Neutron Measurements at MINERvA

Andrew Olivier On Behalf of the MINERvA Collaborati October 21, 2024

WNIVERSITY OF | COLLEGE OF SCIENCE

Bringing **Neutrons** Into Sharp Focus

- MINERvA measures primarily **NOvA Preliminary** v -beam Not Extrapolated **cross sections** to r**educe** Lepton Reconstruction Sel Extrapolated **uncertainties** for **oscillation** and Neutron Uncertainty **scattering** experiments tion **Detector Response** – Free nucleon cross section All Quartiles **Beam Flux** – Neutron production **Detector Calibration** – Nuclear effects Neutrino Cross Sections Scaling across nuclear targets^t Near-Far Uncor. • To do this, we need: **Systematic Uncertainty** – Percent-level beam -20 -10 10 20 Ω predictions Total v_{μ} count uncertainty (%) – Centimeter position resolution J. Wolcott, Neutrino 2024
	- Nanosecond timing resolution
	- Neutron detection ²

Neutrino Beam at MINERvA

- NuMI beam at Fermilab
- **6 GeV** neutrino energy peak
- Using exclusively **Medium Energy** (ME) results today
- Flux constrained by neutrinoelectron elastic scattering and inverse muon decay

MINERvA's Tracker

- Segmented scintillator tracker
- 3cm x 1.7cm triangular strips
- 3 orientations \rightarrow 3D track reconstruction
- Good position resolution; great timing

Nuclear Targets

Steel Shield

- Bulk of detector: CH
- In tracker: carbon, iron, lead, water
- Upstream: helium
- Existing measurements: CCQE, coherent pions, inclusive

Nucl. Inst. and Meth. A743 (2014) 130

Neutron Detection at MINERvA

- Look for charged particle activity isolated from the (anti)muon
- Stitch one-view pockets of charge (clusters) into 2D seeds
- Combine 2D seeds that match seeds from other views

What Neutrons Look Like in MINERVA

- Muon
- **Neutron**
- **Prompt** scattering → relative directions

Nature 614 (2023) 7946, 48-53

7

Free Nucleon Measurement: Charged Current Elastic Scattering

- F_{\vee}^{-1} , F_{\vee}^{-2} : "vector" form factors from E&M. Can be probed by electron scattering
- F_A: "axial" form factor for weak force. Only dominant for e.g. neutrino

$$
\frac{d\sigma}{dQ^2} \left(\frac{\nu n \to l^- p}{\bar{\nu} p \to l^+ n} \right) = \frac{M^2 G_F^2 \cos^2 \theta_c}{8\pi E_\nu^2} \left[A(Q^2) \mp B(Q^2) \frac{(s - u)}{M^2} + C(Q^2) \frac{(s - u)^2}{M^4} \right]
$$
\n
$$
A(Q^2) = \frac{m^2 + Q^2}{4M^2} \left[\left(4 + \frac{Q^2}{M^2} \right) |\mathbf{F_A}|^2 - \left(4 - \frac{Q^2}{M^2} \right) |\mathbf{F_V^1}|^2 \right]
$$
\n
$$
+ \frac{Q^2}{M^2} \left(1 - \frac{Q^2}{4M^2} \right) |\xi \mathbf{F_V^2}|^2 + \frac{4Q^2}{M^2} \text{Re} \mathbf{F_V^1 \xi \mathbf{F_V^2}} + \mathcal{O} \left(\frac{m^2}{M^2} \right) \right],
$$
\n
$$
B(Q^2) = \frac{Q^2}{M^2} \text{Re} \mathbf{F_A^*} (\mathbf{F_V^1} + \xi \mathbf{F_V^2}),
$$

Electron experiments can measure some parts…

 $C(Q^2) = \frac{1}{4} \left(| \mathbf{F}_A |^2 + | \mathbf{F}_V^1 |^2 + \frac{Q^2}{4M^2} | \xi \mathbf{F}_V^2 |^2 \right)$

scattering **Neutrinos** isolate it **8** • Axial-vector form factor only affects weak force.

