Overview of next-generation oscillation experiments

Callum Wilkinson

Thanks to Stephen Dolan, Luke Pickering, Patrick Stowell and Clarence Wret for material

accelerator long-baseline Overview of next-generation oscillation experiments

Callum Wilkinson

Thanks to Stephen Dolan, Luke Pickering, Patrick Stowell and Clarence Wret for material

Accelerator neutrino experiments

Far

- Complex inference of oscillation probability from measured event rate
- <u>Near detector</u> to constrain **neutrino flux** and **cross-section** models/systematics
- Different near and far detector fluxes mean uncertainties do not neatly cancel
- **Detector smearing** introduces further ambiguities at both near and far detectors

Accelerator neutrino experiments

- Matter effect increases with E
- Choice of detector technology important for E_{v} reconstruction and resolution

Accelerator neutrino experiment history

	Name	L (km)	Peak E _v (GeV)	Year (projected)	FD mass
ÿ	K2K	250	1	1999-2004	22.5 kt
sent Pas	MINOS	735	3	2005-2012	5.4 kt
	OPERA	732	17	2008-2012	1.35 kt
	T2K	295	0.6	2010-(202?)	27.2 kt
Pre	NOvA	810	2	2013-(202?)	14 kt
ure	DUNE	1285	2.5	(2031-204?)	40 kt
Fut	Hyper-K	295	0.6	(2028-204?)	187 kt

Hyper-K overview

- L ≈ 295 km; E_v≈ 0.6 GeV (*narrow band*); water Cherenkov detector
- Significant upgrade to T2K design:
 - 1.3 MW beam
 - Upgraded near detector complex
 - 187 kt FV tank (~7x Super-K FV)
- Civil construction underway, physics ~2028

Credit: L. Pickering

Hyper-K near detector

2.5° off axis

Upgraded (T2K) ND280:

- High resolution SFGD
- Improved angular acceptance
- Neutron tagging capabilities

+Intermediate Water Cherenkov Detector (IWCD)

Neutron measurements

Phys. Rev. D **101**, 092003 Phys. Rev. D **110**, 032019

Super-fine granularity JINST **13**, P02006

DUNE overview

- L ≈ 1285 km; E_v≈ 2.5 GeV (*broad band*); liquid argon time projection chamber (LArTPC)
- High-intensity neutrino beam $(1.2 \rightarrow 2.4 \text{ MW})$
- Near detector system at Fermilab
- 4 x 17 kt LAr far detector modules at SURF

DUNE near detector

- High resolution core LArTPC
- Off-axis movement accesses different fluxes
- Some neutron detection abilities with SAND
- Magnet allows separation/constraint of v/\overline{v}
- Able to tolerate high rate environment

A high-rate environment?

\approx 100 million events/year in the DUNE ND LArTPC

Measurement aims: disappearance

Measurement aims: MO and CPV

Reconstructed E, (GeV)

Reconstructed E. (GeV)

PRD 105 (2022) 7, 072006

Hyper-K sensitivity projections

DUNE sensitivity projections

DUNE Simulation **DUNE** Simulation Probability 24 kt-MW-yr Probability 10⁻¹ **Phase I:** NO $p(\Delta \chi^2_{MO} < 0) = 0.034$ IO $p(\Delta \chi^2_{MO} > 0) = 0.040$ 10 MO to $>5\sigma$ • • 3σ CPV if $\delta_{CP} \pm \pi/2$ 10^{-2} Phase II: 10⁻³ 10^{-3} • >5 σ CPV, >50% δ_{CP} values 10^{-4} --- NO $p(\Delta \chi^2_{MO} < 0)$ 10-- IO $p(\Delta \chi^2_{MO} > 0)$ • >3 σ CPV, >75% $\delta_{_{CP}}$ values 10^{-5} -100-50 0 50 100 10^{-5} 10² 10 • Precision δ_{CP} , Δm_{32}^2 , θ_{23} , θ_{13} $\Delta \chi^2_{\rm MO} = \chi^2_{\rm IO} - \chi^2_{\rm NO}$ Exposure (kt-MW-yr) **DUNE** Simulation 100 kt-MW-yr (76627 throws) 3σ 2σ 4σ 5σ 1σ **DUNE** Simulation Fraction of throws **DUNE Sensitivity** 336 kt-MW-years Fraction of throws 50% δ_{CP} 624 kt-MW-years All Systematics 1104 kt-MW-vears 40 Normal Ordering 0.8^L values Nominal Analysis $\sin^2 2\theta_{12} = 0.088 \pm 0.003$ 0.8H ······ θ., unconstrained $35 - \sin^2 \theta_{23} = 0.580$ unconstrained δ_{cP} Resolution (degrees) 30F 0.6 25Ē 20È 0.4 0.4 **--1**σ **-**2σ 15 0.2 **-**3σ 0.2 --4σ ---5σ <u>0</u> -0.5 0.5 0 $\delta_{\rm CP}$ / π 10^{2} $-0.8 - 0.6 - 0.4 - 0.2 0 0.2 0.4 0.6 0.8 \delta_{CP}/\pi$ 10^{3} Exposure (kt-MW-yr)

EPJC 80 (2020) 978 PRD 105 (2022) 7, 072006

Fantastic, I'm sold!

