The Axial Form Factor Extracted from Elementary Targets

Aaron S. Meyer (asmeyer.physics@gmail.com)

Lawrence Livermore National Laboratory

October 24, 2024

Measuring Neutrino Interactions for Next-Generation Oscillation Experiments - ECT*

This work is supported in part by: Lawrence Livermore National Security, LLC #DE-AC52-07NA27344, Neutrino Theory Network Program Grant #DE-AC02-07CHI11359, U.S. Department of Energy Award #DE-SC0020250.

Outline

► Introduction

- ▶ Combined Hydrogen+Deuterium Fitting
- ▶ LQCD Intro
- ▶ LQCD Averaging
- ▶ LQCD Implications
- Conclusions

Note: all references in online slides are hyperlinked

Introduction

Neutrino Cross Sections

Energy range spans several *nucleon* interaction topologies

Nucleon amplitudes used to build nuclear cross sections

 \implies inputs to Monte Carlo simulations, E_{ν} reconstruction

Goal: isolate, quantify, improve *nucleon* amplitudes

Precise, theoretically robust nucleon inputs \rightarrow definitive statements about nuclear uncertainties

Neutrino Event Topologies

Larger nucleus

- \implies more nucleons to interact with
- \implies larger cross sections

Nuclear environment complicates measurements:

- Many allowed kinematic channels
- Reinteractions within nucleus
- Only final state particles are observable

Precise cross sections need precise nucleon amplitudes

Nucleon amplitudes assumed to be precisely known

Neutrino Cross Sections from Elementary Targets

Quasielastic is lowest E_{ν} , simplest \implies most important

Question:

How well do we know free nucleon quasielastic cross section from elementary target sources?

Three main sources:

► Hydrogen scattering (new!)

Deuterium scattering

▶ Lattice QCD

Aaron S. Meyer

Combined Hydrogen–Deuterium Fits

Form Factor Parameterizations

Dipole ansatz —
$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{m_A^2}\right)^{-2}$$

- Overconstrained by both experimental and LQCD data
- ▶ Inconsistent with QCD, requirements from unitarity bounds
- \blacktriangleright Motivated by $Q^2 \rightarrow \infty$ limit, data restricted to low Q^2

Model independent alternative: z expansion [Phys.Rev.D 84 (2011)] —

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

- Rapidly converging expansion
- Controlled procedure for introducing new parameters
- ▶ Sum rule constraints to regulate large- Q^2 behavior

Previous Deuterium Constraints

Fits: [Phys.Rev.D 93 (2016)]

- Outdated bubble chamber experiments
- Dipole overconstrained by data underestimated uncertainty ×10
- Discrepancies in nuclear cross sections could be nucleon and/or nuclear origins

New Data

Previous datasets:

▶ ANL, BNL, FNAL deuterium bubble chamber event distributions

Two additional datasets:

- ► MINER ν A 2023 $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ [Nature 614 (2023)] Special thanks: Tejin Cai, Kevin McFarland, Miriam Moore
- ► BEBC 1990 $\nu_{\mu}D \rightarrow \mu^{-}pp$ [Nucl.Phys.B 343] Special thanks: Clarence Wret, NUISANCE

Updated vector form factors:

▶ Use Borah et al. z expansion [Phys.Rev.D 102 (2020)]

Normalization Degeneracy

Change in philosophy: use χ^2_{data} vs $\chi^2_{penalty}$ to inform prior width (not assumptions from unitarity)

$$\chi^{2}_{\text{penalty}} = \lambda \sum_{k=1}^{k_{\text{max}}} \left(a_{k} / a_{0} \sigma_{k} \right)^{2} \quad (\lambda = 1 \text{ in [Phys.Rev.D 93]})$$

Strong dependence on prior width, manifests as dependence on Q^2 cuts Degeneracy between free normalization, axial form factor

BEBC & MINER ν A provide differential cross section, not event distributions

 \implies might resolve degeneracy?

Aaron S. Meyer

Previous Deuterium + BEBC

Normalization of BEBC restricted to 1 ± 0.1 (flux uncertainty)

Other deuterium pulls BEBC to limit of 1σ uncertainty on normalization

Previous Deuterium + BEBC

 $\Delta\chi^2 = \chi^2_{A+B} - \chi^2_A - \chi^2_B \implies 1 \text{ degree of freedom } \chi^2 \text{ test of compatibility}$

p values are sensible – Q^2 cuts have different pulls

BEBC is consistent with deuterium, partial resolution of degeneracy?