Different from CCQE Because of FSI

- Pions, protons, etc. scatter in nuclear medium!
	- Could gain/lose momentum
	- Could produce more hadrons
	- Could be absorbed
- None of this visible to detector!
- Cascade simulation state of the art for neutrinos

Transverse Kinematic Imbalance

- Conservation of momentum
- Assume antineutrino direction is beam direction
- If striking *stationary free* nucleon, sum of muon and neutron momenta is in beam direction
- Assumption NOT true for carbon:
	- "Fermi momentum": nucleons moving inside nucleus
	- Many-body physics
- If neutron and muon "line up", very likely to be hydrogen

Background Constraint

- Nuclear many-body physics of carbon not necessarily well modeled
- Cross-check: plot deviation from momentum-conserving angles
- Also separates background-rich regions from signal-rich regions \rightarrow background constraint

Nuclear Physics Constraint

- MoNA nuclear physics collaboration also wanted to model neutrons on CH
- Compared to MENATE_R model
- Test beam data favors MENATE R over GEANT 4.9.2
- MENATE_R: Data-Driven Neutron Transport Study nuisance variables like candidate energy deposit
	- Reweight MINERvA MC to look like MENATE_R simulation
	- X^2 goes from ~288 to ~254

Result: Hydrogen CCE Cross Section

- Prediction for cross section that depends on form factors
- \bullet Binned in Q²: four-momentum transfer
- Corrected for:
	- Constrained backgrounds
	- **Smearing**
	- Detector efficiency
	- Flux
	- Number of hydrogen atoms in detector

Result: Axial Form Factor

- Large uncertainty: ~5800 events on a background of ~12500
- Deuterium fit is based on decades-old measurements
	- Low statistics
	- Nuclear effects interfere
- BBBA2007 is global fit including electron scattering
- LQCD fit gets close at high Q² : *Phys. Lett. B* 824, 136821 (2022).

Compatibility with Deuterium Data?

- Joint fit of MINERvA FA results with *Phys. Rev. D* 93 (2016) 11, 113015
- With BBBA05 vector form factors and $Q^2 > 0.2$ GeV², δX^2 ~ 5.5 or p-value of 2%

- 1.6 Hydrogen 1.4 Deuterium $Q_{\min}^2 = 0.20 \text{ GeV}^2$ 1.2 All-Isotope $Q_{\min}^2 = 0.20 \text{ GeV}^2$ various [LQCD] 1.0 $\overbrace{\mathbf{F}_{\mathcal{A}}^{\mathcal{A}}}^{F_{\mathcal{A}}^{(2)}(0.8)}$ Deuterium [Phys.Rev.D 93 (2016)] Aaron Meyer Nullat 2024 data 0.4 $0.2[°]$ 0.0 0.00 0.25 0.50 0.75 1.25 1.50 1.75 2.00 1.00 Q^2/GeV^2
	- Deuterium dipole and joint fit not compatible with hydrogen

Neutron Detection at MINERvA

- Showed that neutrino experiment tracker can see neutrons!
- Neutron modeling close, but not quite right
- No conclusive evidence whether problem is at GEANT- or GENIE-level

Multi-Neutron Cross Section

- Where we can make measurement:
	- Available energy $<$ 100 MeV \rightarrow fewer backgrounds, more QElike
	- 2 or more neutrons with $KE > 10$ MeV each
- Lots of 2p2h
- FSI introduces other processes

Backgrounds

Constraint Results

Multi-Neutron Efficiency

Comparison with Tuned GENIE

- MnvTunev1 overpredicts
- No model falls off at high transverse momentum like measurement does
- **Measurement** uncertainties are smaller than difference between leading models

MnvTunev1

- **Reweights on** top of GENIE 2.12.6
- MnvTunev1
	- 2p2h enhancement
	- RPA modification
	- Non-resonant pion suppression
	- $2p2h$ enhancement motivated by multiple LE measurements

Comparison with GENIE v3

23

- All GENIE v3 models closer to measurement than MnvTunev1
- Valencia models closer than empirical 2p2h
- Most models fall off at high p_τ like measurement
- Two 2p2h models: Valencia and Dytman's empirical tuning
- Two FSI models: singlestep (hA) and multi-step

Neutrons in Nuclear Targets

- **Can MINERVA** make neutron measurement in targets?
- How well do neutron results extend to other nuclei?

