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Accelerator neutrino experiments

Unoscillated
νμ→νμ

νμ→νe

● Complex inference of oscillation 
probability from measured event rate

● Near detector to constrain neutrino flux 
and cross-section models/systematics

● Different near and far detector fluxes mean 
uncertainties do not neatly cancel 

● Detector smearing introduces further 
ambiguities at both near and far detectors

Credit: L. Pickering
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Accelerator neutrino experiments

● Δm2
32 sets Pmax~500 L/Eν (km/GeV)

● Trade-off between L and E:
● R ~ 1/L2

● R ~ Eν

● Matter effect increases with E
● Choice of detector technology important for Eν 

reconstruction and resolution
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Accelerator neutrino experiment history

Name L 
(km)

Peak Eν 
(GeV)

Year
(projected)

FD 
mass

K2K 250 1 1999-2004 22.5 kt

MINOS 735 3 2005-2012 5.4 kt

OPERA 732 17 2008-2012 1.35 kt

T2K 295 0.6 2010-(202?) 27.2 kt

NOvA 810 2 2013-(202?) 14 kt

DUNE 1285 2.5 (2031-204?) 40 kt

Hyper-K 295 0.6 (2028-204?) 187 kt
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Hyper-K overview

● L ≈ 295 km; Eν≈ 0.6 GeV (narrow band); 
water Cherenkov detector

● Significant upgrade to T2K design:
● 1.3 MW beam
● Upgraded near detector complex
● 187 kt FV tank (~7x Super-K FV)

● Civil construction underway, physics ~2028
Credit: L. Pickering
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Upgraded (T2K) ND280:
● High resolution SFGD
● Improved angular acceptance
● Neutron tagging capabilities

+Intermediate Water 
Cherenkov Detector (IWCD)

1-4°

2.5° off axis
Hyper-K near detector
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● L ≈ 1285 km; Eν≈ 2.5 GeV (broad band); liquid argon 
time projection chamber (LArTPC)

● High-intensity neutrino beam (1.2→2.4 MW)
● Near detector system at Fermilab
● 4 x 17 kt LAr far detector modules at SURF

DUNE overview
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DUNE near detector

Three major components:
1 – Pixelated 150 t LArTPC
2 – Downstream magnetized tracker
3 – SAND: dedicated beam monitor

 1  1 

 2 

 3 

M
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● High resolution core LArTPC
● Off-axis movement accesses different fluxes
● Some neutron detection abilities with SAND
● Magnet allows separation/constraint of ν/ν
● Able to tolerate high rate environment
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A high-rate environment?

ND-LAr FHC 
105 t-yr

≈100 million events/year in the DUNE ND LArTPC
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Measurement aims: disappearance

90% confidence

Unoscillated
νμ→νμ

E
P

JC
 80 (2020) 978
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Measurement aims: MO and CPV

 ν-mode ν-mode

Sign change
for νe and νe

Interplay 
between MO 

and δCP

Matter effect 
increases with Eν,

Enhances MO 
sensitivity
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Flux prediction Interaction model Oscillations

FD sim + reco

Systematic uncertainties
Fitting framework

Sketch of an oscillation analysis

X

ND sim + reco

EPJC 80 (2020) 978
PRD 105 (2022) 7, 072006
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Hyper-K sensitivity projections

● Strong CPV constraint – MO from 
atmospherics or other experiments

● >3σ CPV, 50% δCP values in 2 years
● >5σ CPV, 50% δCP values in 5 years

● Precision δCP, Δm2
32, θ23, θ13 

arXiv:1805.04163

*Snowmass year = 107 s
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DUNE sensitivity projections
EPJC 80 (2020) 978
PRD 105 (2022) 7, 072006

Phase I: 
● MO to >5σ
● 3σ CPV if δCP ±π/2
Phase II: 
● >5σ CPV, >50% δCP values 
● >3σ CPV, >75% δCP values
● Precision δCP, Δm2

32, θ23, θ13

50% δCP 
values
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Fantastic, I’m sold!
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What are the limiting systematics?

