Future uncertainties for oscillation experiments

Laura Munteanu (CERN) ECT*, Trento 22 October 2024

1

Т

Experiment	$oldsymbol{ u}_{\mu}$ events	$\overline{oldsymbol{ u}}_{oldsymbol{\mu}}$ events	$oldsymbol{ u}_{e}$ events	$\overline{oldsymbol{ u}}_{oldsymbol{e}}$ events	Systematic error	
T2K arXiv:2303.03222	318	137	94	16	~5%	
Neutrino 2024 talk	384	106	181	32	~5%	

Т

Т

Т

1

Experiment	$oldsymbol{ u}_{\mu}$ events	$\overline{ u}_{\mu}$ events	$oldsymbol{ u}_e$ events	$\overline{oldsymbol{ u}}_{oldsymbol{e}}$ events	Systematic error
T2K arXiv:2303.03222	318	137	94	16	~5%
Neutrino 2024 talk	384	106	181	32	~5%
Kyper-K TDR	~10000	~14000	~2000	~2000	?
DUNE FD TDR	~7000	~3500	~1500	~500	?

Т

Т

1

Experiment	$oldsymbol{ u}_{\mu}$ events	$\overline{oldsymbol{ u}}_{oldsymbol{\mu}}$ events	$oldsymbol{ u}_e$ events	$\overline{oldsymbol{ u}}_{oldsymbol{e}}$ events	Systematic error	
T2K arXiv:2303.03222	318	137	94	16	~5%	
Neutrino 2024 talk	384	106	181	32	~5%	
Hyper-K TDR	~10000	~14000	~2000	~2000	Need ~1-3%	
DUNE FD TDR	~7000	~3500	~1500	~500	Need ~1-3%	

Т

Need dedicated, focused effort in order for future experiments not to be **pre-maturely limited by systematics**

Laura Munteanu - ECT*, Trento

Finding the culprit

<u>a</u>	T2 rXiv:2303.	0322	2 Syst. unc	ertainty
-	Sample	e	Flux⊗Interaction (%)	Total (%)
-	1Rµ	$\frac{v}{v}$	2.2 (12.7) 3.4 (11.8)	3.0 (13.0) 4.0 (12.0)
-	1Re	$\frac{v}{\overline{v}}$	3.6 (13.5) 4.3 (12.1)	4.7 (13.8) 5.9 (12.7)
-	1Re1de	v	5.0 (13.1)	14.3 (18.7)

After (before) near detector constraint

The description of **neutrino-nucleus interactions** is the **dominant source of systematic uncertainty** for oscillation measurements

Ok, we need 1-3%... but on *what*?

The **physics** of the largest sources of uncertainties:

- 1. Beyond PWIA physics
- 2. FSI and impact on hadronic system
- 3. v_e/v_μ differences
- 4. SIS/hadronization

Plane Wave Impulse Approximation

Interaction happens with a single nucleon which exits without "feeling" the nucleus (no RPA or FSI)

22.10.2024

Laura Munteanu - ECT*, Trento

Plane Wave Impulse Approximation

Interaction happens with a single nucleon which exits without "feeling" the nucleus (no RPA or FSI)

Models differ significantly in their predictions...

Different physics (ν_{μ} on C)

Models differ significantly in their predictions...

Models differ significantly in their predictions...

12

Models differ significantly in their predictions...

Different physics (ν_{μ} on C) Impact on v_{μ}/\bar{v}_{μ} 80 80 cosθ,, = 0.825 $\cos\theta_u = 0.75$ $\cos\theta_{...} = 0.825$ cosθ₁₁ = 0.75 $E_{\nu} = 1 \text{ GeV}$ 60 60 40 40 20 20 $\frac{d^2\sigma}{dE_{\mu}dcos\theta_{\mu}} \frac{10^{-39}cm^2}{nucleon \ GeV/c}$ $\frac{d^{2}\sigma}{dE_{\mu}dcos\theta_{\mu}} \frac{10^{-39}cm^{2}}{nucleon \ GeV/c}$ 120 cosθ_{...} = 0.875 cosθ_{..} = 0.92 120 cosθ_µ = 0.875 cosθ₁₁ = 0.92 100 100 80 80 60 60 40 20 20 200 200 cosθ, = 0.94 cosθ_{...} = 0.96 cosθ, = 0.94 cosθ, = 0.96 150 150 CCQE Carbon 1 GeV CCQE Carbon 1 Ge\ HF-CRPA v. 100 100 HF-CRPA ⊽. SuSAv2 LFG-RPA v. LFG-RPA 50 50 LFG-RPA ⊽ LFG (no RPA) 0.8 0.9 0.8 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.7 Muon Energy (GeV) Muon Energy (GeV) Laura Munteanu - ECT*, Trento Not shown here, but also different in v_e/v_{μ} ratio (see Phys. Rev. D 108, L031301)

0.9

22.10.2024

Not shown here, but also different in v_e/v_{μ} ratio (see Phys. Rev. D 108, L031301)

Models differ significantly in their predictions...

