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“Help from CH-land”? \Q{

* | love amusing and broad titles as much as anyone.
« This one is particularly so.
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“Help from CH-land”?

* | love amusing and broad titles as much as anyone.
This one is particularly so.
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Jeremy regrets joining The Swiss Army.
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“Help from CH-land”?

* | love amusing and broad titles as much as anyone.

« This one is particularly so.
» |s the Swiss army invading?
* Did | take a wrong turn over the Atlantic and end up in CHicagoland?

; = (ves, foodie me is aware this is

e oy LTy a fictional sign, but it reminds
awnrren . - me so much of real Chicago...)

21 October 2024 Kevin McFarland: Help from CH-land




“Help from CH-land”? \(

* | love amusing and broad titles as much as anyone.

« This one is particularly so.
» |s the Swiss army invading?
* Did | take a wrong turn over the Atlantic and end up in CHicagoland?
» |s the chemical industry of the 1960s coming to save us?
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“Help from CH-land”? \Q{

* | love amusing and broad titles as much as anyone.

« This one is particularly so.
» |s the Swiss army invading?
* Did | take a wrong turn over the Atlantic and end up in CHicagoland?
» |s the chemical industry of the 1960s coming to save us?
» | ong-last Beatles album subtitle?

o A /7 Help! We need
: : 4 some plastic.
‘ Help! Not just any
" plastic. 4
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Thoughts about What The Title Might Mean

« Experiments arguably have bifurcated between two dlfferent
detector technologies for neutrino interactions.

« Why liquid argon (not my remit)?

= Though slow to read out (even for a large portion
of the scintillation light!), liquid argon charge imaging

resolution is better than a ton-scale scintillator detector.
e.g., DEAP-360 light model,

* |t follows that there must be some other advantage(s) eu pys. v c s, 303 (2020
for plastic scintillator detectors since we keep building them.

Intensity [PE]

(m-d)/d

(I assume the organizers will now rush me off the stage if | have it wrong, but if not, you’ll see the rest of my slides.)
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Signature Advantages of CH-Scintillator \(

 Inherently low-background fast readout, which leads to...
» High-rate capability.

» Easy separation and correct association of sub-events with O(ns)
resolution for neutrons, stopped K+, and of course stopped u
 Malleable and Configurable (what's the word I’'m looking for? oh, right, “plastic”)

= Easily segmented, up to channel count considerations.

= Other materials can be incorporated to study how neutrino interactions
compare on different nuclei.

= Can be paired with other detectors (without cryogenic containment in the way) for
purposes such as tracking in a magnetic field.
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An lllustration of Both Principles

« T2K ND280 (upgraded) detector for T2K/HK configurable, fast CH scintillator.

 The SuperFGD 3D pixelated scintillator is interspersed with gaseous tracking
in @ magnetic field for charge ID and high resolution dE/dx PID.

« The SuperFGD also has excellent neutron capability, including time-of-flight
momentum reconstruction (more later).

[SubRun number :11 | Event number : 259310 | Spill : 9421 | Time : Thu 2023-12-21 06:00:10 JST | Partition : 61 |Trigger: Beam Spil

UAI1 Magnet Yoke SMRD

POD ECal Barrel ECal

N °

HA-TPC | kI

Number of readout channels: 58,800

[ "'." .
.[J HA-TPC I A l ; \
,' ( Detector size: 0.6 x 1.8 x 2.0 m°
\ super-FGD c ,’ TI I,' TI EC Cube size: 1x1x1cm?®
. T ‘ [} IA' , 7 . Number of cubes: 2,160,000
J A i i

.
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Topics for this CH review

Now how
much would
| pay?
CONFIGURABLE!
« Tagged m* reconstruction. « Neutron reconstruction
e Electron and muon neutrino « Comparisons among nuclei.
comparisons. = and free protons too!

« M UItlpIy dlfferentlal reaction Maybe the organizers also expected this, but most of my

measurements. examples will be related to work | know best from MINERVA
or T2K. Sorry if this unintentionally leaves your work out..
21 October 2024 Kevin McFarland: Help from CH-land 10



And why those matter for DUNE and HK ~

« Neutron reconstruction and tagged n* reconstruction...

» Because oscillation experiment far detectors may not respond uniformly to
all particles, leading to energy misestimation from the final state.

» Electron to muon neutrino comparisons...