Aaron S. Meyer

Deuterium + MINERvA

		$Q_{\min}^2 = 0.06 \text{ GeV}^2$		$Q_{\min}^2 = 0.20 \text{ GeV}^2$	
	$_{ m fit}$	$\chi^2_{\rm data}/{\rm DoF}$	$p_{\Delta\chi^2}$	$\chi^2_{\rm data}/{\rm DoF}$	$p_{\Delta\chi^2}$
MINERvA incompatible with deuterium	All Deuterium	116.1/111		100.4/105	
	MINERvA	9.1/~16		9.1/~16	
Remnant deuterium effects?	All	129.5/125		120.9/119	
	$\Delta \chi^2$	4.3/ 1	$4 imes 10^{-2}$	11.3/ 1	$8 imes 10^{-4}$

LQCD Introduction

LQCD as Disruptive Technology

LQCD is a complement to experiment

- $\checkmark~$ No nuclear effects
- $\checkmark~$ Realistic uncertainty estimates
- \checkmark Systematically improvable
- \checkmark Computers are (relatively) in expensive

Build from the ground up:

Nucleon amplitudes from first principles Robust uncertainty quantification Well motivated theory inputs to nuclear models/EFTs

Lattice QCD Formalism

Numerical evaluation of path integral Quark, gluon DOFs —

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\psi \, \mathcal{D}\overline{\psi} \, \mathcal{D}U \, \exp(-S) \, \mathcal{O}_{\psi} \left[U \right]$$

Parameters:

 $am_{(u,d),\mathrm{bare}}\ am_{s,\mathrm{bare}}\ eta=6/g_\mathrm{bare}^2$

Matching: e.g. $\frac{M_{\pi}}{M_{\Omega}}$, $\frac{M_K}{M_{\Omega}}$, M_{Ω} 1 per parameter

Results — first principles predictions from QCD, gluons+ $q\bar{q}$ loops to all orders

"Complete" error budget \implies extrapolation in a, L, M_{π} guided by EFT, FV χ PT

- $\blacktriangleright \quad a \to 0 \qquad \qquad (\text{continuum limit})$
- $L \to \infty$ (infinite volume limit)
- $\blacktriangleright M_{\pi} \to M_{\pi}^{\text{phys}} \qquad \text{(chiral limit)}$

LQCD Axial Form Factor Summary

LQCD results maturing:

- ▶ Many results, complete error budgets
- ▶ Small systematic effects observed (expectation: largest at $Q^2 \rightarrow 0$)
- Nontrivial consistency checks from PCAC

LQCD fits only up to $Q^2 = 1$ GeV², extrapolated to higher Q^2

LQCD prediction of slow Q^2 falloff

Aaron S. Meyer

LQCD averaging

LQCD references

Reference	N_{ens}	$N_{\rm ens}^{\rm phys}$	quark action	fit method	parameterization
[RQCD 2020]	37	2	clover	$\chi { m PT} ext{-inspired}$	z^2 , sum rules
[NME 2022]	7	0	clover	Bayesian prior exponential	$\operatorname{Pad\acute{e}}[0/2]$
[Mainz 2022]	14	1	clover	summation $+ z$ expansion	z^2 , SR
[PNDME 2023]	13	2	clover (on HISQ)	Bayesian prior exponential	z^2 , SR
[ETM 2023]	3	3	twisted mass	Bayesian prior exponential	z^3 , SR

LQCD collaborations provide nontrivial consistency checks of each other Larger $N_{\rm ens}$ essential for removing systematics (> 5 maybe okay, > 10 good) "Chiral extrapolation" hard, more physical mass ensembles $N_{\rm ens}^{\rm phys}$ better

Notes:

- ▶ $g_A \sim a_0$ is an output for LQCD; fixed by constraint in ν fit (not in input LQCD parameterizations)
- ▶ these fits will use sum rules (input LQCD parameterizations do not)

Averaging Strategy

Want same z expansion parameterization used in experiment fitting:

- \blacktriangleright g_A fixed to exact value
- ▶ 4 sum rules regulate large- Q^2 behavior
- no priors imposed

Procedure for matching LQCD results with different F_A parameterizations:

- 1. fit to derivatives $(d/dQ^2)^n F_A(Q^2)$ for $n \in \{0, ..., n_{\max}\}$ with $n_{\max} \leq k_{\max}$
- 2. derivatives evaluated at $Q^2 = \max[|-t_0|, 0.1 \text{ GeV}^2];$