22.10.2024

Do we see it in our measurements? Yes! And it can cause problems...

Shows up in experimental measurements in regions sensitive to low energy transfer (e.g. high $cos\theta_{\mu}$, low proton momentum/ E_{avail} , p_{μ} close to flux peak etc.) Has large impact (~100% of syst. error size) for oscillation measurements (T2K/T2K+SK atmo.) Who needs to care about this?

In principle, everyone, but **mostly if regions of low energy transfer impact your physics of interest**

*in principle, some FSI physics is related to previous topic of physics beyond PWIA

FSI* and the hadronic system

Referring to the effect of intra-nuclear cascades (INC) How does FSI impact oscillation measurements?

Will discuss impact on:

- Neutrons
- Pions
- Clusters/de-excitation

FSI also has a significant impact on **proton** kinematics/multiplicities but I don't have time to cover it

$$E_{\text{avail}} = \left(\sum_{i=p,\pi^{\pm}} E_{\text{kin}}^{i}\right) + \left(\sum_{i=,\pi^{0},\gamma,K^{0},K^{\pm}} E_{\text{total}}^{i}\right)$$

$$E_{\nu}^{rec} = E_{\mu} + E_{avail}$$

Neutrons are the largest source of neutrino energy bias for DUNE

Where do they come from?

In these plots, we neglect the impact of pions by assuming we can reconstruct them individually

Before FSI: mostly from a fraction of DIS/SIS interactions

All CC

Where do they come from?

In these plots, we neglect the impact of pions by assuming we can reconstruct them individually

neutrino energy bias for DUNE

Before FSI: mostly from **a** fraction of DIS/SIS interactions

After FSI: mostly all modes producing neutrons (and some charge exchange FSI)

All CC

Where do they come from?

In these plots, we neglect the impact of pions by assuming we can reconstruct them individually

neutrino energy bias for DUNE

FSI and its alteration to neutron kinematics is the main source of neutrons at DUNE energies (for neutrinos) 22.10.2024

Before FSI: mostly from **a** fraction of DIS/SIS interactions

Laura Munteanu - ECT*, Trento

After FSI: mostly all modes producing neutrons (and some charge exchange FSI)

FSI and nuclear clusters and de-excitation routines

See talk from A. Ershova on Wednesday for in-depth discussion

Essentially: more complex cascade models (e.g. INCL) and deexcitation routines (e.g. ABLA, THALYS) predict different compositions of final state products and momentum sharing Laura Munteanu - ECT*, Trento

If we trust lepton flavor universality, v_e and v_μ cross sections only differ due to the lepton mass $O(\sim 100 \text{ MeV})$

This impacts:

- 1. Size and uncertainty of radiative corrections
- 2. Regions of phase space where these differences matters (mostly at low ω)

If we trust lepton flavor universality, v_e and v_μ cross sections only differ due to the lepton mass $O(\sim 100 \text{ MeV})$

This impacts:

- 1. Size and uncertainty of radiative corrections
- 2. Regions of phase space where these differences matters (mostly at low ω)

Thanks to improved theoretical calculations, this should be the least of our worries for now

						-	~
	E _v , GeV		$\left(\frac{\pmb{\sigma_{e}}}{\pmb{\sigma}_{\mu}}-\pmb{\sigma}_{\mu}\right)$	I) _{دە} , %	$rac{oldsymbol{\sigma_e}}{oldsymbol{\sigma}_{\mu}}-$ 1, %		
T2K/HyperK	0.6	v	2.47±	0.06	2.84±0.06	6±0.37	
		$\bar{ u}$	2.04±	0.08	1.84 ± 0.08	±0.20	
NOvA/ DUNE	2.0	v	0.322	±0.006	0.54±0.01	l±0.22	
		$\bar{ u}$	0.394	±0.003	0.20±0.0	l ± 0.19	

Nat Commun 13, 5286 (2022)

Current experiments assume ~5% for these differences

If we trust lepton flavor universality, v_e and v_μ cross sections only differ due to the lepton mass $O(\sim 100 \text{ MeV})$

