INCL in Geant4 (INCL = IntraNuclear Cascade of Liège)

Jean-Christophe David

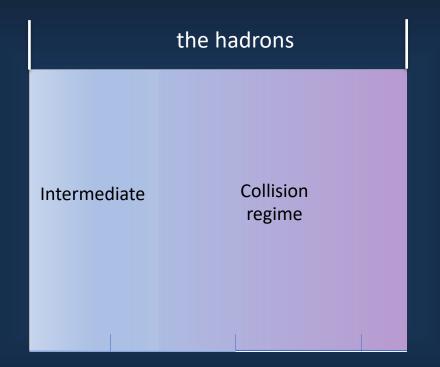
Measuring neutrino interactions for next-generation oscillation experiments

23 October 2024 – ECT* - Trento

Next v-oscillation experiments

- \rightarrow v energy more precise than ever!
- \rightarrow What nuclear reaction models can do?
- \rightarrow Which models?
- \rightarrow Role of Geant4?

The beginning of an answer (... I hope) from a non-expert neutrino physicist


- Generalities on nuclear interactions around MeV-GeV (with light projectiles)
- Geant4 (which models)
- INCL ←→ Neutrino
- INCL in (some) details

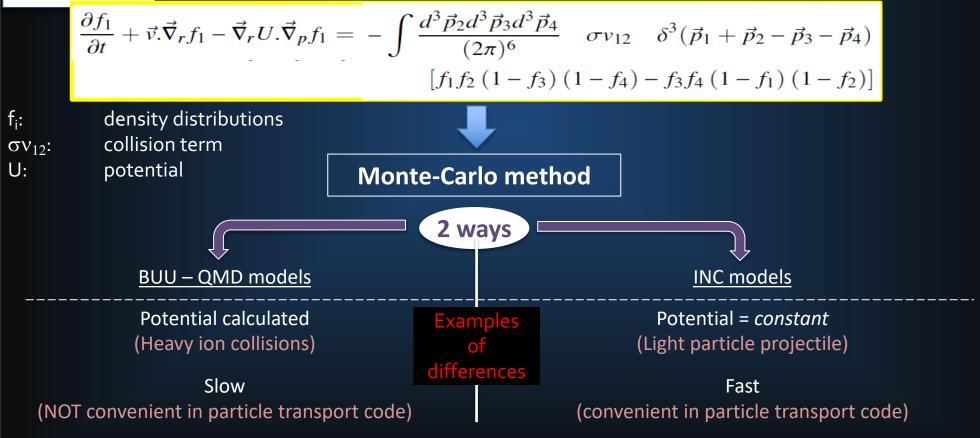
4 main interaction domains can be considered where the projectile see

	the nucleus	the hadrons			the partons	
	Compound Nucleus	Intermediate	Collision regime		String dynamics	
0	0,01	0,1	1	10	100	GeV
		20 ~20 leV Me		~20 Ge ^v		

Geant4 - INCL...

4 main interaction domains can be considered where the projectile see

Two possibilities or ways of simulating this domain:

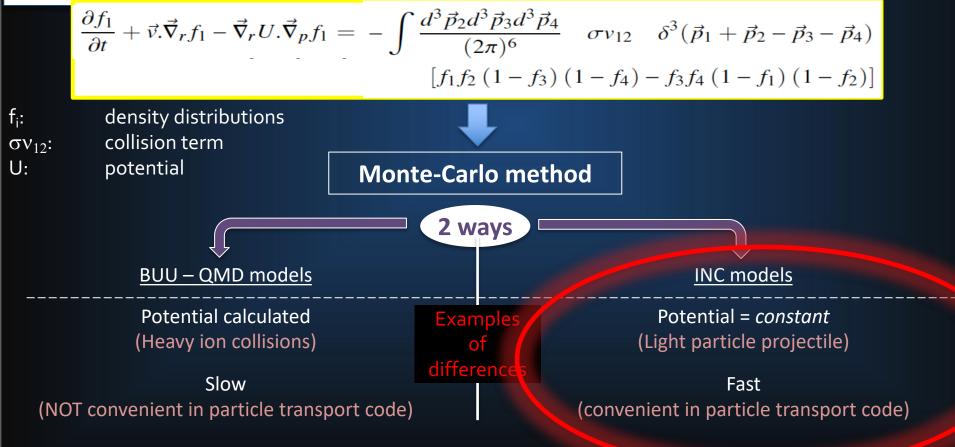

- two phases: precompound + INC]
- depends on the INC « ingredients »

