The Hadron Cascade

(and other related issues)

(a personal perspective)

Kajetan Niewczas

Nuclear response Nuclear response

Modeling approximations

$$
|\mathcal{M}|^2 \propto \left| \langle \Psi_A | i \hat{T} | X \rangle \right|^2
$$
\nBorn approximation (IA)

\n**CRPA**

\n
$$
\approx \left| \sum_{\alpha} \langle \Psi_A | i \hat{T} | \Psi_{\alpha} \rangle \langle \Psi_{\alpha} | X \rangle \right|^2 \approx \sum_{\alpha} \left| \langle \Psi_A | i \hat{T} | \Psi_{\alpha} \rangle \right|^2 \left| \langle \Psi_{\alpha} | X \rangle \right|^2
$$
\n+ intermediate hadronic state

\n**DWIA**

\n
$$
\approx \sum_{\alpha, h, p} \left| \langle \psi_h | \hat{O}_{1b} | \psi_p \rangle \langle \Psi_A | \hat{a}_h^{\dagger} \hat{a}_p | \Psi_{\alpha} \rangle \right|^2 \left| \langle \Psi_{\alpha} | X \rangle \right|^2
$$
\n+ one-body nuclear currents

\n**PWIA**

\n
$$
\approx \sum_{h, p} \left| \langle \psi_h | \hat{O}_{1b} | \psi_p \rangle \right|^2 \left| \langle \Psi_A | \hat{a}_h^{\dagger} | \Psi_{A-1} \rangle \right|^2 \left| \langle \Psi_{A-1}, \psi_p | X \rangle \right|^2
$$
\n+ cross section factorization (PWA)

\nGenerators

\n
$$
\approx \sum_{h, p} \sigma_{hp} S_h(E, p) P(p|X)
$$
\n4. Nikolakopoulos et al., arXiv:2406.09244

Monte Carlo event generators

→ Cross sections are evaluated in a **factorized scheme**

Intranuclear cascade

- **Propagates particles** through the nuclear medium
- **Probability** of passing a distance λ:

$$
P(\lambda) = e^{-\lambda/\tilde{\lambda}}
$$

where
$$
\tilde{\lambda} \equiv (\rho \sigma)^{-1}
$$
 and

- ρ local density
- σ cross section
- → Implemented for **nucleons**, **pions** and **kaons**

T. Golan, C. Juszczak, J.T. Sobczyk, Phys.Rev. C 86 (2012) 015505

What can we rely on?

Final-state interactions in a many-body nuclear problem

Hadron propagation

Nucleon-Nucleus (NA) dynamics problem

- can be constrained by **hadron scattering**
- the nucleon should only propagate outwards
- \rightarrow e.g., optical potential, etc.

Built from **Nucleon-Nucleon** (NN) dynamics

- well-constrained **nucleon-nucleon potential**
- common practice across many-body nuclear problems
- \rightarrow e.g., *ab initio*, HF, etc.

(a) and deuteron). There is an on-shell spectrum is an on-shell spectrum and \mathcal{A}_2 . There is an on-shell spectrum is and

Mean-field nuclear picture

→ let's try to use a realistic **nucleon-nucleon potential** to derive the **central nuclear potential**

The iterative Hartree-Fock method

- \rightarrow start with an initial guess for the average field or the wave functions
- \rightarrow using the nucleon-nucleon potential $V(r, r')$ solve the equation

$$
-\frac{\hbar^2}{2m}\nabla^2\varphi_i(\mathbf{r})+U_H(\mathbf{r})\varphi_i(\mathbf{r})-\int U_F(\mathbf{r},\mathbf{r}')\varphi_i(\mathbf{r}')d\mathbf{r}'=\varepsilon_i\varphi_i(\mathbf{r})
$$

 \rightarrow determine new values of $U_H(r)$, $U_F(r, r')$, $\phi_i(r)$, ϵ_i \ldots in the above \ldots schematically, one has \ldots

$$
U_{H(F)}^{(0)}(\mathbf{r}) \qquad U_{H(F)}^{(1)}(\mathbf{r}) \qquad U_{H(F)}^{(2)}(\mathbf{r}) \qquad \dots
$$

\n
$$
\downarrow \qquad \nearrow \qquad \downarrow \qquad \nearrow \qquad \downarrow \qquad \nearrow
$$