» Because both DUNE and HK will extrapolate their observed muon
neutrino reactions to predict electron neutrinos.

« Massively differential measurements...

= Because they test correlation of probe (lepton) and target (hadron) sides
of the interaction, which is also important for energy reconstruction.

« Comparison of nuclei (and hydrogen too!)...
= Because they help us build a more predictive nuclear model.
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~

™ Tagging and Production Cross-Sections

(important for calorimetry and event
selection in oscillation experiments)
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How do we identify ™ in CH?

« Broadly speaking, we can identify the MINERVA’s techniques
Michel electrons from n* - u* - e™,
or from energy loss dE/dx along a SEERANINN
track. B
- T2K's dE/dx is particularly 2 = @,
outstanding...gaseous TPC tracking! \
L 255 - [— \ l
UAI Magnet Y -:::"' "\. E Simul
Downstream :’: \ = MC ‘é EQO_ i mr: ‘
PopECal T T2 8 = QS
‘ : ETOE_ —— proton fit
A\ TP‘Z T’ic T'é :
/3" .ic' il it - " 0-05 sé;) e 7}60% 720

z position (cm))
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« Generator predictions don’t do a fantastic job
in giving a clear and accurate prediction for
the T, and Q2 distributions for these events.

« Examples in progress from MINERVA...

MINER VA Work In Progress

A few m* Results... ~

I Kaons Only

I QE-like

I Other

— 5 Neutral Pions Only
80— N Coherent Pions

N Events / mm

I 1 ©* w Neutron
I 1 <* w Proton

=——— Data

I N n* and Mesons (DIS)
— = N n* and Mesons (RES)
so— I > 1 n*, no other mesons
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« Atlow Q?, data is helpful for model
selection, but see a wide variation.

e T, below tracking threshold seems
very poorly modeled.
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One last MINERvVA ©t™ result in progress...

« Look at visible energy associated with the .
- . Eavail = Tp + Z Trﬁ/‘ + 2 Eparticles
« Over prediction of this energy at low pr?

(Excluding neutrons)
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Electron and Muon Flavors

(in American English, it’s not only irony

kb, 7

to note that there is no “u” in “flavor”)
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energy transfer

The v, Problem

* By necessity, our v, rich beams have few v, in them to allow us
to study any difference between v, and v, interactions.

 Therefore, we infer v, interactions from studies of v,

« But what we study can’t give us the whole picture.
« Phase space (below), radiative corrections, nuclear effects.

E,=0.6 GeV, Muon and Electron Neutrino Difference
0.6 T : .

osf thisis ~
2
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3-momentum transfer
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Radiative corrections:

O. Tomalak et al.,

Nature Commun. 13 (2022) 1, 56286
and Phys.Rev.D 106 (2022) 9, 093006

Nuclear effects:

T. Dieminger et al.,
Phys.Rev.D 108 (2023) L031301

il



MINERVA: Electron Neutrino Flux
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10 m 30m +——— " Hadron
675m Monitor
NuMI is a “conventional”
neutrino beam, with most S1o-
neutrinos produced from €
focused pions. §10
=10

Pions decay mostly to muons,
but weak decays involving
electrons come from daughter
muons or kaons.

~1% contribution of the beam.

1077

1078

10795

M AT I I e A |

0 2 4 6 8 101214 16 18 20

Neutrino Energy (GeV)

Kevin McFarland: Help from CH-land
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NuMI Beams @ MINERVA
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Electron/Photon Separation in ve™ — ve~

« Background from production neutral pions is manageable with dE/dx in
scintillator, even with an electron energy threshold of 800 MeV.

* In Liquid argon TPCs, separation by dE/dx is surprlsmgly( ) similar.
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E 700E <—. + data 2478 o = data 1917
,2 = : Bl v, e 939 E - = . H = v, e 232
: E : B v.e 68 2 = Ve €
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= = @EEE COH n° 458 S 300 S COH =° 512
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] - € 200 |
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= = [~
—_ Z 100 Phys.Rev.D 107
E — = (2023) 1, 012001
13 1.3
< 1.2
~ .g 11 g 1121
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S35 TE 117 1 == G i e S B B oo o o ot s o s s
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Antineutrino Cross Section

 After background subtractions, unfolding
flux and targets calculation...

