 8

1n Data

(scaled to unity)

The *eav* Collaboration

Contact: Minerba betan009@fnal.gov, Adi adishka@tauex.tau.ac.il

Summary

vA interaction uncertainties limit oscillation parameters extraction

Showing first use of semi-exclusive eA data to $\sqrt{}$ explore vA uncertainties

Data/model disagreement even for electron QE-like events, and in the various background signatures.

Time to utilize these datasets to constrain or models and get ready for the coming exciting years

Thank you for your attention