

Bringing **Neutrons** Into Sharp Focus

- MINERVA measures primarily cross sections to reduce uncertainties for oscillation and scattering experiments
 - Free nucleon cross section
 - Neutron production
 - Nuclear effects
 - Scaling across nuclear targets
- To do this, we need:
 - Percent-level beam predictions
 - Centimeter position resolution
 - Nanosecond timing resolution
 - Neutron detection

Neutrino Beam at MINERvA

Medium Energy ∇_{μ} 120 120 100

Neutrino Energy (GeV)

- NuMI beam at Fermilab
- 6 GeV neutrino energy peak
- Using exclusively Medium Energy (ME) results today
- Flux constrained by neutrinoelectron elastic scattering and inverse muon decay

MINERvA's Tracker

- Segmented scintillator tracker
- 3cm x 1.7cm triangular strips
- 3 orientations → 3D track reconstruction
- Good position resolution; great timing

Nuclear Targets

- Bulk of detector: CH
- In tracker: carbon, iron, lead, water
- Upstream: helium
- Existing measurements: CCQE, coherent pions, inclusive

Nucl. Inst. and Meth. A743 (2014) 130

Neutron Detection at MINERvA

- Look for charged particle activity isolated from the (anti)muon
- Stitch one-view pockets of charge (clusters) into 2D seeds
- Combine 2D seeds that match seeds from other views

What Neutrons Look Like in MINERVA WNOTRE DAME

- Muon
- Neutron
- Prompt scattering → relative directions

Free Nucleon Measurement: Charged Current Elastic Scattering

- "Form factors": parameters in cross section expression
 - F_V¹, F_V²: "vector" form factors from E&M. Can be probed by electron scattering
 - F_A: "axial" form factor for weak force. Only dominant for e.g. neutrino scattering

$$\frac{{\rm d}\sigma}{{\rm d}Q^2} \begin{pmatrix} \nu n \to l^- p \\ \bar{\nu}p \to l^+ n \end{pmatrix} = \frac{M^2 G_{\rm F}^2 \cos^2 \theta_c}{8\pi E_{\nu}^2} \left[A(Q^2) \mp B(Q^2) \frac{(s-u)}{M^2} + C(Q^2) \frac{(s-u)^2}{M^4} \right]$$

$$\begin{split} A(Q^2) &= \frac{m^2 + Q^2}{4M^2} \bigg[\left(4 + \frac{Q^2}{M^2} \right) | \mathbf{F_A} |^2 - \left(4 - \frac{Q^2}{M^2} \right) | \mathbf{F_V^1} |^2 \\ &+ \frac{Q^2}{M^2} \left(1 - \frac{Q^2}{4M^2} \right) | \mathbf{\xi} \mathbf{F_V^2} |^2 + \frac{4Q^2}{M^2} \text{Re} \mathbf{F_V^{1*}} \mathbf{\xi} \mathbf{F_V^2} + \mathcal{O} \left(\frac{m^2}{M^2} \right) \bigg], \\ B(Q^2) &= \frac{Q^2}{M^2} \text{Re} \mathbf{F_A^*} (\mathbf{F_V^1} + \mathbf{\xi} \mathbf{F_V^2}), \\ C(Q^2) &= \frac{1}{4} \left(|\mathbf{F_A}|^2 + |\mathbf{F_V^1}|^2 + \frac{Q^2}{4M^2} |\mathbf{\xi} \mathbf{F_V^2}|^2 \right) \end{split}$$

- Electron
 experiments can
 measure some
 parts...
- Axial-vector form factor only affects weak force.

Neutrinos isolate it

Different from CCQE Because of FSI

- Pions, protons, etc. scatter in nuclear medium!
 - Could gain/lose momentum
 - Could produce more hadrons
 - Could be absorbed
- None of this visible to detector!
- Cascade simulation state of the art for neutrinos

Transverse Kinematic Imbalance

- Conservation of momentum
- Assume antineutrino direction is beam direction
- If striking stationary free nucleon, sum of muon and neutron momenta is in beam direction
- Assumption NOT true for carbon:
 - "Fermi momentum": nucleons moving inside nucleus
 - Many-body physics
- If neutron and muon "line up", very likely to be hydrogen

Background Constraint

- Nuclear many-body physics of carbon not necessarily well modeled
- Cross-check: plot deviation from momentum-conserving angles
- Also separates background-rich regions from signal-rich regions → background constraint

Nuclear Physics Constraint

MENATE R: Data-Driven Neutron Transport

- MoNA nuclear physics collaboration also wanted to model neutrons on CH
- Compared to MENATE_R model
- Test beam data favors MENATE_R over GEANT 4.9.2

- Study nuisance variables like candidate energy deposit
- Reweight MINERvA MC to look like MENATE_R simulation
- X² goes from ~288 to ~254

Nature 614, 48–53 (2023).