Hyper-K

DUNE

● Current experiments are statistics limited ~100 FD νe events

● DUNE+HK will be systematics limited ~1000 FD νe events

● Cross-section systematics are dominant systematic now

● DUNE/HK: need residual ND→FD uncertainties ≈percent level

(Table from S. Dolan’s NuFact talk)
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How limiting?

Hyper-K
● DUNE example: ND+FD fit with 

full* systematic uncertainty model

● Alternative model choice leads to 
out of model biases

● If we were operating DUNE now, 
this would be limiting

DUNE simulation

100 kt-MW-yr
90% C.I.

*EPJC 80 (2020) 978
 PRD 105 (2022) 7, 072006
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What about the near detectors???

Event rate
Neutrino flux
Cross section 
Detector smearing
Oscillation probability

● Ambiguities between cross-section and 
flux uncertainties

● Different fluxes between near and far
● Imperfect and non-identical ND and FD

● Missing degrees of freedom! Model differences 
cannot be covered by systematics in the base model
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So what do we need to model?
Energy transfer

QE

RES

DIS

Key issues:
● Eν dependence
● Eν reconstruction
● νe/νμ and νe/νμ

● Extrapolation out of 
detector acceptance
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Extrapolation out of detector acceptance

● ND and FD acceptances are different even if 
designs are similar → detector size, pile-up

● Implicit trust in model and uncertainties to 
extrapolate to the additional phase-space

DUNE 
ND-LAr

DUNE FD

arX
iv:2203.06281
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Eν dependence

● Different ND and FD fluxes: ND →FD 
extrapolation relies on Eν dependence

● Differences between current models  
+inconsistent between νμ and νμ

● True for both HK and DUNE

Unoscillated
νμ→νμ

νμ→νe

Credit: L. Pickering

νμ-40Ar CCINC νμ-40Ar CCINC
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(2) Leptonic and hadronic 
information:

Eν reconstruction methods

(1) Leptonic variables only:

Water Cherenkov: T2K, Hyper-K
Tracking calorimeter: NOvA; 
Liquid Argon TPCs: DUNE
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(2) Leptonic and hadronic 
information:

(1) Leptonic variables only:

● CC0π
● Non-CCQE contributions  
● Pion production < threshold
● Pion prod. + absorption rate
● Smearing from nuclear model

● CC-inclusive
● Pion production rate below 

experimental threshold
● Neutral energy fraction
● Nuclear model initial and final 

state effects

+ Eν dependence for all of the above!

Eν reconstruction methods
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Eν reconstruction status
Hyper-K FHC νμ CC0π
Perfect lepton reconstruction

DUNE FHC νμ CCINC
Perfect reconstruction of all 
particles except neutrons
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How well do we model Ehad?
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Tackling Eν dependence: PRISM

● Moving away from the beam axis 
reduces the flux width and peak Eν

● Possible with IWCD for HK and the off-
axis movement of the DUNE ND

● Adds important information to break 
flux*XSEC degeneracy!

● But each flux is still extended and 
complex, still not a trivial problem

Instrum
ents 5, no. 4, p31, 2021
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PRISM linear combination analyses

● Linear combinations of off-axis data approximate the 
oscillated FD flux

● Reduces cross-section model dependence
● But the overall sensitivity likely to be lower 

(subdividing ND statistics, complex flux uncertainty)
● Unclear what the remaining XSEC uncertainties are → 

stress on different parts of the model/phase space

X =
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νe/νμ and νe/νμ

● ND νe and νe rates are low, ND vs FD 
fluxes very different

● PRISM less useful for νe due to different 
production kinematics

● HK and DUNE likely to rely on theory, HK 
explicitly show impact

● Current generator implementations differ 
by more than assumed uncertainties

Hyper-K DUNE
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ND standard candles?

With large ND event rates, possible to 
utilize (faint) standard candles:

● ν+e→ν+e elastic scattering

● Inverse muon decay: νμ + e →μ + νe

● The low-ν technique
● Isolating hydrogen events
● Coherent pion scattering

5 years, 30 t LAr FV, 1.2 MW beam P
R

D
 101, 032002 (2020)

E
P

JC
 82 (2022) 9, 808

Rely on: a known cross section and/or 
isolating a region of phase space

New/extra challenges for systematic 
modeling
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Do we have a path to precision?

