Overview of next-generation oscillation experiments

Callum Wilkinson

Thanks to Stephen Dolan, Luke Pickering, Patrick Stowell and Clarence Wret for material

Overview of next-generation oscillation experiments accelerator long-baseline **^**

Callum Wilkinson

Thanks to Stephen Dolan, Luke Pickering, Patrick Stowell and Clarence Wret for material

Accelerator neutrino experiments

Far

- Complex inference of **oscillation probability** from measured **event rate**
- Near detector to constrain **neutrino flux** and **cross-section** models/systematics
- Different near and far detector fluxes mean uncertainties do not neatly cancel
- **Detector smearing introduces further** ambiguities at both near and far detectors

Accelerator neutrino experiments

reconstruction and resolution

Accelerator neutrino experiment history

Hyper-K overview

- L \approx 295 km; $E_v \approx 0.6$ GeV (*narrow band*); water Cherenkov detector
- Significant upgrade to T2K design:
	- \cdot 1.3 MW beam
	- Upgraded near detector complex
	- \cdot 187 kt FV tank (~7x Super-K FV)
- Civil construction underway, physics \sim 2028

Credit: L. Pickering

Hyper-K near detector

2.5° off axis

Upgraded (T2K) ND280:

- High resolution SFGD
- Improved angular acceptance
- Neutron tagging capabilities

+Intermediate Water Cherenkov Detector (IWCD)

Neutron measurements

Phys. Rev. D 101, 092003 Phys. Rev. D 110, 032019

Super-fine granularity JINST 13, P02006

DUNE overview

- L \approx 1285 km; E_{ν} \approx 2.5 GeV (*broad band*); liquid argon time projection chamber (LArTPC)
- High-intensity neutrino beam $(1.2 \rightarrow 2.4$ MW)
- Near detector system at Fermilab
- 4 x 17 kt LAr far detector modules at SURF

DUNE near detector

2

- High resolution core LArTPC
- Off-axis movement accesses different fluxes
- Some neutron detection abilities with SAND
- Magnet allows separation/constraint of v/\overline{v}
- Able to tolerate high rate environment

A high-rate environment?

≈100 million events/year in the DUNE ND LArTPC

Measurement aims: disappearance

 $\Phi_{ji} = \frac{1.27 \Delta m_{ji}^2 L}{E_{\nu}}$

Measurement aims: MO and CPV

Reconstructed E. (GeV)

12

Reconstructed E. (GeV)

PRD 105 (2022) 7, 072006

Hyper-K sensitivity projections

DUNE sensitivity projections

DUNE Simulation DUNE Simulation Probability Probability
 10^{-1}
 10^{-2} 24 kt-MW-vr **Phase I:** NO $p(\Delta \chi^2_{M0} < 0) = 0.034$
IO $p(\Delta \chi^2_{M0} > 0) = 0.040$ $10⁻$ • MO to $>5\sigma$ • 3σ CPV if $\delta_{CP} \pm \pi/2$ 10^{-2} **Phase II:** $10⁻$ 10^{-3} • >5σ CPV, $>50\%$ δ_{CP} values 10^{-4} $- NO p(\Delta \chi^2_{MO} < 0)$ $10⁻$ $-$ IO $p(\Delta \chi^2_{MO} > 0)$ \bullet >3σ CPV, >75% δ_{CP} values 10^{-5} -100 -50 $\overline{0}$ 50 100 10^{-5} $10²$ • Precision δ_{cp}, Δm²₃₂, θ₂₃, θ₁₃ 10 $\Delta \chi^2_{\text{MO}} = \chi^2_{\text{IO}} - \chi^2_{\text{NO}}$ Exposure (kt-MW-yr) **DUNE Simulation** 100 kt-MW-yr (76627 throws) 2σ 3σ $|4\sigma$ $\overline{5} \sigma$ $\mathsf{1}\sigma$ **DUNE Simulation** Fraction of throws **DUNE Sensitivity** 336 kt-MW-years Fraction of throws 50% δ _{CP} 624 kt-MW-years **All Systematics** 40 Normal Ordering 1104 kt-MW-vears 0.8 ^tvalues. **Nominal Analysis** $\sin^2 2\theta_{13} = 0.088 \pm 0.003$ 0.8ŀ \cdots θ_{13} unconstrained $35 - \sin^2\theta_{23} = 0.580$ unconstrained δ_{cp} Resolution (degrees) $, 30$ 0.6ŀ -6 25 0.4_k 20년 0.4 -1σ -2σ 15F 0.2 -3σ 0.2 -4σ -5σ $rac{0}{-1}$ -0.5 0.5 $\overline{0}$ $\overline{\delta}_{\textsf{CP}}$ / π $10²$ 10^3 $-0.8 - 0.6 - 0.4 - 0.2$ 0 0.2 0.4 0.6 0.8 $\delta_{\rm CP}/\pi$ Exposure (kt-MW-yr)

EPJC 80 (2020) 978 PRD 105 (2022) 7, 072006

Fantastic, I'm sold!