0.0<Lepton Pt (GeV/c)<0.2

0.2<Lepton Pt (GeV/c)<0.4

bk
— NP¥9)

do

(%), = X U (g2
dx

e GlT(I)(A.'II)l

0.4<Lepton Pt (GeV/c)<0.6

10°

i, pr bINS

do/dE,,,, dq, (x 10 cm?c/GeV?)

do/dE,,, dq, (x 10 cmic/GeV?)

do/dE,,,, dq, (x 10 cm?c/GeV?)

* Measured cross-section in
electron pr bins (0.2 GeV/c
width, from 0 to 1.6 GeV/c) of

of oo available calorimetric

o ) E“'"kGeV) 8 T2 1025 02 o4 E“."DisGeV) % T2 1025ty 04 E“.‘:)ézev) 08 T T2 energy, Eavall-
o 0.6<Lepton Pt (GeV/c)<0.8 - 0.8<Lepton Pt (GeV/c)<1.0 - 1.0<Lepton Pt (GeV/c)<1.2 ° The “U_SU_aI” MINERVA
3 "R i N 5 o prescription for this is used.
s L = v e e Peaked at zero for _
g v antineutrino (quasielastic
¢ bt o L e e 1 neutron knockout).
% E, . (GeV) % E, ... (GeV) % E, . (GeV)

1.2<Lepton Pt (GeV/c)<1.4 1.4<Lepton Pt (GeV/c)<1.6

"'E; B 5 —+— Data MINERVA, Phys.Rev.D 109 (2024) 9, 092008
Popfegtart % D e
A L - - E avail = (Proton and m* KE)
st § = iy oo + (E of other particles except
% %
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Neutrino Cross Section

 After background subtractions, unfolding
flux and targets calculation...

0.0<Lepton Pt (GeV/c)<0.2 0.2<Lepton Pt (GeV/c)<0.4 0.4<Lepton Pt (GeV/c)<0.6
50

4 Dr bins

3015

J

do

(==)i = >, Uss(Njete — N;*9)
dx ‘ GzT(I)(A.'II)l

 Measured cross-section in
electron p; bins (0.2 GeV/c
width, from 0 to 1.6 GeV/c) of
; available calorimetric
£ G0 2 energy, Eavail-

* Quasielastic peak shifts
with pr. As with
antineutrino, inelastic is
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o 0. 06 08
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a1 AP}y, (x 107 cnic/GeV?)  do/dE,,,

5 X 8 2 N I 3 08 T 8 02 06 I T2 hlgh E .
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—+— o MINERVA, Phys.Rev.D 109 (2024) 9, 092008

Simulation

CC v,-QE

»»»»»»» CC v,-DIS

CC v,-2p2h

FRTECSS = R W R 22 e e et R + (E of other particles except

o E, o1 (GeV) (GeV)
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MINERVA: Uncertainties on v, /v,

0.0<P:ep<0.2 0.2<P:ep<0.4 0.4<P}ep<0.6
g £ o4 £
‘s S Ak ©0.251 .
: oo g 0 /7,  These are preliminary,
= S0 = and so far only for
g Sl 2 o neutrinos.
“ogl o - " oosf . « Systematic
: | . E__ [ | | IR E—tl=| | | L i I
% 0z 04 06 08 T 712 % :0‘2_ 04 06 08 1 12 % 02 o4 06 08 1 12 uncertainties are
True Available Energy True Available Energy True Available Energy ~SUu bd om | na nt at
0.6<P,,<0.8 0.8<P,,<1.0 : . .
2 of : otal Uncertanty least in any given bin.
o N I - S — Statistical é « Detector model (muon
§g:;‘| Flux energy scale)
" ——— Alternative Tunning methc becomes Slgnlflcant
Detector model But ﬂux and
L ] Interaction model interaction models are
%oz 04 06 08 T 12 % 02 o4 06 08 T 12 Mnv Tunes small uncertainties
True Available Energy True Available Energy ;
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0.0<P! <0.2

lep

MINERVA v, /v, Ratios

"0z 04 06 08
E,van (GeV)

0.6<P),,<0.8

E,vai (GEV)
21 October 2024
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1.2

Preliminary.

Cross-sections in
panels of p% as a
function of “available
energy’, energy in
calorimetrically visible
particles, e.g., not
neutrons.

Simulation predicts a
ratio very close to one
dominated by statistical
uncertainties.

Testing the confidence
of generators ©.
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Flavor (or color?) commentary \‘2{

« I've given one (MINERVA) example, but T2K, MicroBooNE, and
NOVA (in order of increasing statistics) are active early explorers.