\n
$$
\varphi_i^{(0)}(\mathbf{r}) \qquad \varphi_i^{(1)}(\mathbf{r}) \qquad \varphi_i^{(2)}(\mathbf{r})
$$

\n
$$
\varepsilon_i^{(0)} \qquad \qquad \varepsilon_i^{(1)} \qquad \qquad \varepsilon_i^{(2)} \qquad \qquad \dots
$$

At the end, a final field *UH(r),* wave function *CPi(r),* single-particle energy Ci is \rightarrow at convergence: the final field U_H(**r**), wave function $\phi_i(\mathbf{r})$, and single-particle energy ϵ_i

Nucleons in the mean-field potential

W. H. Dickhoff, D. Van Neck, Many-body Theory Exposed! (2005)

→ **nucleon lines are dressed** according to the Hartree-Fock procedure

Charge densities from the mean-field framework

Relativistic mean-field ς
Relativistic me \mathbf{Q} , \mathbf{Q}

All of this can be also done in a **relativistic** framework:
 \circ Schrödinger equation \rightarrow Dirac equation a relativist and spin projection spin projection support the \tilde{z} we represent the \tilde{z} we represent the set of \tilde{z}

- Schrödinger equation → **Dirac equation**, μ of this can be also done in a
No Schrödinger equation \rightarrow L σ Schrödinger equation \rightarrow Dirac equations
- **○** Wave functions \rightarrow **Dirac spinors**,
- \circ Spin-orbit term comes for free!

$$
(\tilde{E}\gamma_0 - \vec{p} \cdot \vec{\gamma} - \tilde{M}) \psi = 0
$$

$$
\tilde{E} = E - V(r)
$$

$$
\tilde{M} = M - S(r)
$$

Final-state interactions

◦ RPWIA:

- → **plane-wave outgoing nucleon**
- α RDWIA:
- \rightarrow **optical potential from NA**
	- RMSGA:
- → **Glauber approximation from NN**

(notice the low energy behavior)

 \rightarrow for more results see the **talks by Raúl or Juanma!**

M.C. Martinez et al., Phys.Rev. C 73 (2006) 024607

Modeling the fate of hadrons in final-state interactions

Classical particle propagating through a medium

Probability for a particle to propagate over a distance x with **no interactions** is

$$
P(x) = \frac{1}{\lambda} \exp(-x/\lambda)
$$

where $\lambda = (\rho \sigma)^{-1}$ is the mean free path, while ρ is target density and σ is interaction cross section

We can try to apply it to nucleons in nuclei because:

$$
\tilde{\lambda} \ll d < \lambda < R
$$

where λ˜ is the de Broglie **wavelength**, d is the **distance** between targets, and R is the **nuclear radius**

N. Metropolis et al., Phys.Rev. 188 (1958) 185, Phys.Rev. 188 (1958) 204

	Kajetan Niewczas	

Application to nuclei (space-like approach)

- Pick a random starting point in the nucleus
- \circ Propagate the nucleon in discrete steps, e.g., $\Delta x = 0.2$ fm
- \circ At every step, we sample x from $P(x) = \lambda^{-1} \exp(-x/\lambda)$
- \rightarrow If $x < \Delta x$, then the nucleon-nucleon interaction happens
- The probability that the nucleon leaves the nucleus with no re-interactions is called **transparency**
- \rightarrow Our procedure solves an integral

$$
T = \int_0^{2R} f_R(z) e^{-z/\lambda} dz
$$

where $f_R(z)$ is the distribution of the starting points

◦ For fixed density (uniform ball), the **solution is given analytically**

$$
T = 3e^{-A} \left(\frac{1}{A^2} + \frac{1}{A^3} \right) + 3 \left(\frac{1}{2A} - \frac{1}{A^3} \right)
$$

where $A = 2R/\lambda = 2R\rho\sigma$

 \rightarrow e.g., for $\rho = 0.16 \text{ fm}^{-3}$, $\sigma = 40 \text{ mb}$, and $R = 6 \text{ fm}$, we get $T \simeq 0.189$

Time-like approach

◦ evolution over dt

◦ calculating **collision probability** in a (dt, d^3x) box

Cascade models

→ **see the talk by Patrick for an overview of MC generators' efforts!**

Highlights: GENIE migningues: GEN.
External FSI \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}

J. Plows, NuFACT 2024

→ **variety of models available**: homegrown **hA** and **hN**, **INCL++**, **Bertini** (Geant4)

Highlights: NEUT

Relativistic Mean Field

- First implementation of a macroscopic model based on a Relativistic Mean Field optical models into NEUT
	- Jake McKean, Raul González-Jiménez, Minoo Kabirnezhad
- Potential for new theory-motivated systematic uncertainty studies in NEUT.
- Possible consideration of alternative operators for different processes.
	- E.g. Kabirnezhad inelastic pion production model operator.

