

Isolating neutrino-hydrogen interactions using kinematic separation

Stephen Dolan

stephen.joseph.dolan@cern.ch

Stephen Dolan

ECT*, Trento, October 2024

1

Nuclear targets are hard

Stephen Dolan

... nucleon targets are not

Stephen Dolan

... nucleon targets are not

Stephen Dolan

... nucleon targets are not

Stephen Dolan

Where it started (2015)

- Single pion production happens on the H or CH in plastic scintillator
- δp_{TT} balances for H, but not for C:

Where it started (2015)

- Single pion production happens on the H or CH in plastic scintillator
- δp_{TT} balances for H, but not for C:
- Unfortunately, this was a tricky topology to measure at the time

 Limited statistics (~350 evts for T2K)
 Low purity (~50%)

Meanwhile, at Fermilab (~2018)

Neutron measurements from antineutrino hydrocarbon reactions

M. Elkins,^{1,*} T. Cai,² J. Chaves,³ J. Kleykamp,² F. Akbar,⁴ L. Albin,¹ L. Aliaga,^{5,6} D. A. Andrade,⁷ M. V. Ascencio,⁶ A. Bashyal,⁸ L. Bellantoni,⁹ A. Bercellie,² M. Betancourt,⁹ A. Bodek,² A. Bravar,¹⁰ H. Budd,² G. Caceres,¹¹ M. F. Carneiro,⁸ D. Coplowe,¹² H. da Motta,¹¹ S. A. Dytman,¹³ G. A. Díaz,^{2,6} J. Felix,⁷ L. Fields,^{9,14} A. Filkins,⁵ R. Fine,² N. Fiza,¹⁵ A. M. Gago,⁶ R. Galindo,¹⁶ A. Ghosh,^{16,11} R. Gran,¹ J. Y. Han,¹³ A. Habig,¹ D. A. Harris,⁹ S. Henry,²
S. Jena,¹⁵ D. Jena,⁹ M. Kordosky,⁵ D. Last,³ T. Le,^{17,18} J. R. Leistico,¹ A. G. Lopez,¹ A. Lovlein,¹ X.-G. Lu,¹² E. Maher,¹⁹ S. Manly,² W. A. Mann,¹⁷ C. M. Marshall,^{2,†} C. Mauger,³ A. M. McGowan,² K. S. McFarland,^{2,9} B. Messerly,¹³ J. Miller,¹⁶ J. G. Morfín,⁹ J. Mousseau,^{20,‡} D. Naples,¹³ J. K. Nelson,⁵ C. Nguyen,²⁰ A. Norrick,^{9,5} Nuruzzaman,^{18,16} A. Olivier,² V. Paolone,¹³ G. N. Perdue,^{9,2} M. A. Ramírez,⁷ R. D. Ransome,¹⁸ H. Ray,²⁰ D. Rimal,²⁰ P. A. Rodrigues,^{12,21,2} D. Ruterbories,² H. Schellman,^{8,14} C. J. Solano Salinas,²² H. Su,¹³ V. S. Syrotenko,¹⁷ S. Sánchez Falero,⁶ E. Valencia,^{5,7} J. Wolcott,^{2,§} and B. Yaeggy¹⁶

(MINERvA Collaboration)

Phys. Rev. D 100, 052002

MINERvA demonstrates neutron-tagging!

Meanwhile, at Fermilab (~2018)

Neutron measurements from antineutrino hydrocarbon reactions

M. Elkins,^{1,*} T. Cai,² J. Chaves,³ J. Kleykamp,² F. Akbar,⁴ L. Albin,¹ L. Aliaga,^{5,6} D. A. Andrade,⁷ M. V. Ascencio,⁶ A. Bashyal,⁸ L. Bellantoni,⁹ A. Bercellie,² M. Betancourt,⁹ A. Bodek,² A. Bravar,¹⁰ H. Budd,² G. Caceres,¹¹ M. F. Carneiro,⁸ D. Coplowe,¹² H. da Motta,¹¹ S. A. Dytman,¹³ G. A. Díaz,^{2,6} J. Felix,⁷ L. Fields,^{9,14} A. Filkins,⁵ R. Fine,² N. Fiza,¹⁵ A. M. Gago,⁶ R. Galindo,¹⁶ A. Ghosh,^{16,11} R. Gran,¹ J. Y. Han,¹³ A. Habig,¹ D. A. Harris,⁹ S. Henry,²
S. Jena,¹⁵ D. Jena,⁹ M. Kordosky,⁵ D. Last,³ T. Le,^{17,18} J. R. Leistico,¹ A. G. Lopez,¹ A. Lovlein,¹ X.-G. Lu,¹² E. Maher,¹⁹ S. Manly,² W. A. Mann,¹⁷ C. M. Marshall,^{2,†} C. Mauger,³ A. M. McGowan,² K. S. McFarland,^{2,9} B. Messerly,¹³ J. Miller,¹⁶ J. G. Morfín,⁹ J. Mousseau,^{20,‡} D. Naples,¹³ J. K. Nelson,⁵ C. Nguyen,²⁰ A. Norrick,^{9,5} Nuruzzaman,^{18,16} A. Olivier,² V. Paolone,¹³ G. N. Perdue,^{9,2} M. A. Ramírez,⁷ R. D. Ransome,¹⁸ H. Ray,²⁰ D. Rimal,²⁰ P. A. Rodrigues,^{12,21,2} D. Ruterbories,² H. Schellman,^{8,14} C. J. Solano Salinas,²² H. Su,¹³ V. S. Syrotenko,¹⁷ S. Sánchez Falero,⁶ E. Valencia,^{5,7} J. Wolcott,^{2,§} and B. Yaeggy¹⁶