This impacts:

- 1. Size and uncertainty of radiative corrections
- 2. Regions of phase space where these differences matters (mostly at low ω)

E_w GeV $\left(\frac{\sigma_{e}}{\sigma_{u}}-1\right)_{10}$, % $\frac{\sigma_{\rm e}}{\sigma}$ – 1, % T2K/HyperK 2.47 ± 0.06 $2.84 \pm 0.06 \pm 0.37$ 0.6 v 2.04 ± 0.08 $1.84 \pm 0.08 \pm 0.20$ $\bar{\nu}$ NOvA/ 2.0 0.322 ± 0.006 v $0.54 \pm 0.01 \pm 0.22$ DUNE 0.394 ± 0.003 $0.20 \pm 0.01 \pm 0.19$ $\bar{\nu}$

Nat Commun 13, 5286 (2022)

Current experiments assume ~5% for these differences

Laura Munteanu - ECT*, Trento

Current experiments parametrize radiative corrections and model differences only in terms of **normalization**

Particularly important for HK

- Significant part of v_{ρ} spectrum in region where v_e/v_μ differences are important
- High v_{ρ} statistics are **sensitive to shape** information
 - Need a finer parametrization of v_e ٠ uncertainties

Also important for DUNE 2nd osc. maximum analyses

These effects will have a large impact on $\sin^2 \theta_{23}$ octant determination 22.10.2024

Laura Munteanu - ECT*, Trento

Neutrino energy

"I would not trust PYTHIA for anything with less than 6 pions"

S. Prestel (a PYTHIA author)

How do we implement such uncertainties?

- Standardizing generator outputs
- Granulating uncertainties
- Improved analysis tools

Complex "engineering" project so we need to work together!

NuHepMC

- Standardized format for generator output inspired by HepMC3
- Already in the process of being adopted by GENIE, NEUT, Achilles & others

NuHepMC

- Standardized format for generator output inspired by HepMC3
- Already in the process of being adopted by GENIE, NEUT, Achilles & others
- NUISANCE
 - Facilitate comparisons between generators/with experimental measurements
 - Allows us to extract parametrizations of uncertainties!

NuHepMC

- Standardized format for generator output inspired by HepMC3
- Already in the process of being adopted by GENIE, NEUT, Achilles & others

NUISANCE

- Facilitate comparisons between generators/with experimental measurements
- Allows us to extract parametrizations of uncertainties!
- NuSystematics
 - Common systematics framework for multiple experiments
 - Share development of common systematics

NuHepMC

- Standardized format for generator output inspired by HepMC3
- Already in the process of being adopted by GENIE, NEUT, Achilles & others

NUISANCE

- Facilitate comparisons between generators/with experimental measurements
- Allows us to extract parametrizations of uncertainties!
- NuSystematics
 - Common systematics framework for multiple experiments
 - Share development of common systematics
- Others? Let's discuss your ideas after this talk!

Get to the **physics of interest** with as much **detail** as possible

Example:

CCQE uncertainties from T2K

Modify <u>directly</u> the **shell occupancies** in SF model **O(50) d.o.f.** for CCQE processes covering wide range of physics:

- Removal energies
- Fermi motion
- SRCs
- Optical potential
- Pauli Blocking
- Etc...

Get to the **physics of interest** with as much **detail** as possible

Example:

CCQE uncertainties from T2K

Modify <u>directly</u> the **shell occupancies** in SF model

O(50) d.o.f. for CCQE processes covering wide range of physics:

- Removal energies
- Fermi motion
- SRCs
- Optical potential
- Pauli Blocking
- Etc...

Encode **near/far detector differences** (flavor, target, energy)

Example: $SF \rightarrow CRPA$ reweight from T2K

Take ratios of hadron tensors as a function of ω and q...

But also as a function of E_{ν} Repeat for $(\nu_{\mu}, \nu_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{e}) \times (C, 0)$

22.10.2024

But our generators/models often don't allow us to design uncertainties from first principles...

simulations on observable p_{μ}

But our generators/models often don't allow us to design uncertainties from first principles...

Effect of Pauli Blocking from different simulations on observable p_{μ}

Example 2:

But our generators/models often don't allow us to design uncertainties from first principles...

An ad-hoc solution is better than no solution!

Laura Munteanu - ECT*, Trento

Improving our tools for future needs

Multi-dimensional reweighting: Can all response functions be factorized?

a T2K masterclass by K. Skwarczynski

them.