Result: Hydrogen CCE Cross Section

- Prediction for cross section that depends on form factors
- Binned in Q²: four-momentum transfer
- Corrected for:
 - Constrained backgrounds
 - Smearing
 - Detector efficiency
 - Flux
 - Number of hydrogen atoms in detector

Result: Axial Form Factor

- Large uncertainty: ~5800 events on a background of ~12500
- Deuterium fit is based on decades-old measurements
 - Low statistics
 - Nuclear effects interfere
- BBBA2007 is global fit including electron scattering
- LQCD fit gets close at high Q²: *Phys. Lett. B* 824, 136821 (2022).

Compatibility with Deuterium Data?

- Joint fit of MINERVA FA results with *Phys. Rev. D* 93 (2016) 11, 113015
- With BBBA05 vector form factors and Q² > 0.2 GeV², δX² ~ 5.5 or p-value of 2%

 Deuterium dipole and joint fit not compatible with hydrogen data

Neutron Detection at MINERvA

candidates per event $0.4 < q_3 < 0.8 \text{ GeV/c}$ data MC total 0.4 **GENIE** neutron - proton π π π+ ···· π⁰ and EM 0.2 Data / MC 1.5 0.5L 20 40 60 candidate Edep (MeV)

Phys. Rev. D 108 (2023) 11, 112010

Phys. Rev. D 100, 052002 (2019)

- Showed that neutrino experiment tracker can see neutrons!
- Neutron modeling close, but not quite right
- No conclusive evidence whether problem is at GEANT- or GENIE-level

Multi-Neutron Cross Section

- Where we can make measurement:
 - Available energy < 100 MeV → fewer backgrounds, more QElike
 - 2 or more neutrons with KE > 10
 MeV each
- Lots of 2p2h
- FSI introduces other processes

Backgrounds

Constraint Results

Multi-Neutron Efficiency

Side HCAL

Side ECAL

Side ECAL

Calorina for 12 for 12 for 13 for 14 for 16 for 17 for 18 fo

- Estimated by MC simulation
- Generally flat, especially at peak of event rate
- Gradual drop at high p_T driven by muon angular acceptance

Comparison with Tuned GENIE

Phys. Rev. D 108 (2023) 11, 112010

- MnvTunev1 overpredicts
- No model falls off at high transverse momentum like measurement does
- Measurement uncertainties are smaller than difference between leading models

MnvTunev1

- Reweights on top of GENIE 2.12.6
- MnvTunev1
 - 2p2h enhancement
 - RPA modification
 - Non-resonant pion suppression
- 2p2h
 enhancement
 motivated by
 multiple LE
 measurements

22

Phys. Rev. Lett. 120, 221805 (2018)

Comparison with GENIE v3

- All GENIE v3 models closer to measurement than MnvTunev1
- Valencia models closer than empirical 2p2h
- Most models fall off at high p_⊤ like measurement

- Two 2p2h models: Valencia and Dytman's empirical tuning
- Two FSI models: singlestep (hA) and multi-step (hN)

Neutrons in Nuclear Targets

- Can MINERvA make neutron measurement in targets?
- How well do neutron results extend to other nuclei?