 The MINERVA inclusive measurement has ~10% uncertainties in
many bins across a wide range of recoil and transverse momenta,
with systematic uncertainties ~few% in the high statistics bins.

* We need to do better than that by factors of two or three in
order to interpret oscillation experiments with experimental
confirmation of flavor dependence of cross-sections.

« With very high statistics from future beams, supplemented by far
off-axis samples (enriched inv,) from SBN (ICARUS) and

MicroBooNE, we can make a go at this. Still very difficult.

Kevin McFarland: Help from CH-land 24
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21 October 2024

Multiply Differential Measurements

(if need to use both the lepton and recoil
fo learn about neutrino energy, don’t we
need to know how they are correlated?)

Kevin McFarland: Help from CH-land
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MINERVA “3D” CCOrn XT,,, pr, py

4
10 0.00 <P, (GeV/c) < 0.07

0.07 <P, (GeV/c) <0.15 0.15 <P, (GeV/c) <0.25 0.25 <P, (GeV/c) <0.33

 Transverse and

107 longitudinal
0 -_| lepton momenta,
0.55 <P, (GeV/c) < 0.70 T
.~ — | and visible

(proton) energy.
 The trends we see

—
<
N

—
<
[¢)]

d30/dptdp”dZTp (x10™*° cm2/GeV°/c?/Nucleon)
S

10* are independent of
10 e sy DI SUggesting they
102 —(85.45),x1000  are not strongly
. [45,7.0), %100 energy dependent.
107 —[7.0,8.0), x0.20
00 02 04 06 00 02 04 06 00 02 04 0.6 —180,100),x006 ¢ [Egsjer see in a
D. Ruterbories et al. ——[10.0,20.0),x0.05 single bin Ofp”

Phys.Rev.Lett. 129 (2022) 2, 021803 = Tp (GeV)
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Ratio to Minerva Tune v4.4.1
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0.00 <p (GeV/c) <0.07
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2
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N4 Yo i
\L\\._L;!‘_mum¥ Xoe o o0 ¥
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(3
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—2 (]
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as T R Oa S e H e
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x 0.5
1 ;I}{ I s & . }}
e LI SRR
5 1.00 <p, (GeVIc) <250 02 04 06
x 0.5
ll l —¢— MINERVA data
1 I { § 3 Minerva Tune v4.4.1
3 3 —— QELike-QE
i R Rrre e S R QELike-Pions
QELike-2p2h
00 02 04 06 S

2p2h without fit
----- QELike QE proton
—— - QELike QE neutron

=T, (GeV)

Results: CCOn XT,, pr, p,

D. Ruterbories et al.
Phys.Rev.Lett. 129 (2022) 2, 021803

« The biggest change in cross-section, though
not in the ratio, are the small deviations just
above the QE peak. Maybe MINERVA's tune

was affected by non- CCOm events? Or...?
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' v4.4.1

—

Results: CCOmt XT

4.50 < P, (GeV/c) <7.00

0.00 < P, (GeV/c) <0.07

L\_&Ln|.||g|||;|

0.07 <p (GeV/c) <0.15
t

'R\! t I
Q-\.-_-I_L!-Plug.l...

0.15< P, (GeV/c) <0.25

0.25< P, (GeV/c) <0.33

\\!!!

i

T, (GeV)

D. Ruterbories et al.

Phys.Rev.Lett. 129 (2022)

2, 021803

—¢— MINERVA data
——— Minerva Tune v4.4.1
—— QELike-QE
QELike-Pions
QELike-2p2h
2p2h without fit
----- QELike QE proton
—— - QELike QE neutron
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s P15 D)

Low pr high XT, events predicted by

the model as 2p2h and stopped pions

Sre almost completely absent in the
ata.
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Results: CCOmt XT
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D. Ruterboriesetal. ~  ----- QELike QE proton
Phys.Rev.Lett. 129 (2022) — - QELike QE neutron
2, 021803 =T, (GeV)
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s P15 D)

Highest pr low XT;, events, events
where the Ieadlng proton’s energy
ends up as neutrons through final state
interactions, are also very
overpredicted.
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+ 50 MeV of
recoil energy

No Low Recoil Fit

GENIE v3.0.6
10a_02_11a

Another visualization -
of CCOn ZTp, Prs Py

D. Ruterbories et al. Phys.Rev.Lett. 129 (2022) 2, 021803
The first and second discrepancies are the
biggest and potentially most important effects in
cross-sections: large parts of the rate shows up at
a given py with a different recoil than expected.