Neutron detection efficiency is very close in targets

Can Distinguish Neutrons from Others

D. Last NuInt 2024 Poster

- Neutron detection works well in targets
- Distance cut helps distinguish neutrons from protons and others

Future: Neutrons in Nuclear Targets

- Neutron production by QElike in nuclear targets
- With tagged neutron
- CH and water in same detector

IVERSITY OF TRE DAME

Status: Sideband Fits

- Currently developing sideband fits
- Fit in two pieces:
	- Physics in tracker
	- CH and target backgrounds
- Also weighing alternative CV

Conclusions

- MINERvA has made measurements sensitive to neutrons through many different channels
	- Charged-current elastic scattering: leading constraint on axial-vector form factor
	- Neutron candidate rate: low recoil inclusive
	- Multi-neutron: neutrons produced by 2p2h and FSI
- No single model describes our neutron measurements well
	- FSI discrepancies are not simple
	- 2p2h models hint that empirical tune is not the whole picture
- Will extend neutron measurements to multiple nuclei

Thank You

IIIIIIII

Ryan Postel, 2023

UNIVERSITY OF COLLEGE OF SCIENCE

NSF

,,,,,,,,,,,,

Backup Slides

,,,,,,,,,,,,,,

Neutrino Beam at MINERvA

- NuMI beam at Fermilab
- **6 GeV** neutrino energy peak
- Using exclusively **Medium Energy** (ME) results today
- Flux constrained by neutrinoelectron elastic scattering and inverse muon decay

Neutrino

MINERvA's Tracker

- Segmented scintillator tracker
- 3cm x 1.7cm triangular strips
- 3 orientations \rightarrow 3D track reconstruction
- Good position resolution; great timing

Neutron Detection at MINERvA

- Look for charged particle activity isolated from the (anti)muon
- Stitch one-view pockets of charge (clusters) into 2D seeds
- Combine 2D seeds that match seeds from other views

L.

Fit for Form Factor

- Fit across all bins because cross section not linear in F_{A}
- Fit z-expansion formalism for form factor as in Phys.Rev.D 93 (2016) 11, 113015

$$
F_{A}(Q^{2}) = \sum_{k=0}^{n_{max}} a_{k} z^{k}
$$

\n
$$
z = \frac{\sqrt{t_{\text{cut}} + Q^{2}} - \sqrt{t_{\text{cut}} - t_{0}}}{\sqrt{t_{\text{cut}} + Q^{2}} + \sqrt{t_{\text{cut}} - t_{0}}}
$$

\n
$$
\sum_{k=n}^{\infty} k(k-1) \dots (k-n+1) a_{k} = 0, n \in (0, 1, 2, 3)
$$

\n
$$
\chi^{2} = \Delta X \cdot \text{cov}^{-1} \cdot \Delta X + \lambda \left[\sum_{k=1}^{5} \left(\frac{a_{k}}{5a_{0}} \right)^{2} + \sum_{k=5}^{k_{max}} \left(\frac{k a_{k}}{25a_{0}} \right)^{2} \right]
$$

• Regularized by L-curve

Cross Section Uncertainties

- Dominated by statistical uncertainty
- Model uncertainties controlled by background constraint
- "Others" driven by neutron uncertainty

Nature 614 (2023) 7946, 48-53

Two-Particles Two-Holes

- Electron scattering experiments saw another interaction mode
- Nucleons pair up in nucleus: short range correlations
- Most common pair is neutronproton: 2p2h interaction
	- Often looks like "CCQE"
	- But target mass different
	- \rightarrow biased energy reconstruction
- Overlaps with CCQE and resonance production phase space \rightarrow hard to measure 36

Multi-Neutron Uncertainties

Phys. Rev. D 108 (2023) 11, 112010

- **Statistical** uncertainty very small because ME era has 7x protons on target from LE era!
- "Initial state models" includes 2p2h model uncertainties
- 37 • "GEANT" dominated by MENATE_R reweight

Multi-Neutron Unfolding

- MINERvA has great resolution for p_{T_u}
- d'Agostini iterative unfolding
- Chose 3 iterations

MINERvA's Neutron Measurements

- One past measurement:
	- Neutron production: Phys. Rev. D 100, 052002 (2019)
- Two recent measurements:
	- Charged-current elastic (CCE) on hydrogen: Nature 614 (2023) 7946, 48-53
	- Multi-neutron at low $E_{\text{available}}$: Phys. Rev. D 108 (2023) 11, 112010
- One upcoming measurement: QE-like on targets with 1+ neutrons: poster session

Neutron Cross Sections from Nuclear **Physics**

- MENATE_R: Data-Driven Neutron Transport MENATE R is a neutron transport simulation driven by nuclear physics cross sections
	- MoNA measured neutron multiplicity and compared MENATE R to GEANT
	- MENATE R much closer to data
	- **Built MINERVA uncertainty** from this

Multi-Neutron Efficiency

- **Estimated by MC** simulation
- Generally flat, especially at peak of event rate
- Gradual drop at high $\bm{{\mathsf{p}}}_{{\mathsf{T}}}$ driven by muon angular acceptance