Neutron detection efficiency is very close in targets

Can Distinguish Neutrons from Others

- Neutron detection works well in targets
- Distance cut helps distinguish neutrons from protons and others

Future: Neutrons in Nuclear Targets

Sig. + Other

4 0.6 0.8 1 1.2 1.4
Reconstructed Muon Transverse Momentum [GeV/c]

Bka. + QE Bkg. + RES

Bkg. + DIS

Bkg. + 2p2h

Bkg. + Other

DS Plastic — US Plastic

--- Another Target

Water (H₂O)

- Neutron production by QElike in nuclear targets
- With tagged neutron
- CH and water in same detector

26

MINERvA Work in Progress

1400

1200

1000

800

600

400

200

0.2

Status: Sideband Fits

- Currently developing sideband fits
- Fit in two pieces:
 - Physics in tracker
 - CH and target backgrounds
- Also weighing alternative CV models

Conclusions

- MINERvA has made measurements sensitive to neutrons through many different channels
 - Charged-current elastic scattering: leading constraint on axial-vector form factor
 - Neutron candidate rate: low recoil inclusive
 - Multi-neutron: neutrons produced by 2p2h and FSI
- No single model describes our neutron measurements well
 - FSI discrepancies are not simple
 - 2p2h models hint that empirical tune is not the whole picture
- Will extend neutron measurements to multiple nuclei

Backup Slides

Neutrino Beam at MINERvA

- NuMI beam at Fermilab
- 6 GeV neutrino energy peak
- Using exclusively Medium Energy (ME) results today
- Flux constrained by neutrinoelectron elastic scattering and inverse muon decay

MINERvA's Tracker

- Segmented scintillator tracker
- 3cm x 1.7cm triangular strips
- 3 orientations → 3D track reconstruction
- Good position resolution; great timing

Neutron Detection at MINERvA

- Look for charged particle activity isolated from the (anti)muon
- Stitch one-view pockets of charge (clusters) into 2D seeds
- Combine 2D seeds that match seeds from other views

Fit for Form Factor

- Fit across all bins because cross section not linear in
- Fit z-expansion formalism for form factor as in 11, 113015
- Regularized by L-curve

Fit across all bins because cross section not linear in
$$F_A$$

$$z = \frac{\sqrt{t_{\rm cut} + Q^2} - \sqrt{t_{\rm cut} - t_0}}{\sqrt{t_{\rm cut} + Q^2} + \sqrt{t_{\rm cut} - t_0}}$$
 Fit z-expansion formalism for form factor as in Phys.Rev.D 93 (2016)
$$\chi^2 = \Delta X \cdot \cot^{-1} \cdot \Delta X + \lambda \left[\sum_{k=1}^{5} \left(\frac{a_k}{5a_0} \right)^2 + \sum_{k=5}^{k_{\rm max}} \left(\frac{ka_k}{25a_0} \right)^2 \right]$$

Cross Section Uncertainties

- Dominated by statistical uncertainty
- Model uncertainties controlled by background constraint
- "Others" driven by neutron uncertainty

Two-Particles Two-Holes

- Electron scattering experiments saw another interaction mode
- Nucleons pair up in nucleus: short range correlations
- Most common pair is neutronproton: 2p2h interaction
 - Often looks like "CCQE"
 - But target mass different
 - → biased energy reconstruction
- Overlaps with CCQE and resonance production phase space
 - → hard to measure

Multi-Neutron Uncertainties

Phys. Rev. D 108 (2023) 11, 112010

- Statistical uncertainty very small because ME era has 7x protons on target from LE era!
 - "Initial state models" includes 2p2h model uncertainties
- "GEANT" dominated by MENATE_R reweight

Multi-Neutron Unfolding

- MINERvA has great resolution for p_{Tu}
- d'Agostini iterative unfolding
- Chose 3 iterations

MINERvA's Neutron Measurements

- One past measurement:
 - Neutron production: Phys. Rev. D 100, 052002 (2019)
- Two recent measurements:
 - Charged-current elastic (CCE) on hydrogen: Nature 614 (2023)
 7946, 48-53
 - Multi-neutron at low $E_{available}$: Phys. Rev. D 108 (2023) 11, 112010
- One upcoming measurement: QE-like on targets with 1+ neutrons: poster session

Neutron Cross Sections from Nuclear Physics

NIM-A. 682 (2012), 59-65

- MENATE_R is a neutron transport simulation driven by nuclear physics cross sections
- MoNA measured neutron multiplicity and compared MENATE_R to GEANT
- MENATE_R much closer to data
- Built MINERvA uncertainty from this

Multi-Neutron Efficiency

- Estimated by MC simulation
- Generally flat, especially at peak of event rate
- Gradual drop at high p_T driven by muon angular acceptance