Problem for interferometry experiments?

» |In T2K (and future Hyper-K) p; is used to measure the
recoiling energy by two body quasielastic kinematics.

= |n NOvA and DUNE, the visible recoil is measured.
And SBN can do both.

= Apparently, these two won't agree.
Recoil is 50 MeV too high, until high Q2. No

model we checked sees anything like this
discrepancy.
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Another visualization v
of CCOmt XT s P15 D)

D. Ruterbories et al. Phys.Rev.Lett. 129 (2022) 2, 021803

* We can actually directly compare the two types
of energy measures: recoil in bins of qy<E.

« Agreement with the model is, as expected,
poor.
= Peaks are missed at low pr.

= High side tail is overestimated and low side is
underestimated.
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Transverse variables,
full MINERvVA CCOr

statistics
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Different Nuclei

(and how different are they
for our purposes?)

Kevin McFarland: Help from CH-land
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Is a nucleus a nucleus a nucleus?

« Details of nuclei, such as energies and momenta of individual
nucleons within the nucleus, vary.

« But we are beginning to see some consistencies in how models
describe different nuclei equally well (or equally poorly).
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T2K
CH/H,0
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CH Detector and Passive Targets

« Experiments with passive interspersed targets use a vertex and
background subtraction technique.

55
_{:}——> CCom in water: first muon hit in X layer D 1 |
0.5~ b, .

Siﬁé\ %5 ccominXlayer

| 03
— —M> CCominY layer dV < ZPos (mm)

« Can control the backgrounds, . ﬁ .' ‘
at least in part, by reconstructing
scintillator events adjacent in
detector to the passive target.
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T2K CCOm CH vs H,0

—— O regularised results — C regularised results

(] T2 K com pa res CCOT[ Cross- O unregularised results C unregularised results
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cross-section on hydrogen. £ Thromon] i1 T
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lepton kinematic differences b o< <o B f os<eom.<ars

s ; =3 f
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= Consistent with model within i o 1 ]
uncertainties. - | _

= Same beam is very important [ S e e
for reducing uncertainties! G s e -
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n

do/dP, |,/ do/dP, ; o, scaled by N

MINERvA CCOm {C, H,O, Fe, Pb}/CH

 MINERVA's targets allow for comparison across a wide range of A.

» Not particularly high statistics for most C and H,O results (so not enough to
subtract out CH-H to get hydrogen, for example), but good statistics for Fe and Pb.

= Reasonable consistency, if varied the fraction of non-quasielastic events?

21 October 2024
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n

do/ddo; , / do/ddai; ., Scaled by N
N o

MINERVA CCOm {C, H,O, Fe, Pb}/CH \\i{

» Also ratios for transverse kinematic imbalances.
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n

do/ds P , / do/dd P ., scaled by N

MINERVA CCOm {C, H,O, Fe, Pb}/CH \\i{

» Also ratios for transverse kinematic imbalances.

« Perhaps same issue with non-quasielastic contribution differing?
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MINERvA CC1r* {C, H,O, Fe, Pb}/CH
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Neutrons, Nucleons and Nuclei

(rapid recent development)
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Neutron reconsftruction
« MINERVA has, and SuperFGD will reconstruct neutrons through
their quasielastic knockout of protons from nuclei, e.g., 12C(n np)“B

» SuperFGD has lower threshold

three-dimensional reconstruction
AND time-of-flight momentum.
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Why Neutron Reconstruction Matters \'\2{

« Neutron measurement techniques developed in recent years,
through detector and analysis technologies, are having its time.

= | will emphasize isolation of hydrogen on v,p —» u"n.

» But this also has applications for understanding of energy lost
to nuclei in interactions because of very low detection
thresholds, neutrino and antineutrino separation, etc.

 Efficiency of reconstruction is significantly less than unity, requires
capable (often smaller) detectors, so the highest intensity neutrino
beams will also be important for this work.
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with direction!) to measure F,(Q?) with
useful precision 0.06 < 0% < 2 GeV=2.

SuperFGD will have two handles, direction
and energy, to |solate hydrogen scattering.
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« The DUNE SAND near detector plans
CH, and C foils interspersed with low
density tracker.