L. Pickering, NuFACT 2024

Highlights: NuWro

KN, J. Sobczyk, Phys.Rev. C 100 (2019) 015505

Highlights: Achilles p/⇡

J. Isaacson et al., Phys.Rev. C 103 (2021) 015502

\rightarrow time-like cascade based on *ah initio* nucleon distributions → **time-like cascade** based on *ab initio* **nucleon distributions**

[ECT* Workshop](#page-0-0)

Highlights: INCL

A. Ershova et al., Phys.Rev. D 106 (2022) 032009

→ **softer interactions** with higher ingredient complexity, e.g. cluster emission

Highlights: GiBUU

Nuclear ground state:

- **density distribution**: Woods-Saxon
- **particle momenta**:

 $f(\vec{r}, \vec{p}) = \Theta[p_F(\vec{r}) - |\vec{p}|]$

◦ **Fermi-momentum**:

$$
p_F(\vec{r})=(3\pi^2\rho(\vec{r}))^{1/3}
$$

◦ **Fermi-energy**:

$$
E_F=\sqrt{p_F^2+M_N^2}+U_{MF}(\vec{r},p_F)
$$

K. Gallmeister, NuSTEC School 2017

Highlights: GiBUU non-mom.dep potential, asymmetry-term, Coulomb

needs iteration for momentum for
Alternative state of the state of

Constraining through electron scattering (and other probes)

Exclusive electron scattering

Exclusive QE proton knockout at **fixed kinematics**:

- beam: *Ee*
- electron: E_{e} , θ_{e} , ϕ_{e}
- proton: E_p , θ_p , ϕ_p

With provided:
$$
\frac{\Delta p}{p}
$$
, $\Delta \theta$, $\Delta \phi$

Cuts on "missing" variables:

- energy: $E_m = \omega T_p T_{A-1}$
- momentum: $\vec{p}_m = \vec{p}_p \vec{q}$

 $E_m < 80 \text{ MeV}, \ |\vec{p}_m| < 300 \text{ MeV/c}$

Transparency:

$$
\langle T \rangle_{\theta_p} = \frac{\sigma_{\rm exp}}{\sigma_{\rm PWA}} = \frac{\rm [after\ FSI]}{\rm [total]}
$$

 $\sigma_{\rm PWIA}$ - expected value without FSI (model dependent)

Definition

Nuclear transparency is the average **probability** for a knocked-out **proton** to **escape** the nucleus **without significant reinteraction**.

e.g. measured for Carbon: $T \simeq 0.60$ [D. Abbott *et al.*, PRL 80 (1998), 5072]

KN, J. Sobczyk, Phys.Rev. C 100 (2019) 015505

KN, J. Sobczyk, Phys.Rev. C 100 (2019) 015505

 $m_{\tilde{t}}$ is important contributor. General contributor. General continues \tilde{t}

Exclusive electron scattering

JLab E91013 (D. Dutta et al.), Phys.Rev. C 68 (2003) 064603

Issues with transparency measurements

◦ Performed at **high energies** (color transparency)

◦ Valid up to the **first inelastic interaction** (imaginary part of the optical potential)

◦ Results are **model-dependent** (spectroscopic factors)

◦ **Issues with consistency** across experimental analyses

$|\theta_{\text{no}}| = 2.5^{\circ}, \langle \rho_{\text{miss}} \rangle = 50 \text{ MeV/c}$ Other exclusive electron data 10^{0} 10^{-2} scintillators tracking
chambers $\sum_{n=0}^{\infty}$ 10⁰ and θ_{pq} in θ_{pq} in θ_{pq} is θ_{miss} = 145 MeV/c.

K. G. Fissum et al., Phys.Rev. C 70 (2004) 034606

tected in the HRSh. Non-interacting electrons were dumped.