Factorization

Sometimes calculations are too entangled to factorize

w(x,y) = w(x)*w(y)

In such case we cannot use them as dials in analysis.

licative Weight 5 5 5

ROM3M3=-3.00 ROM1M1=3.00 ROM1M3=3.00 MDLSPiEj=1.00

70000

6000

Improving our tools for future needs

Using Machine Learning tools Synthesizing complex effects to get at impact on observables

From C. Wilkinson's talk yesterday

Improved analysis tools Cope with complex parameters & large stats

22.10.2024

Laura Munteanu - ECT*, Trento

Improving our tools for future needs

22.10.2024

Laura Munteanu - ECT*, Trento

Reducing uncertainties in the meantime

Systematic uncertainties encode what we don't know...

- It is important to have **robust parametrizations** so that we don't misatribute effects
- But also to keep making measurements to **better understand all processes**

Laura Munteanu - ECT*, Trento

With neutrino scattering experiments... (non-exhaustive list)

22.10.2024

Reducing uncertainties in the meantime

Systematic uncertainties encode what we don't know...

- It is important to have **robust parametrizations** so that we don't misatribute effects
- But also to keep making measurements to **better understand all processes**

...but not only! (non-exhaustive list)

Summary

- Future generation experiments need 1-3% level uncertainties in order not be prematurely limited by systematics
- Their needs in terms of physics are beyond what we are sensitive with current experiments and need **special attention**
- We need inputs from the theory community and new measurements to reduce the size of our uncertainties
- But also **robust** parametrizations of effects and sophisticated tools for high stats analyses
- Hopefully some of the outcomes of this workshop!

Thank you for your attention!

Back-Up

Neutrino cross-sections and oscillations

 Oscillation parameters are inferred from event spectra as a function of reconstructed neutrino energy

Neutrino cross-sections and oscillations

 Oscillation parameters are inferred from event spectra as a function of reconstructed neutrino energy

Constrain systematics with near detector

But heavily rely on models to predict near-to-far detector extrapolation

Near detectors are an **essential part** of any oscillation experiment

But we rely on models to predict:

The energy dependence of neutrino cross-sections

The near and far detectors see different neutrino fluxes due to

- Oscillations
- Acceptance
- Beam geometry

Different models predict different evolutions of $\sigma(E_v)$

Near detectors are an **essential part** of any oscillation experiment

But we rely on models to predict:

- The energy dependence of neutrino cross-sections
- How cross-sections change for different neutrino species (ν_{μ}/ν_{e})

Near detectors predominantly measure v_{μ} Rely on theory predictions to extrapolate to v_e

Near detectors are an **essential part** of any oscillation experiment

But we rely on models to predict:

- The energy dependence of neutrino cross-sections
- How cross-sections change for different neutrino species (ν_μ/ν_e)
- How cross-sections change for different targets

Near detectors are an **essential part** of any Socillation experiment
But we rely on models to predict:
The energy dependence of neutrino cross-sections

- How cross-sections change for different neutrino species (ν_{μ}/ν_{e})
- How cross-sections change for different targets

Model dependence <u>cannot</u> be escaped in neutrino oscillation experiments

How do our models perform?

Laura Munteanu - ECT*, Trento

How do our models perform?

<u>arXiv:1810.06043</u> Phys. Rev. D 98, 032003 (2018)

		arXiv:2301.03	3700				€ ⁷ [· · · ·	
	40-	$\begin{array}{c} \text{MicroBooNE} \\ \text{MicroBooNE} \\ \text{MicroBooNE} \end{array}$	Data				Gev Gev		IEUT 5.4.0			
$\frac{38}{\text{GeV/c Ar}}$	30– 20–	<i>p</i> -values of n	nod	lel co (red i	om f exc	par	risons ed at <0.0	to m 5)	easu	remen	ts	
	Mea	asurement	$ N_{bins} $	$ SF/SF^* $	LFG	RFG	More 2p2h	More FSI	Less FSI	More π abs.	Less π abs	5.
0.1	T2F	$\delta \delta \alpha_{\rm T}$	8	0.01	0.00	0.00	0.00	0.00	0.02	0.06	0.02	
1	TOL	ζ δnm	8	0.08	0.60	0.00	0.00	0.02	0.07	0.00	0.18	