(MINERvA Collaboration)

Phys. Rev. D 100, 052002

• MINERvA demonstrates neutron-tagging!

• With a 3D position and sufficient timing resolution, the neutron energy could be reconstructed. But this isn't doable at MINERvA (Kevin's fault).

Meanwhile, within T2K (~2018)

• T2K is busy building an upgrade to its near detector (arXiv:1901.03750)

Meanwhile, within T2K (~2018)

• T2K is busy building an upgrade to its near detector (arXiv:1901.03750)

Phys. Rev. D 101, 092003

Phys. Rev. D 101, 092003

Phys. Rev. D 101, 092003

Stephen Dolan

Phys. Rev. D 101, 092003

The idea:

- Absolute time resolution is fixed
- Time resolution relative to neutron travel time is better when *d* is large
- Cut: d > L, the "lever arm" required

The idea:

- Absolute time resolution is fixed
- Time resolution relative to neutron travel time is better when *d* is large
- Cut: d > L, the "lever arm" required

Phys. Rev. D 101, 092003

Stephen Dolan

The idea:

- Absolute time resolution is fixed
- Time resolution relative to neutron travel time is better when *d* is large
- Cut: d > L, the "lever arm" required

Phys. Rev. D 101, 092003

The idea:

- Absolute time resolution is fixed
- Time resolution relative to neutron travel time is better when *d* is large
- Cut: d > L, the "lever arm" required

Best combination: $L = 10 \ cm$, $\delta p_T < 40 \ MeV$

Phys. Rev. D 101, 092003

Stephen Dolan

The idea:

75

70

65

60

55

50

45 40

35

Hydrogen Purity [%]

- Absolute time resolution is fixed
- Time resolution relative to neutron travel time is better when d is large
- Cut: d > L, the "lever arm" required

Best combination: $L = 10 \ cm, \ \delta p_T < 40 \ MeV$

Stephen Dolan

0

5

ECT*, Trento, October 2024

10 cm

30 cm

40 cm

50 cri

60 cm

Back to MINERvA (~2023)

Nature, 614, 48-53 - see next talk!

Stephen Dolan

Stephen Dolan

Stephen Dolan

Back to MINERvA (~2023)

Stephen Dolan

Stephen Dolan

Adding a new variable for the Super-FGD

Considering longitudinal and transverse imbalance in both momenta and angle may allow Hydrogen purities of over 90%

Stephen Dolan

Adding a new variable for the Super-FGD

Considering longitudinal and transverse imbalance in both momenta and angle may allow Hydrogen purities of over 90%

Good news for precision form-factor tests (and potential in-situ flux constraints)

Stephen Dolan

Also important: STT in DUNE (~2018)

• Proponents of using an STT CH_2 detector for DUNE's SAND ND complete a more general analysis: arXiv:1809.08752

Idea:

- Cut generally in a multi-dimensional space covering TKI and simple particle kinematics to maximise H purity for fixed efficiency
- Consider multiple interaction topologies

Also important: STT in DUNE (~2018)

Proponents of using an STT CH₂ detector for DUNE's SAND ND complete a more general analysis: arXiv:1809.08752

Idea:

- Cut generally in a multi-dimensional space covering TKI and simple particle kinematics to maximise H purity for fixed efficiency
- Consider multiple interaction topologies

Summary and next steps

- Measuring neutrino interactions on hydrogen is useful:

 In-situ flux shape constraints (perfect energy reconstruction)
 Untangle nucleon and nuclear interaction physics
- Deviations from kinematic imbalance allows separation of interactions on H from a CH target (scintillator)
- Reconstruction of neutrons provides a measure of kinematic imbalance for $\bar{\nu}$ CCQE interactions
- First measurement from MINERvA: constraints on F_A!
 No information on neutron momentum (insufficient ToF resolution) leads to a relatively low purity ~30%
- T2K's new SuperFGD offers potential for measurements
 Use of TKI: ~60% purity, use of T+GKI: ~90% purity
 Expect first measurements in the next ~2 years
- Further improvements possible with DUNE's ND