Merging together the optical potential and intranuclear cascade

 $\mathbf{F}_{\mathbf{r}}$ in terms of the leading protons kinetic energy averaged over the T2K flux. All results include a cut include A. Nikolakopoulos et al., Phys.Rev. C 105 (2022) 054603

missing energy to isolate elastic events. ROP results are compared to the NEUT results when using rROP or RPWIA as input \rightarrow see the talk by Anna for more results and comparisons!

Summary

- We have **many independent models** capable of **propagating hadrons** through nuclear matter
- Although sometimes simplistic, these solutions **work remarkably well**
- Comparisons to **hadron and electron scattering** provide vital information
- We need more dedicated, **neutrino-like experimental analyses** to test our models:
- → Data should focus on **clear experimental signals** to test various dynamics
- \rightarrow This requires the best possible knowledge of the **primary interaction**

Supplementary material

Mean-field potential

Single-particle **radial Schrödinger equation**:

$$
(T + U(r)) \phi_{\alpha}(r) = \varepsilon_{\alpha} \phi_{\alpha}(r) \tag{1}
$$

Nuclear **Hamiltonian**:

$$
H_0 = \sum_{i=1}^{A} (T_i + U(r_i)) = \sum_{i=1}^{A} h_0(i), \quad E_0 = \sum_{i=1}^{A} \varepsilon_{\alpha_i}(r_i)
$$
 (2)

Nuclear wave function is a **Slater determinant**:

$$
\Phi_{\mathfrak{a}_1,\dots,\mathfrak{a}_A}(r_1,\dots,r_A) = \frac{1}{\sqrt{A}!} \begin{vmatrix} \phi_{\mathfrak{a}_1}(r_1) & \dots & \phi_{\mathfrak{a}_1}(r_A) \\ \vdots & \ddots & \vdots \\ \phi_{\mathfrak{a}_A}(r_1) & \dots & \phi_{\mathfrak{a}_A}(r_A) \end{vmatrix}
$$

Let's restrict ourselves to two-body interactions only and evaluate the **mean-field potential**:

$$
H = \sum_{i=1}^{A} T_i + \frac{1}{2} \sum_{i,j=1}^{A} V_{ij}
$$
 (4)

$$
H = \sum_{i=1}^{A} \left(T_i + U(r_i) \right) + \left(\frac{1}{2} \sum_{i,j=1}^{A} V_{ij} - \sum_{i=1}^{A} U(r_i) \right) = H_0 + H_{res} = \sum_{i=1}^{A} h_0(i) + H_{res}, \tag{5}
$$

(3)

Hartree-Fock methods

Let's consider a density in terms of the **occupied single-particle states**:

$$
\rho(\mathbf{r}) = \sum_{b} \Phi_{b}^{*}(\mathbf{r}) \Phi_{b}(\mathbf{r})
$$
\n(6)

The **Hartree potential** at a given point generated by the **two-body interaction**:

$$
U_H(\textbf{r})=\sum_{b}\int\varphi_b^*(\textbf{r}')V(\textbf{r},\textbf{r}')\varphi_b(\textbf{r}')d\textbf{r}'
$$

The **Schrödinger equation** becomes:

$$
-\frac{\hbar^2}{2m}\nabla^2\phi_i(\mathbf{r}) + \sum_{b} \int \phi_b^*(\mathbf{r}')V(\mathbf{r}, \mathbf{r}')\phi_b(\mathbf{r}')d\mathbf{r}' \cdot \phi_i(\mathbf{r})
$$

$$
-\sum_{b} \int \phi_b^*(\mathbf{r}')V(\mathbf{r}, \mathbf{r}')\phi_b(\mathbf{r})\phi_i(\mathbf{r}')d\mathbf{r}' = \epsilon_i\phi_i(\mathbf{r})
$$

$$
-\frac{\hbar^2}{2m}\nabla^2\phi_i(\mathbf{r}) + U_H(\mathbf{r})\phi_i(\mathbf{r}) - \int U_F(\mathbf{r}, \mathbf{r}')\phi_i(\mathbf{r}')d\mathbf{r}' = \epsilon_i\phi_i(\mathbf{r})
$$
 (9)

where the exchange term is driven by the **Fock potential**:

$$
U_{F}(\mathbf{r}) = \sum_{b} \phi_{b}^{*}(\mathbf{r}') V(\mathbf{r}, \mathbf{r}') \phi_{b}(\mathbf{r})
$$
\n(10)

(7)