What are the limiting systematics?

- Current experiments are statistics limited \sim 100 FD v_{e} events
- DUNE+HK will be systematics limited \sim 1000 FD v_{e} events
- **Cross-section systematics are dominant systematic now**
- DUNE/HK: need residual ND \rightarrow FD uncertainties \approx percent level

Current systematic uncertainties

(Table from S. Dolan's NuFact talk)

How limiting?

- DUNE example: ND+FD fit with full* systematic uncertainty model
- Alternative model choice leads to out of model biases
- If we were operating DUNE now, this **would be** limiting

What about the near detectors???

- Ambiguities between cross-section and flux uncertainties
- Different fluxes between near and far
- Imperfect and non-identical ND and FD
- **Missing degrees of freedom!** Model differences cannot be covered by systematics in the base model

So what do we need to model?

Key issues:

- *E*ν dependence
- *E*ν reconstruction
- v_e/v_μ and v_e/v_μ
- Extrapolation out of detector acceptance

E n e r g y t r a n s f e r

Extrapolation out of detector acceptance

- ND and FD acceptances are different even if designs are similar \rightarrow detector size, pile-up
- Implicit trust in model and uncertainties to extrapolate to the additional phase-space

*E*ν dependence

- Different ND and FD fluxes: $ND \rightarrow FD$ extrapolation relies on *E*^ν dependence
- Differences between current models +inconsistent between v_{μ} and v_{μ}
- True for both HK and DUNE

*E*ν reconstruction methods

(1) **Leptonic** variables only: $E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_\mu^2 + 2{m'}_n E_\mu}{2(m'_n - E_\mu + p_\mu \cos\theta_\mu)}$ Super-Kamiokande Run 3962 Sub 125 Ev 965982 97-05-01:15:32:29 Inner: 2887 hits, 9607 pE Charge (pe) Times (ns)

Water Cherenkov: T2K, Hyper-K

(2) **Leptonic** and **hadronic** information:

$$
E_{\nu} = E_{\mu} + E_{\rm had}
$$

Tracking calorimeter: NOvA**; Liquid Argon TPCs:** DUNE

*E*ν reconstruction methods

(1) **Leptonic** variables only:

$$
E_{\nu}^{QE} = \frac{m_p^2 - m_A^2 - m_\mu^2 + 2m_n E_\mu}{2(m_n - E_\mu + p_\mu \cos \theta_\mu)}
$$

- \cdot CCO π
- Non-CCQE contributions
- Pion production < threshold
- Pion prod. + absorption rate
- Smearing from nuclear model

(2) **Leptonic** and **hadronic** information:

$$
E_\nu = E_\mu + E_\mathrm{had}
$$

- CC-inclusive
- Pion production rate below experimental threshold
- Neutral energy fraction
- Nuclear model initial and final state effects

+ *E***ν dependence for all of the above!**

*E*ν reconstruction status

Hyper-K FHC νμ CC0π

Perfect lepton reconstruction

DUNE FHC νμ CCINC

Perfect reconstruction of all particles except neutrons

How well do we model *E*had?

Tackling *E*ν dependence: PRISM

- Moving away from the beam axis reduces the flux width and peak *E*^ν
- Possible with IWCD for HK and the offaxis movement of the DUNE ND
- Adds important information to break flux*XSEC degeneracy!
- But each flux is still extended and complex, still not a trivial problem

PRISM linear combination analyses

- Linear combinations of off-axis data approximate the oscillated FD flux
- *Reduces* cross-section model dependence
- **But** the overall sensitivity likely to be lower (subdividing ND statistics, complex flux uncertainty)
- Unclear what the remaining XSEC uncertainties are \rightarrow stress on different parts of the model/phase space

v_e/v_μ and v_e/\overline{v}_μ

- ND v_e and v_e rates are low, ND vs FD fluxes very different
- PRISM less useful for v_e due to different production kinematics
- HK and DUNE likely to rely on theory, HK explicitly show impact
- Current generator implementations differ by more than assumed uncertainties

ND standard candles?

With large ND event rates, possible to utilize (faint) standard candles:

- $v+e \rightarrow v+e$ elastic scattering
- Inverse muon decay: $v_{\mu} + e \rightarrow \mu + v_e$
- The low-v technique
- Isolating hydrogen events
- Coherent pion scattering

Rely on: a known cross section and/or isolating a region of phase space

New/extra challenges for systematic modeling

Do we have a path to precision?