* This adds a third handle to direction =
and energy constraints, for separating | o v s o iowdensity iracker
hydrogen interactions by subtraction.

« Significant potential to dramatically o
reduce backgrounds and systematics in VH(zexp) .
. et ETMC (LQCD) —e—i
a high statistics measurement. RQCD (LQCD) i
= Caveat: the estimate at right isn’t a projection from DUNE ~ |2YNE VH (2 exp) s

(third-party authors), and IMHO it uses a deeply flawed 0 01 02 20.3 20.4 05 06 0.7 08
metric. (But “it’s got a beat, and you can dance to it.”) 1 [fm?]
Phys.Rev.D 109 (2024) 5, L051301
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Nucleons vs Nuclei

« By contrast, we are struggling to understand cross-sections on free

nucleons as a base for calculating cross-sections on nucleons.

In F,(Q?), there are significant Q2. =0.20 GeV?
tensions between the deuterium y JU yogen
bubble chamber legacy data, and 2l NUINT 2024 |mm e
either the MINERVA hydrogen or il . il P
lattice QCD calculations. 9 N
Why? It's possible that nuclear AR S e
model assumptions in the analysis , T ——
of the deuterium data played a role. OGS e e T AW
 More from Aaron and Minoo on Thursday. —owtoes e e
21 October 2024 Kevin McFarland: Help from CH-land XIZ{/DOFH e oo 0o o 47
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Nucleon and Nuclei commentary \'{{

« We've made progress in our nuclear models, informed by electron
scattering, theory, and data from neutrinos and hadron scattering.

« While there is growing evidence that these models
Groorsanand

may be helping us to understand nuclear effects,
there is also growing evidence that the input of v
free nucleon predictions is not serving us well.

« Experiments that can measure or theory that can
calculate free-nucleon interactions, will become
Increasingly important.

» This suggests a continuing role for scintillator, but maybe
also a future need for free nucleon (hydrogen) detectors.

Data on
nucleons
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Closing Thoughts
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H and C and Ar... Can’t we just all be friends?

« As Callum mentioned in passing, SAND (DUNE Phase One on-axis
Near Detector) plans to include CH, and C, for separation of H and
C, and Ar targets to compare interactions on different nuclei.
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Brave Brew World?

* Ar targets inside
a CH detector
reminded me of
the enthusiasm
of true believers.

21 October 2024

@ the ONION

New Starbucks Opens In Rest Room Of Existing Starbucks

CAMBRIDGE, MA—Starbucks, the nation’s largest coffee-shop chain, continued its rapid
expansion Tuesday, opening its newest location in the men’s room of an existing Starbucks.

“Coffee lovers just can’t stand being far from their favorite Starbucks gourmet blends,” said
Chris Tuttle, Starbucks vice-president of franchising. “Now, people can enjoy a delicious
Frappuccino or espresso just about any time they please, even while defecating.”

The new men’s-room-based Starbucks, the coffee giant’s 1,531st U.S. location, will be open to
both men and women when not “in use.” In addition to offering specialty coffees from around
the world, it will serve freshly baked pastries, Italian pannini sandwiches and soups, as well as
the rest room’s usual selection of toilet paper and soap...

According to Starbucks CEO Howard Schultz, the new location represents the beginning of a
long-term expansion plan... At some point a ‘Starbucks Express’ window will eventually open
in the walk-in closet of the men’s room Starbucks.”

“Drink our coffee,” Schultz said. “Drink it.”
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Brave Brew World?

* Ar targets inside
a CH detector
reminded me of
the enthusiasm
of true believers.
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CAMBRIDGE, MA—Starbucks, the nation’s largest coffee-shop chain, continued its rapid
expansion Tuesday, opening its newest location in the men’s room of an existing Starbucks.

“Coffee lovers just can’t stand being far from their favorite Starbucks gourmet blends,” said
Chris Tuttle, Starbucks vice-president of franchising. “Now, people can enjoy a delicious
Frappuccino or espresso just about any time they please, even while defecating.”

The new men’s-room-based Starbucks, the coffee giant’s 1,531st U.S. location, will be open to
both men and women when not “in use.” In addition to offering specialty coffees from around
the world, it will serve freshly baked pastries, Italian pannini sandwiches and soups, as well as
the rest room’s usual selection of toilet paper and soap...

According to Starbucks CEO Howard Schultz, the new location represents the beginning of a
long-term expansion plan... At some point a ‘Starbucks Express’ window will eventually open
in the walk-in closet of the men’s room Starbucks.”