• INC alone

Modeling

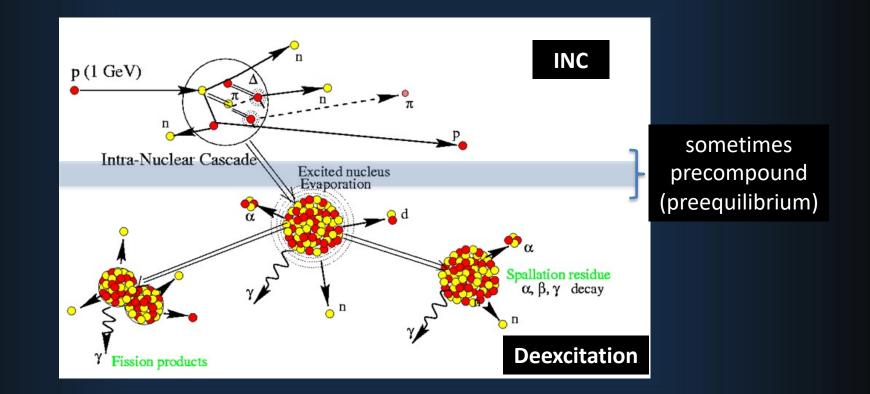
Numerous nucleons interacting → Schrödinger equation → assumptions needed → BUU/VUU equation (transport equation with a collision term)

 $1+2 \rightarrow 3+4$

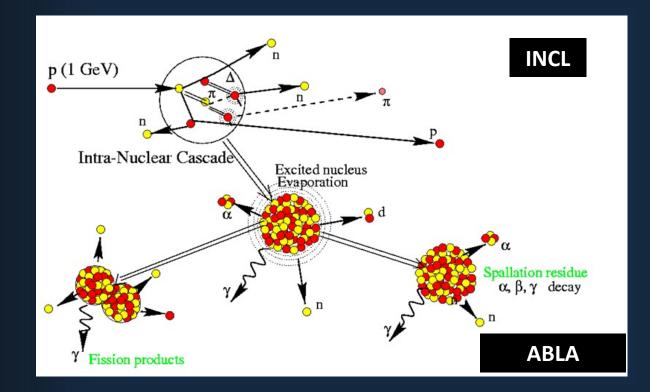


Geant4 – INCL.

Modeling


Numerous nucleons interacting → Schrödinger equation → assumptions needed BUU/VUU equation (transport equation with a collision term)

 $1+2 \rightarrow 3+4$



INC + (preequilibrium) + De-excitation

INC + (preequilibrium) + De-excitation

Geant4 - INCL...

Geant4

Three INC models

	Bertini (BERT)	Binary light Ion Cascade (BIC)	INCL (INCLXX)
projectile	$p, n, π^+, π^-, K^+, K^-, K_L, K_S, \Lambda, \Sigma^+, \Sigma^-, \Sigma^0, \Xi^-, \Xi^0, \Omega^-$	n, p, nucleus	p, n, π⁺, π⁻,(π⁰, K⁺, K⁻, K⁰, Λ, Σ⁺, Σ⁻, Σ⁰,) pbar
Energy	0 – 6 GeV	0 – 6 GeV	0 – 20 GeV
Precompound	Its own	The one from Geant4	No
De-excitation	Its own	The one from Geant4	ABLA (Geant4's also)

Often used within Physics Lists (examples)

- FTFP_BERT_HP (BIC used for nucleus-nucleus interaction)
- FTFP_INCLXX_HP
- QGSP_BIC_HP

•••

(BERT used for π , K, strange hadrons)