Maybe? But not a purely experimental one...

Needs:

- A theoretically consistent XSEC model, implemented in a generator
- A robust uncertainty model
- Dedicated measurement programs
- Improved near detectors

Hinchliffe's rule $[edit]$

In the field of particle physics, the concept is known as **Hinchliffe's rule**, after physicist lan Hinchliffe, who stated that if a research paper's title is in the form of a ves-no question, the answer to that question will be "no".^{[39][40]} The adage led into a humorous attempt at a liar paradox by a 1988 paper, written by physicist Boris Kayser under the pseudonym "Boris Peon", which bore the title: "Is Hinchliffe's Rule True?" [41][42][40]

https://en.wikipedia.org/wiki/Betteridge's law of headlines

Ultimate precision: joint fits

- Unless HK+DUNE expose significant new physics*, their joint fit will be the legacy precision oscillation measurement
- No longer adequate to consider parameters "effective" with the freedom we currently allow
- A-scaling will be a significant challenge/need
- Consistent model which is precise over a broader E_v range
- Others?

**Of course, if they do uncover new physics, the same issues will just be more urgent*

Concluding thoughts

- DUNE and HK promise precision oscillation measurements
- Cross-section systematics will be limiting without significant improvements to the current situation
- A high-performance ND helps constrain the problem, and offers new opportunities!
- But, more sophisticated theory and complete uncertainty models are also essential
- A strong relationship between measurement and theory is the only way to achieve precision

Backup

JUNO: Jiangmen Underground Neutrino Observatory

- Reactor antineutrino experiment
- 20 kt liquid scintillator detector \sim 50 km from 2x ~20 GW reactor complexes
- 75% photocathode coverage \rightarrow 3%/ \sqrt{E} energy resolution
- Construction ongoing, data taking 2023

Reactor neutrino future - JUNO

 $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \Phi_{31} + \sin^2 \theta_{12} \sin^2 \Phi_{32} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Phi_{21}$

- High-precision measurements on "solar terms" sin² θ_{12} and Δm^2_{21}
- At long baselines, NO/IO spectra differ due to competing $Φ_{31}$ and $Φ_{32}$ terms
- *But*, clearly very sensitive to energy scale and resolution

Accelerator neutrino beams

- \cdot O(10-100) GeV primary proton beams
- O(10 GeV) secondary pions and kaons
- Focused with electromagnetic horns
- *But still cover a broad E_ν range*

Accelerator neutrino flux uncertainty

Target

GTPC

Magnet

coils

VTPC2

 \sim 13 m

VTPC1

- Dedicated hadron production measurements at fixed target beam facilities:
	- Thin target
	- Replica target
- Example: NA61/SHINE*, used **for T2K → 5-10% uncertainties** Eur. Phys. J. C76, 617 (2016)

Eur. Phys. J. C79, 100 (2019)

ToF-L

ToF-R

ToF-F

MTPCL

MTPCR

The low-ν method [1,2]

- Comes from the observation that if $q_0/E_v \ll 1$, the cross section is approximately constant with E_v
- The rate as a function of E_v gives acces to the flux *shape*
- Very closely linked to the "low-y" ($y = q_0/E_v$) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and Parton Distributions, 84 , p84. World Scientific, 1990 [2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

Is the low- q_0 cross section well described?

Compare a variety of new/commonly used

ew/commonly used
generator models
et bigh energy where at high energy – where q_0/E_v corrections are smallest

Take a ratio w.r.t a reference model

Neutrino-electron elastic scattering

- The known, but small, cross section can be used to constrain the flux. ~5000 LAr ND events/year
- A powerful additional tool for achieving DUNE's sensitivities, and resolving flux \leftrightarrow cross section ambiguities

$$
E_\nu = \frac{E_e}{1-\frac{E_e(1-\cos\theta)}{m}}
$$

- Strong normalization contraint due to known XSEC
- Weak shape constraint due to detector smearing and beam divergence

Few-GeV cross-section models

A variety of model predictions are on the market – use a variety to investigate potential for bias:

- **GENIEv2** used in many published results
- **GENIEv3 10a** and **GENIEv3 10b** currently used by many active experiments (10a vs 10b have different FSI models)
- **SUSAv2** and **CRPA**: state-of-the-art nuclear response modeling for pionless events (implemented in GENIE ~v3.2.0)
- **NEUT**: used by T2K
- **NuWro**: performs well w.r.t. world cross-section data
- GiBUU: sophisticated hadron-transport, different neutrino–nucleon model, also performs well in world data comparisons

Bias studies: cross-section mismodeling