	$12K \ \partial \alpha_{\rm T}$	ð	0.01	0.00 0.00	0.00	0.00	0.02	0.06	0.02
8	${\rm T2K}\delta p_{\rm T}$	8	0.08	0.69 0.00	0.00	0.02	0.07	0.00	0.18
2	MINERvA $\delta \alpha_{\rm T}$	12	0.00	0.00 0.00	0.00	0.00	0.06	0.00	0.00
-	$\rm MINERvA \delta p_{\rm T}$	24	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00
	MINERvA p_N	24	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00
Ŧ	MicroBooNE $\delta \alpha_{\rm T}$	7	0.02	$0.45 \ 0.62$	0.07	0.18	0.00	0.02	0.01
	${\rm MicroBooNE}\delta p_{\rm T}$	13	0.12	0.42 0.00	0.33	0.23	0.02	0.13	0.10
a	MicroBooNE δp_{T} low $\delta \alpha_{\mathrm{T}}$	11	0.26	0.23 0.14	0.37	0.44	0.10	0.28	0.24
	MicroBooNE δp_{T} mid-low $\delta \alpha_{\mathrm{T}}$	12	0.07	0.40 0.19	0.23	0.38	0.00	0.08	0.06
	MicroBooNE $\delta p_{\rm T}$ mid-high $\delta \alpha_{\rm T}$	13	0.04	0.23 0.02	0.16	0.22	0.01	0.05	0.04
	MicroBooNE δp_{T} high $\delta \alpha_{\mathrm{T}}$	13	0.03	0.13 0.08	0.12	0.09	0.01	0.04	0.03

Laura Munteanu - ECT*, Trento

How do our mod

No model is able to describe global neutrino scattering measurements

arXiv:1810.06043 Phys. Rev. D 98, 032003 (2018)									
arXiv:2301.03	3700								
40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -	Data				GeV GeV		IEUT 5.4.0 + T2K		
p-values of m	nod	lel co (red i	om f exc	par	risons ed at <0.0	to m ₅₎	easu	remen	ts
Measurement	N_{bins}	SF/SF*	LFG	RFG	More 2p2h	More FSI	Less FSI	More π abs.	Less π abs.
T2K $\delta \alpha_{\rm T}$	8	0.01	0.00	0.00	0.00	0.00	0.02	0.06	0.02
$\bigcirc T2K \delta p_T$	8	0.08	0.69	0.00	0.00	0.02	0.07	0.00	0.18
$\bigcirc \qquad \text{MINERvA } \delta \alpha_{\mathrm{T}}$	12	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
$\overline{}$ MINERvA δp_{T}	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\stackrel{\text{IC}}{\longrightarrow} \frac{\text{MINERvA } p_N}{\text{MINERvA } p_N}$	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\forall MicroBooNE $\delta \alpha_{\rm T}$	7	0.02	0.45	0.62	0.07	0.18	0.00	0.02	0.01
$\sum_{i=1}^{MicroBooNE} MicroBooNE \delta p_{\rm T}$	13	0.12	0.42	0.00	0.33	0.23	0.02	0.13	0.10
MICroBooNE $\partial p_{\rm T}$ low $\partial \alpha_{\rm T}$	11	0.20	0.23	0.14	0.37	0.44	0.10	0.28	0.24
$[\pi]$ MicroBooNE $\delta p_{\rm T}$ mid-low $\delta \alpha_{\rm T}$	12	0.07	0.40	0.19	0.23	0.30	0.00	0.08	0.00
MicroBooNE $\delta p_{\rm T}$ mid-nigh $\delta \alpha_{\rm T}$	13	0.04 0.03	0.23	0.02	0.10	0.22	0.01	0.05	0.04
M = 0 D =	10	0.05	0.15	0.08	0.12	0.09	0.01	0.04	0.05
ο ο ο ο ο ο ο ο ο ο ο ο ο ο	415.29				(GeV)			— RES	— DIS
E 3 🚺					g 0.3 //	\sim		G2018	3
8 "I 🗽 👔 🦷					. ⊂ _ 0.2 - /				211
				7	8 4				PAL
					0.1				$\nabla \mp \nu$
0 0.2 0.4 0.6 0.8 1 1.2 1.4	6 1.6 1.8	 2							
arXiv:2407.10962 ه	p_[GeV	//c]			0	0.2	0.4	0.6	0.8 1.0
	1 -	·			5	0.2	(a a'n)		0.0 1.0
Laura Munteanu - EC		rento				U	,e,eρ) _{1p0} ,		57

How do our models perform?

No model is able to describe global neutrino scattering measurements

> "One thing I know, that I know nothing. This is the source of my wisdom."