Without offset from $Q^2 = 0$, intercept parameter a_0 would be ignored in $t_0 = 0$ fits

NME 2022 3-parameter Padé (ratio Q^2 polynomials)

 \implies treated same as a 3-parameter z expansion with $t_0 = 0$

LQCD Averaging Fits

$Q^2_{ m compare}$	k_{\max}	n_{\max}	ETM?	$\chi^2/{ m DoF}$	p
	6	2	yes	56.40/13	2×10^{-7}
	6	2	no	16.63/10	0.08
	7	1	yes	6.60/7	0.47
	7	1	no	4.01/ 5	0.55
	6	1	yes	10.34/8	0.24
	6	1	no	5.05/6	0.54
$\min@Q^2 = 0.05 \text{ GeV}^2$	6	1	no	3.55/6	0.74
$\min@Q^2 = 0.15 \text{ GeV}^2$	6	1	no	7.59/6	0.26
$all@Q^2 = 0.15 \ GeV^2$	6	1	no	8.39/ 6	0.21
$\mathrm{all}@Q^2 = 0.50~\mathrm{GeV}^2$	6	1	no	9.37/6	0.15

Good consistency between all except ETM result

 \implies ETM requires $k_{\text{max}} = 7$ to get good fit, others sufficient at $k_{\text{max}} = 6$

 $\left(d/dQ^2\right)^2$ terms increase χ^2 significantly, not well constrained anyway \implies dropped

No large sensitivity to Q^2 where form factor matching occurs

Aaron S. Meyer

LQCD Average vs Experiment

MINERvA consistent with LQCD central value LQCD too precise to compare MINERvA minimum \implies consistency between LQCD/MINERvA

	LQCD $\{a_k\}$		MINERVA $\{a_k\}$		
	$\chi^2/{ m DoF}$	p	$\chi^2/{\rm DoF}$	p	
LQCD $\partial_{O^2}^n F_A$	5.0/6	0.54	83.5/8	1×10^{-14}	
MINERva data	12.6/14	0.56	$9.1/\ 12$	0.69	
uncertainties	$F_A(0.50 \text{ Ge}$	eV^2)	r_A^2		

	- A(0.00	,	·A
LQCD average		2%	15%
MINERvA		6%	34%

LQCD Average vs Experiment

MINERvA consistent with LQCD central value LQCD too precise to compare MINERvA minimum \implies consistency between LQCD/MINERvA

	χ^2/DoF	p	χ^2/Γ	юF	p
LQCD $\partial_{O^2}^n F_A$	5.0/6	0.54	83.5/	8	1×10^{-14}
MINERvAdata	12.6/14	0.56	9.1/	12	0.69
	1				
uncertainties	$F_A(0.50 \text{ Ge}$	eV^2)	r_A^2		
LQCD average		2%	15%		
MINERvA		6%	34%		

LQCD Implications

Free Nucleon Cross Section

LQCD prefers 30-40% enhancement of ν_{μ} CCQE cross section

Recent Monte Carlo tunes require 20% enhancement of QE [Phys.Rev.D 105 (2022)] [Phys.Rev.D 106 (2022)]

With improved precision, sensitive to

- BBA vs z expansion vector FF difference [Phys.Rev.D 102 (2020)] [Nucl.Phys.B Proc.Suppl. 159 (2006)]
- ▶ isospin-breaking corrections? [Phys.Rev.Lett. 129 (2022)]

T2K Implications

- **b** Dashed dark blue (GENIE nominal) vs solid magenta ($z \exp LQCD$ fit)
- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- Monte Carlo tuning invalidates more sophisticated comparisons

DUNE Implications

- Solid dark blue (GENIE nominal) vs dashed magenta ($z \exp LQCD$ fit)
- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- Monte Carlo tuning invalidates more sophisticated comparisons

Concluding Remarks

Outlook

- ▶ Nucleon axial form factor uncertainty historically significantly underestimated
- Evidence that QE cross section underestimated, beyond published deuterium 1σ uncertainty band
- ▶ LQCD as proxy for (or complementary to) experimental data
- $\blacktriangleright \text{ Indications of consistency between hydrogen/LQCD} \implies \text{experiment/theory parameterizations}$
- ▶ Fit deuterium shape inconsistent with hydrogen/LQCD shape
- ▶ Nontrivial implications of LQCD/hydrogen for oscillation experiments

Thank you for your attention!