“Drink our coffee,” Schultz said. “Drink it.”
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“Measure Neutrino Interactions”, \(
Schultz said. “Measure Them.”
 Although Starbucks CEO Howard Schultz and | may not agree about

the importance and function of labor unions, we both agree that
measuring neutrino interactions in CH is very important.

* There are key capabilities of CH detectors that are hard to duplicate in
LAr TPCs, even if resolution is generally worse.

= Configurability of plastic detectors to add alternate targets.

» Fast timing enables high rates and aggressive use of sub-event
relative timing for neutrons and weakly decaying mesons.

» Cases where improved ionization resolution isn’'t necessarily a big
advantage, such as electron identification.

» Expect CH to continue to have impact on models, even for DUNE.
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More on MINERvVA'’s Electron Neutrinos
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Characterization of Backgrounds

» Discriminant is dE /dx at start of the shower.

 Missing diffractive 7% production on scattering
from hydrogen! (Coherent n° production from
carbon is the dark blue.)

= Also, both diffractive and coherent =% production are
badly underestimated by the Rein model and Rein-
Sehgal and Berger-Sehgal models at high energies,
respectively.

* There is also significant contamination of
electrons to high dE /dx (early showering) and
photons to Iow dE /dx (very asymmetric pair
production).

« Divide high dE /dx region into diffractive-like
(recoiling proton at vertex), coherent-like, and
incoherent-like to characterize backgrounds.

21 October 2024 Kevin McFarland: Help from CH-land

dNEvents/dMeandEdx

—+— Data

0 [ CC Antiv,
S n 3 cc v,
= . I NC coh
g [ NC 7
[Jccv, n°
v+e
I Others

“““““““““

0 1 2 3 4 5 6 7 8 9 10

Mean dE/dx (MeV/cm)

dE/dX MeV/cm

I . ‘0.5

Signal

Psi*Ee
57



dE/dX MeV/cm

Characterization of
Backgrounds
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dNEvents/dpT (Gev/c)"

Signal Region after Background Tunes

« After tuning the backgrounds, compare signal region.
» As expected, backgrounds much larger in FHC (incoherent processes).
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Discussion and Uncertainties

 Reference model is GENIE
2.12.6 with MINERVA tunes. (And

yes, Andy Furmanski, a correction for the FSI
bug...)

« Most useful in comp arison to . wtapon Govras i wa-tapon gVt 10-tapon rigovyr2
muon neutrinos, BUT this tune
largely predicts the MINERVA
muon neutrino measurements.

 Statistics dominated, mostly,
with significant interaction model f4 1 Ea
uncertainties at mid-p. T T

* Flux uncertainties ~5%. Anti-neutrino uncertainties

0.2<Lepton Pt (GeV/c)<0.4 0.4<Lepton Pt (GeV/c)<0.6
0
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Uncertainties in FHC

° StatistiCS dom i nated, mostly’ : 0.0cLepton Pt (GeVic)<0.2 : 0.2cLepton Pt (GeVic)<0.4 : 0.4 epton Pt (GeVic)<0.6
with significant interaction
model uncertainties at mid-pr.

 FHC has the background
tuning uncertainty, due to * L
imperfect sidebands SRS e R e
agreement very visible at low

 Flux uncertainties ~4%.
Neutrino uncertainties

Fractional Uncertainty
Fractional Uncertainty
Fractional Uncertainty

P e T IRy N
0.2 04 06 0.8 1 T2
Eqvan (GeV)
0.6<Lepton Pt (GeV/c)<0.8
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Fractional Uncertainty

Total Uncertainty
------------- Statistical
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Flux

Fractional Uncertainty
Fractional Uncertainty

=== Interaction model

=+ MnvTunes

........ Tuning methods
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More on MINERvVA’s it Results
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New 1zt Result Uncertainties

« Cross Sections versus Q2

CrossSection
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CC21r Cross Section Uncertainties vs. Available Energy-T)
and Pty

Fractional
Uncertainties
larger for this
guantity

Still there are
contributions
from several
sources, no
clear source
dominates
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MINERvA CCtr* {CH, Fe, Pb}

- Result is generally that we see similar shapes in T, and p% (Q? = (p‘T‘)2 (1 + ; )).

u

 However the overall result rate is different, for some models of % FSI.
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