Geant4 None of them deal with the neutrino! Three INC models **Binary light Ion Cascade** Bertini INCL (BERT) (INCLXX) (BIC) projectile $p, n, \pi^+, \pi^-, K^+, K^-, K_L$ n, p, nucleus $p, n, \pi^+, \pi^-, (\pi^0, K^+, K^-,$ $K_S, \Lambda, \Sigma^+, \Sigma^-, \Sigma^0, \Xi^-, \Xi^0, \Omega^ K^0$, Λ, Σ⁺, Σ⁻, Σ⁰,) pbar $0-6 \, \text{GeV}$ $0-6 \, \text{GeV}$ 0-20 GeV Energy The one from Geant4 Precompound No Its own

Often used within Physics Lists (examples)

Its own

- FTFP_BERT_HP (BIC used for nucleus-nucleus interaction)
- FTFP_INCLXX_HP
- QGSP_BIC_HP

De-excitation

•

(BERT used for π , K, strange hadrons)

The one from Geant4

see talk of V. Grichine

ABLA (Geant4's also)

INCL and the Neutrinos

Increasing precision of the experiments

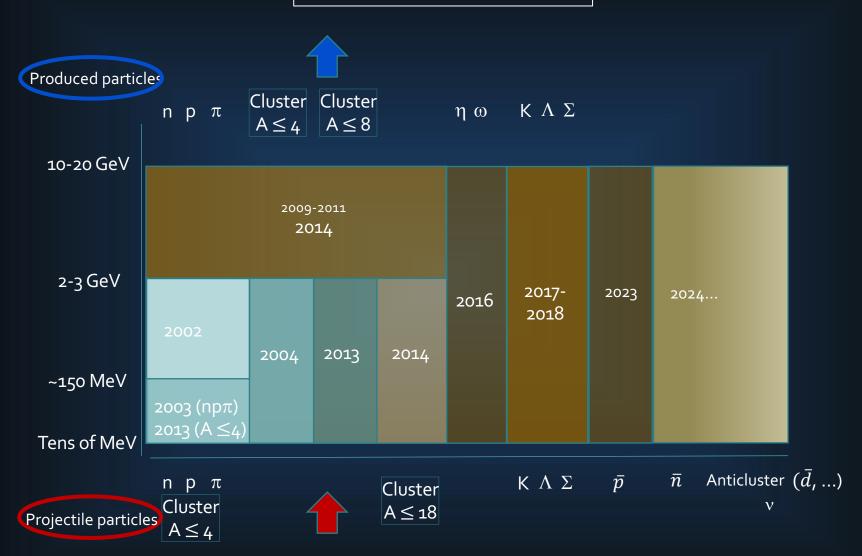
Better/refined results in v-Nucleus interactions

see A. Ershova talk Need to use models known to treat well Final State Interaction (FSI)

The recent history of « INCL and neutrinos »

	2019	2020-2023	2024	2024	2024
Who	GENIE	A. Ershova (Thesis CEA)	Antoine L.T. (Internship CEA)	GENIE	NEUT
Link/Goal	Contact	v-oscillation exp. INCL to treat FSI	CCQE in INCL	New contact	Contact
Work	Implementing INCL	NuWro v-N INCL FSI	It works. Implementation OK? Some points to be Used within Geant4 understood		Implementing INCL
Bertini also in GENIE Discussions to get a common interface to use INCL for neutrino physics					

Geant4 - INCL


Measuring neutrino interactions for next-generation oscillation experiments

Basic principles

- Four (common) main hypotheses
 - Numerous scatterings •
 - Good enough definition of position and momentum •
 - scattered wave \rightarrow asymptotic value before next collision \rightarrow Classical treatment of scattering •
 - time of interaction << time between collisions \bullet
- Main ingredients
 - Nucleus = nucleons with position-momentum (correlated) and potential \bullet
 - Cascade \bullet
 - Next collision (driven by cross sections) ٠
 - Final products (driven by cross sections, but not only) ٠
 - Pauli Blocking ٠
 - Ad-hoc models (ex.: cluster production) \bullet
 - ...Competing with reflection/emission (border) and decays (Δ , Σ^{0} , ω) ٠
 - Stopping time (based on the thermalization of the remnant nucleus) •

- \rightarrow Interferences cancel out
- \rightarrow Classical trajectories
- \rightarrow Binary collision

Chronology of development

Applications

• To study interaction mechanisms

Stand-alone version X exp. data

- particle spectra
- residual production (A, Z, (Z,A) distributions, versus energy)
- cluster production
- Implementation in Transport codes
 - MCNPX INCL4.2 Fortran
 PHITS INCL4.6 Fortran
 Geant4 Latest versions C++
- Macroscopic applications
 - Neutron sources
 - ADS
 - Facility design
 - Hadrontherapy
 - Meteorites (also std-alone version...)