Cumulative Updates to Deuterium

Cumulative changes between fits

 \implies moving down legend labels, fits include same modifications as fits above them

Fits all 1σ consistent until regularization removed

 $Q^2 \mbox{ cut emphasizes axial form factor } + \mbox{ normalization degeneracy}$

Aaron S. Meyer

Vector Form Factors - Proton/Neutron

Large tension in proton magnetic form factor

Vector Form Factors - Isospin Symmetric

Uncertain slope of F_2^V

Large uncertainty on isoscalar form factors

Aaron S. Meyer

Section: Backup

L-curve Basics

 $F_A(z) = \sum_{k=0}^{k_{\max}} a_k z^k$ L-curve heuristic to choose k_{\max} , λ

Optimal λ from minimum curvature on L-curve (or $\lambda = 0$), optimal k_{max} where $\delta \chi^2 < 1$

 $\text{Regularization term:} \quad \chi^2_{\text{reg}}(\lambda) = \lambda \sum_k \left| \frac{a_k}{\sigma_k} \right|^2, \quad \sigma_k = |a_0| \cdot \min[5, \, 25/k] \ ; \quad \log_{10} \lambda \text{ printed on curves}$

Aaron S. Meyer

L-curve Studies

Hydrogen preference for $k_{\text{max}} = 5$, $\lambda = 0$

Deuterium preference depends on $Q_{\rm cut}^2$; compromise $k_{\rm max} = 6$, $\lambda = 0$

 $t_0 = -0.50 \text{ GeV}^2$, $k_{\text{max}} = 6$, $\lambda = 0$ for nominal studies here \implies similar quality to $k_{\text{max}} \ge 7$, but no regularization

 $t_0 = -0.28 \text{ GeV}^2$, $k_{\text{max}} = 8$, $\lambda = 1$ in published deuterium result [Phys.Rev.D 93 (2016)]

L-curve Studies

Hydrogen preference for $k_{\text{max}} = 5$, $\lambda = 0$

Deuterium preference depends on $Q_{\rm cut}^2$; compromise $k_{\rm max} = 6$, $\lambda = 0$

 $t_0 = -0.50 \text{ GeV}^2$, $k_{\text{max}} = 6$, $\lambda = 0$ for nominal studies here \implies similar quality to $k_{\text{max}} \ge 7$, but no regularization

 $t_0 = -0.28 \text{ GeV}^2$, $k_{\text{max}} = 8$, $\lambda = 1$ in published deuterium result [Phys.Rev.D 93 (2016)]

L-curve Studies

Hydrogen preference for $k_{\text{max}} = 5$, $\lambda = 0$

Deuterium preference depends on Q_{cut}^2 ; compromise $k_{\text{max}} = 6$, $\lambda = 0$

 $t_0 = -0.50 \text{ GeV}^2$, $k_{\text{max}} = 6$, $\lambda = 0$ for nominal studies here \implies similar quality to $k_{\text{max}} \ge 7$, but no regularization

 $t_0 = -0.28 \text{ GeV}^2$, $k_{\text{max}} = 8$, $\lambda = 1$ in published deuterium result [Phys.Rev.D 93 (2016)]

Axial Form Factor Fit

Trend of high- Q^2 enhancement seen in other LQCD results 2–4% LQCD uncertainty vs 10% uncertainty on D₂ result

PCAC Checks

- ▶ Relation btw F_A , F_P , \tilde{F}_P via PCAC
- Contamination in F_A and \tilde{F}_P , F_P very different \implies nontrivial consistency check
 - ⇒ nontrivial consistency chec [Phys.Rev.D 99 (2019)]

LQCD Excited States — χPT and $N\pi$

Contamination in $g_A(Q^2)$ primarily from enhanced $N\pi$, mostly from induced pseudoscalar

Correlator fits without axial current not sensitive to $N\pi$ [Phys.Rev.C 105 (2022)] [Phys.Rev.D 105 (2022)]

Alternate fit strategies:

- explicit $N\pi$ operators
- include \mathcal{A}_4 (strong $N\pi$ coupling)

Prediction from χ PT: [Phys.Rev.D 99 (2019)]

First demonstration of $N\pi$: [Phys.Rev.Lett. 124 (2020)]

 $\chi \mathrm{PT}\text{-inspired}$ fit methods for fitting form factor data

[Phys.Rev.D 105 (2022)] [JHEP 05 (2020) 126]

Section: Backup

• Kinematic constraints $(F_P = 0)$