What are the limiting systematics?

- Current experiments are statistics limited ~100 FD $\nu_{\rm e}$ events
- DUNE+HK will be systematics limited ~1000 FD $\nu_{\rm e}$ events
- Cross-section systematics are dominant systematic now
- DUNE/HK: need residual ND → FD uncertainties ≈percent level

Current systematic uncertainties

(Table from S. Dolan's NuFact talk)

Uncertainty on N_e^{rec}	<u>TZ</u> K	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

How limiting?

- DUNE example: ND+FD fit with full* systematic uncertainty model
- Alternative model choice leads to out of model biases
- If we were operating DUNE now, this **would be** limiting

What about the near detectors???

- Ambiguities between cross-section and flux uncertainties
- Different fluxes between near and far
- Imperfect and non-identical ND and FD
- Missing degrees of freedom! Model differences cannot be covered by systematics in the base model

So what do we need to model?

Key issues:

- E_{ν} dependence
- E_{v} reconstruction
- v_e/v_μ and v_e/v_μ
- Extrapolation out of detector acceptance

Energy transfer

Extrapolation out of detector acceptance

- ND and FD acceptances are different even if designs are similar → detector size, pile-up
- Implicit trust in model and uncertainties to extrapolate to the additional phase-space

E_{ν} dependence

- Different ND and FD fluxes: ND \rightarrow FD extrapolation relies on E_{ν} dependence
- Differences between current models +inconsistent between ν_{μ} and $\bar{\nu}_{\mu}$
- True for both HK and DUNE

E_{ν} reconstruction methods

(1) Leptonic variables only: $E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$ Super-Kamiokande Run 3962 Sub 125 Ev 965982 97-05-01:15:32:29 Inner: 2887 hits, 9607 pE Charge (pe

Water Cherenkov: T2K, Hyper-K

Times (ns)

(2) **Leptonic** and **hadronic** information:

$$E_{\nu} = E_{\mu} + E_{\text{had}}$$

Tracking calorimeter: NOvA; Liquid Argon TPCs: DUNE

E_{ν} reconstruction methods

(1) Leptonic variables only:

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2m'_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

- CC0π
- Non-CCQE contributions
- Pion production < threshold
- Pion prod. + absorption rate
- Smearing from nuclear model

(2) **Leptonic** and **hadronic** information:

$$E_{\nu} = \frac{E_{\mu}}{E_{had}} + \frac{E_{had}}{E_{had}}$$

- CC-inclusive
- Pion production rate below experimental threshold
- Neutral energy fraction
- Nuclear model initial and final state effects

+ E_{ν} dependence for all of the above!

E_{ν} reconstruction status

Hyper-K FHC ν_{μ} CC0 π

Perfect lepton reconstruction

DUNE FHC ν_{μ} CCINC

Perfect reconstruction of all particles except neutrons

How well do we model E_{had} ?

Tackling E_{ν} dependence: PRISM

- Moving away from the beam axis reduces the flux width and peak E_{ν}
- Possible with IWCD for HK and the offaxis movement of the DUNE ND
- Adds important information to break flux*XSEC degeneracy!
- But each flux is still extended and complex, still not a trivial problem

PRISM linear combination analyses

- Linear combinations of off-axis data approximate the oscillated FD flux
- Reduces cross-section model dependence
- But the overall sensitivity likely to be lower (subdividing ND statistics, complex flux uncertainty)
- <u>Unclear what the remaining XSEC uncertainties are \rightarrow </u> stress on different parts of the model/phase space

ν_e/ν_μ and $\overline{\nu}_e/\overline{\nu}_\mu$

- ND v_e and \overline{v}_e rates are low, ND vs FD fluxes very different
- PRISM less useful for $\nu_{\rm e}$ due to different production kinematics
- HK and DUNE likely to rely on theory, HK explicitly show impact
- Current generator implementations differ by more than assumed uncertainties

ND standard candles?

With large ND event rates, possible to utilize (faint) standard candles:

- $v+e \rightarrow v+e$ elastic scattering
- Inverse muon decay: ν_{μ} + e \rightarrow μ + ν_{e}
- The low-v technique
- Isolating hydrogen events
- Coherent pion scattering

Rely on: a known cross section and/or isolating a region of phase space

New/extra challenges for systematic modeling

Do we have a path to precision?