Geant4 – INCL...

Benchmarks

External users •

Which models? What's the reliability?

Specific benchmarks (application oriented)

Much rarer

General benchmarks (all ref. in J.-C. David, Eur. Phys. J. A (2015) 51: 68)

- NEA 90's • IAEA 2008-2010 •
- But, how to analyse the benchmark? •
 - Plots Shapes • •
 - Figure of merits **Right values**

Developers Users

The main question: Are we able to know the error and uncertainties of our calculations? •

Errors – Uncertainties Optimization

A project (NuRBS: Nuclear Reaction model improvement with Bayesian Statistics) has been funded (2024->2027) – CEA & Bern U. (and IAEA+Coruña U.)

Goals:

- Building tools for biasing and parameter optimisation
- Applying them to INCL and ABLA for several cases

Conclusions

INCL's interest in neutrinos

- Recognized model in its field (FSI)
- Available in Geant4
- Still maintained
- ... and improved
- Uncertainties under study
- Interface for multi-input use (ex.: v-nucleon vertex)

Discussions (manpower...)

Thanks for your attention!

Measuring neutrino interactions for next-generation oscillation experiments

BACKUP

Bias (Error) estimate

۲

- bayesian theorem
- information = exp. data

Method

- y1 = bias
- y2 = exp. data calculations

 $\rho(\mathbf{y}_1|\mathbf{y}_2) \propto \rho(\mathbf{y}_2|\mathbf{y}_1)\rho(\mathbf{y}_1)$

(ρ = probability distribution)

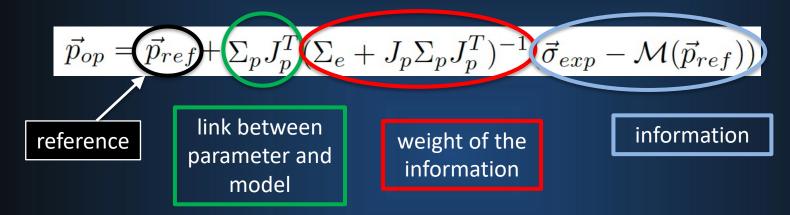
• each distribution = gaussian $\mathcal{N}(\mathbf{y})$

$$\mathcal{N}(\mathbf{y}|\boldsymbol{\mu}, K) = \frac{1}{\sqrt{(2\pi)^N detK}} exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^T K_{11}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right)$$

• We obtain the new distribution for $\rho(\mathbf{y}_1|\mathbf{y}_2)$ (bias knowing exp. data)


$$\mu_1^{new} = \mu_1 + K_{21}^T K_{22}^{-1} (\mathbf{y}_2 - \mu_2) = K_{21}^T K_{22}^{-1} \mathbf{y}_2$$
$$K_{11}^{new} = K_{11} - K_{21}^T K_{22}^{-1} K_{21}$$

- where K_{ab} have to be estimated
 - form?
 - Hyperparameters from marginal likelihood maximization


$$K_{ab} = (\kappa(x_i, x_j)); \text{ avec } \kappa(x_i, x_j) = \delta^2 exp \left(-\frac{(x_i - x_j)^2}{2\lambda^2}\right)$$

Geant4 – INCL..

GLS = Generalized Least Square

GLS gives the new values of the parameters and related covariance matrices

Calculation (\mathcal{M}) is supposed to be linear...

Not the case for models like INCL, but

- 1- almost linear close to the value (of the parameter)
- 2- process by iterations

Hypothesis reasonable to get the optimized value, BUT not for determining the uncertainties!

To estimate uncertainties, we use however a similar method where we broke the linear hypothesis during the process.