Needs:
● A theoretically consistent XSEC model, 

implemented in a generator
● A robust uncertainty model
● Dedicated measurement programs
● Improved near detectors

https://en.wikipedia.org/wiki/Betteridge's_law_of_headlines

Maybe? But not a purely experimental one...

https://en.wikipedia.org/wiki/Betteridge%27s_law_of_headlines
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Ultimate precision: joint fits

● Unless HK+DUNE expose significant new physics*, their 
joint fit will be the legacy precision oscillation measurement

● No longer adequate to consider parameters “effective” with 
the freedom we currently allow

● A-scaling will be a significant challenge/need

● Consistent model which is precise over a broader Eν range

● Others?

*Of course, if they do uncover new physics, the 
same issues will just be more urgent
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Concluding thoughts

● DUNE and HK promise precision oscillation measurements

● Cross-section systematics will be limiting without significant 
improvements to the current situation

● A high-performance ND helps constrain the problem, and 
offers new opportunities!

● But, more sophisticated theory and complete uncertainty 
models are also essential

● A strong relationship between measurement and theory is 
the only way to achieve precision
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Backup
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JUNO: Jiangmen Underground Neutrino Observatory

● Reactor antineutrino experiment
● 20 kt liquid scintillator detector ~50 km 

from 2x ~20 GW reactor complexes
● 75% photocathode coverage → 3%/√E 

energy resolution
● Construction ongoing, data taking 2023
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Reactor neutrino future - JUNO

J. Phys. G43:030401 (2016)

● High-precision measurements on 
“solar terms” sin2θ12 and Δm2

21

● At long baselines, NO/IO spectra differ 
due to competing Φ31 and Φ32 terms

● But, clearly very sensitive to energy 
scale and resolution
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Accelerator neutrino beams

● O(10-100) GeV primary proton beams

● O(10 GeV) secondary pions and kaons

● Focused with electromagnetic horns

● But still cover a broad Eν range

NuMI beamline
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Accelerator neutrino flux uncertainty

● Dedicated hadron production 
measurements at fixed target 
beam facilities:

● Thin target

● Replica target

● Example: NA61/SHINE*, used 
for T2K→ 5-10% uncertainties Eur. Phys. J. C76, 617 (2016)

Eur. Phys. J. C79, 100 (2019)
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The low-ν method [1,2]

● Comes from the observation that if q0/Eν << 1, the cross 
section is approximately constant with Eν

● The rate as a function of Eν gives acces to the flux shape

● Very closely linked to the “low-y” (y = q0/Eν) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and 
Parton Distributions, 84 , p84. World Scientific, 1990
[2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

DIS
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Is the low-q0 cross section well described?

Compare a variety of 
new/commonly used 

generator models Normalize to a fixed point 
at high energy – where 

q0/Eν corrections are 
smallest

Take a ratio w.r.t a 
reference model

νμ-40Ar, q0 ≤ 0.3 GeV



Neutrino-electron elastic scattering
● The known, but small, cross section can be used to constrain 

the flux. ~5000 LAr ND events/year

● A powerful additional tool for achieving DUNE’s sensitivities, 
and resolving flux↔cross section ambiguities

● Strong normalization contraint 
due to known XSEC

● Weak shape constraint due to 
detector smearing and beam 
divergence

5 years, 30 t LAr FV, 1.2 MW beam

P
R

D
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Few-GeV cross-section models

A variety of model predictions are on the market – use a variety to 
investigate potential for bias:
● GENIEv2 – used in many published results
● GENIEv3 10a and GENIEv3 10b – currently used by many active 

experiments (10a vs 10b have different FSI models)
● SUSAv2 and CRPA: state-of-the-art nuclear response modeling 

for pionless events (implemented in GENIE ~v3.2.0)
● NEUT: used by T2K
● NuWro: performs well w.r.t. world cross-section data
● GiBUU: sophisticated hadron-transport, di erent neutrino–nucleon ff

model, also performs well in world data comparisons
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Bias studies: cross-section mismodeling
● Shift 20% of proton energy to 

neutrons (for all Eν)

● Subtle impact on spectra, but large 
bias in oscillation parameters

νμ

90% confidence
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