Maybe? But not a purely experimental one...

Needs:

- A theoretically consistent XSEC model, implemented in a generator
- A robust uncertainty model
- Dedicated measurement programs
- Improved near detectors

Hinchliffe's rule [edit]

In the field of particle physics, the concept is known as **Hinchliffe's rule**, after physicist Ian Hinchliffe, who stated that if a research paper's title is in the form of a yes-no question, the answer to that question will be "no".^{[39][40]} The adage led into a humorous attempt at a liar paradox by a 1988 paper, written by physicist Boris Kayser under the pseudonym "Boris Peon", which bore the title: "Is Hinchliffe's Rule True?".^{[41][42][40]}

https://en.wikipedia.org/wiki/Betteridge's_law_of_headlines

Ultimate precision: joint fits

- Unless HK+DUNE expose significant new physics*, their joint fit will be the legacy precision oscillation measurement
- No longer adequate to consider parameters "effective" with the freedom we currently allow
- A-scaling will be a significant challenge/need
- Consistent model which is precise over a broader E_{ν} range
- Others?

*Of course, if they do uncover new physics, the same issues will just be more urgent

Concluding thoughts

- DUNE and HK promise precision oscillation measurements
- Cross-section systematics will be limiting without significant improvements to the current situation
- A high-performance ND helps constrain the problem, and offers new opportunities!
- But, more sophisticated theory and complete uncertainty models are also essential
- <u>A strong relationship between measurement and theory is</u> the only way to achieve precision

Backup

JUNO: Jiangmen Underground Neutrino Observatory

- Reactor antineutrino experiment
- 20 kt liquid scintillator detector ~50 km from 2x ~20 GW reactor complexes
- 75% photocathode coverage \rightarrow 3%/ \sqrt{E} energy resolution
- Construction ongoing, data taking 2023

Reactor neutrino future - JUNO

 $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \Phi_{31} + \sin^2 \theta_{12} \sin^2 \Phi_{32} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Phi_{21}$

- High-precision measurements on "solar terms" $\sin^2\theta_{12}$ and Δm^2_{21}
- At long baselines, NO/IO spectra differ due to competing $\Phi_{_{31}}$ and $\Phi_{_{32}}$ terms
- *But*, clearly very sensitive to energy scale and resolution

Accelerator neutrino beams

- O(10-100) GeV primary proton beams
- O(10 GeV) secondary pions and kaons
- Focused with electromagnetic horns
- But still cover a broad E_{ν} range

Accelerator neutrino flux uncertainty

Target

GTPC

Magnet

coils

VTPC2

 $\sim 13 \text{ m}$

VTPC1

- Dedicated hadron production measurements at fixed target beam facilities:
 - Thin target
 - Replica target
- Example: NA61/SHINE*, used for T2K → 5-10% uncertainties

Eur. Phys. J. C76, 617 (2016) Eur. Phys. J. C79, 100 (2019)

ToF-L

ToF-R

ToF-F

MTPCL

MTPCR

The low-v method [1,2]

- Comes from the observation that if $q_0/E_{\nu} << 1$, the cross section is approximately constant with E_{ν}
- The rate as a function of E_{ν} gives acces to the flux shape
- Very closely linked to the "low-y" ($y = q_0/E_v$) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and Parton Distributions, 84, p84. World Scientific, 1990
[2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

Is the low-q₀ cross section well described?

Compare a variety of new/commonly used generator models

Normalize to a fixed point at high energy – where q_0/E_v corrections are smallest Take a ratio w.r.t a reference model

Neutrino-electron elastic scattering

- The known, but small, cross section can be used to constrain the flux. ~5000 LAr ND events/year
- A powerful additional tool for achieving DUNE's sensitivities, and resolving flux ↔ cross section ambiguities

$$E_{\nu} = \frac{E_e}{1 - \frac{E_e(1 - \cos\theta)}{m}}$$

- Strong normalization contraint due to known XSEC
- Weak shape constraint due to detector smearing and beam divergence

Few-GeV cross-section models

A variety of model predictions are on the market – use a variety to investigate potential for bias:

- **GENIEv2** used in many published results
- **GENIEv3 10a** and **GENIEv3 10b** currently used by many active experiments (10a vs 10b have different FSI models)
- **SUSAv2** and **CRPA**: state-of-the-art nuclear response modeling for pionless events (implemented in GENIE ~v3.2.0)
- NEUT: used by T2K
- NuWro: performs well w.r.t. world cross-section data
- GiBUU: sophisticated hadron-transport, different neutrino-nucleon model, also performs well in world data comparisons

Bias studies: cross-section mismodeling