> > Socrates, as he analyzes neutrino crosssection measurements

le	els perform? <u>arXiv:1810.06043</u> Phys. Rev. D 98. 032003 (2018)										
		arXiv:2301.03	3700				- 7 F				<u></u>
	40-	$I \qquad MicroBooNE I \\ 6.70 \times 10^{20} PC$	Data				GeV	. –	EUT 5.4.0		
$\frac{38}{\text{GeV/c Ar}}$	30- 20-	<i>p</i> -values of n	noc	lel co (red i	om f exc	par	risons ed at <0.0	to m 5)	easu	remen	ts
	Mea	asurement	N_{bins}	$ SF/SF^* $	LFG	RFG	More 2p2h	More FSI	Less FSI	More π abs.	Less π abs.
	T2	$K \delta \alpha_{\rm T}$	8	0.01	0.00	0.00	0.00	0.00	0.02	0.06	0.02
G	T2I	$K \delta p_{\mathrm{T}}$	8	0.08	0.69	0.00	0.00	0.02	0.07	0.00	0.18
60] MII	NERvA $\delta \alpha_{\rm T}$	12	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
~		NERvA $\delta p_{\rm T}$	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	$\frac{MII}{MI}$	NERvA p_N	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
74	Mic	$\frac{\partial \alpha_{\rm T}}{\partial \alpha_{\rm T}}$	7	0.02	0.45	0.62	0.07	0.18	0.00	0.02	0.01
		$\frac{1}{2} \frac{1}{2} \frac{1}$	13	0.12	0.42	0.00	0.33	0.23	0.02	0.13	0.10
ž		TOBOONE $op_{\rm T}$ low $o\alpha_{\rm T}$	11	0.20	0.23	0.14	0.37	0.44	0.10	0.28	0.24
5	3 Mie	To BooNE $\delta p_{\rm T}$ mid-low $\delta \alpha_{\rm T}$	12	0.07	0.40	0.19	0.23	0.38	0.00	0.08	0.00
	Mic	TOBOONE δp_T mid-mgn $\delta \alpha_T$	13	0.04 0.03	0.23	0.02	0.10	0.22	0.01	0.03	0.04
	10110	siebeerte op1 mgn ea1	10	0.00	0.10	0.00	0.12	0.00	0.01	0.01	0.00
cle	°E						<u>ک</u> ۵.4	$\langle \rangle$		— RES	— DIS
D D	4	····· RFG:χ ² =	415.29				<u>ق</u> 0.3			62019	
Ğ	3	1.					g :: ;/	 <td></td><td>G2018</td><td></td>		G2018	
0.3	2					,	Ŭ_⊢ 0.2 - //				111
드	⊢ .					7	8 - B	•	•••••		
- Big	Ě						0.1				
	0	0.2 0.4 0.6 0.8 1 1.2 1.4	1.6 1.8	2							
		<u>arXiv:2407.10962</u> ه	p _⊤ [Ge\	//c]			0	0.2	0.4	0.6	0.8 1.0
								С	(e.e'p),	P ₊ (GeV/c)	
		Laura Munteanu - EC	Т*. Т	rento				Ũ	(-,- r)1p0;	π. Γ(αστ/σ)	58
			, -								00

22.10.2024

Main challenge(s) for $\sin \delta_{CP} = 0$ exclusion

See *talk* by S. Dolan (Tuesday, WG2)

Main challenges for precision measurements

DUNE FD TDR

due to shift in visible energy

Dominant systematics are those which affect the **shape** of the oscillated spectrum as a function of **reconstructed neutrino energy**

Water Cherenkov – measure kinematics of particles above threshold

LArTPC – measure particles' energy deposits

Different detectors – different methods – different priorities

("kinematic" energy reconstruction)

Infer neutrino energy **from lepton kinematics** under 2body reaction assumption DUNE

(calorimetric energy reconstruction)

Add up all visible energy from final state particles

Different detectors - different methods - different priorities

 ν_{μ}

 μ

- Nuclear ground state
- Pion transport through nucleus

- Fraction of energy carried by neutrons
- **Pion production** processes

Different detectors – different methods – **different priorities**

- Nuclear ground state
- **Pion transport** through nucleus

Wider intrinsic smearing but easier to control

Arb. units With n No n, with π^{\pm} 0.06 No n, no π^{\pm} 0.04 0.02 -0.4-0.20.2 -0.6 0.4 Smearing driven by:

· All CC

- Fraction of energy carried by neutrons
- **Pion production** processes

Smaller intrinsic smearing but harder to control

Different detectors - different methods - different priorities

Inspired by S. Dolan's INSS 2023 lecture

