Theoretical uncertainty quantification

Joanna Sobczyk

Measuring neutrino interactions for next-generation oscillation experiments ECT*, 22 October 2024

Precision Physics, Fundamental Interactions and Structure of Matter

Alexander von Humboldt Stiftung/Foundation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101026014

Motivation

Nuclear matrix element of ⁴⁸Ca for $0\nu\beta\beta$

Nuclear matrix element of ⁴⁸Ca for $0\nu\beta\beta$

Theoretical uncertainty is crucial for predictive models

B. Acharya, JES, S.Bacca et al. 2410.05962

$$\frac{d\sigma}{dE'd\Omega}\Big|_{e} = \sigma_{M}\Big(v_{L}R_{L}(\omega,\bar{q}) + v_{T}R_{T}(\omega,\bar{q})\Big)$$

B. Acharya, JES, S.Bacca et al. 2410.05962

$$\frac{d\sigma}{dE'd\Omega}\Big|_{e} = \sigma_{M}\Big(v_{L}R_{L}(\omega,\bar{q}) + v_{T}R_{T}(\omega,\bar{q})\Big)$$

B. Acharya, JES, S.Bacca et al. 2410.05962

JES, N.Rocco, A.Lovato, 2406.06292

$$\frac{d\sigma}{dE'd\Omega}\Big|_{e} = \sigma_{M}\Big(v_{L}R_{L}(\omega,\bar{q}) + v_{T}R_{T}(\omega,\bar{q})\Big)$$

B. Acharya, JES, S.Bacca et al. 2410.05962

JES, N.Rocco, A.Lovato, 2406.06292

$$\frac{d\sigma}{dE'd\Omega}\Big|_{e} = \sigma_{M}\Big(v_{L}R_{L}(\omega,\bar{q}) + v_{T}R_{T}(\omega,\bar{q})\Big)$$

Parametric uncertainties

Variation in RPA parameters (68%CL)

2p2h contribution: uncertainty coming from the Δ treatment

Relatively straightforward to calculate (e.g. assuming Gaussian distribution)

Various parameters: binding energies, Fermi momentum, RPA parameters, parameters of effective interactions...

Model uncertainties

- What is the inherent uncertainty coming from the framework itself (impulse approximation, local density approximation, mean-field, RPA, lack of interference effects...)?
- What is its region of validity (kinematics)?

• Which observables can be described ?

In neutrino oscillation experiments we need various descriptions (models) to cover a large phase-space. How to "stitch" them?

Optimistic example

nucleons – degrees of freedom

 $\mathscr{H} | \Psi \rangle = E | \Psi \rangle \qquad \mathscr{H} = \sum_{i=1}^{A} t_{kin} + \sum_{i>j=1}^{A} v_{ij} + \sum_{i>j>k=1}^{A} v_{ijk} + \dots$

nucleons degrees of freedom

$$\mathcal{H} | \Psi \rangle = E | \Psi \rangle$$

$$\mathscr{H} = \sum_{i=1}^{A} t_{kin} + \sum_{i>j=1}^{A} v_{ij} + \sum_{i>j>k=1}^{A} v_{ijk} + \dots$$

How the **nuclear force** is rooted in the fundamental theory of QCD?

nucleons degrees of freedom

$$\mathcal{H} | \Psi \rangle = E | \Psi \rangle$$

$$\mathscr{H} = \sum_{i=1}^{A} t_{kin} + \sum_{i>j=1}^{A} v_{ij} + \sum_{i>j>k=1}^{A} v_{ijk} + \dots$$

How the **nuclear force** is rooted in the fundamental theory of QCD?

Allows to construct electroweak currents consistently with the chiral potential

nucleons – degrees of freedom

$$\mathcal{H} | \Psi \rangle = E | \Psi \rangle$$

$$\mathscr{H} = \sum_{i=1}^{A} t_{kin} + \sum_{i>j=1}^{A} v_{ij} + \sum_{i>j>k=1}^{A} v_{ijk} + \dots$$

How the **nuclear force** is rooted in the fundamental theory of QCD?

Allows to construct electroweak currents consistently with the chiral potential

nucleons – degrees of freedom

$$\mathcal{H} | \Psi \rangle = E | \Psi \rangle$$

$$\mathscr{H} = \sum_{i=1}^{A} t_{kin} + \sum_{i>j=1}^{A} v_{ij} + \sum_{i>j>k=1}^{A} v_{ijk} + \dots$$

How the **nuclear force** is rooted in the fundamental theory of QCD?

Allows to construct electroweak currents consistently with the chiral potential

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger} a_j^{\dagger} \dots a_k^{\dagger} |0\rangle$

Include **correlations** through e^T operator

$$\mathcal{H}_N e^T |\Psi\rangle = E e^T |\Psi\rangle$$

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger} a_j^{\dagger} \dots a_k^{\dagger} |0\rangle$

Include correlations through e^T operator

$$\mathcal{H}_N e^T |\Psi\rangle = E e^T |\Psi\rangle$$

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D. J. Dean, Rep. Prog. Phys. 77, 096302 (2014).

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger} a_j^{\dagger} \dots a_k^{\dagger} |0\rangle$

Include **correlations** through e^T operator

$$\mathcal{H}_N e^T |\Psi\rangle = E e^T |\Psi\rangle$$

 ✓ Controlled approximation through truncation in T

 ✓ Polynomial scaling with A (predictions for ¹³²Sn and ²⁰⁸Pb)

Reference state (Hartree-Fock): $|\Psi\rangle = a_i^{\dagger} a_j^{\dagger} \dots a_k^{\dagger} |0\rangle$

approximation through

✓ Controlled

Include correlations through e^T operator

$$\mathcal{H}_N e^T |\Psi\rangle = E e^T |\Psi\rangle$$

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D. J. Dean, Rep. Prog. Phys. 77, 096302 (2014).

Responses from coupled-cluster

- **Parametric uncertainties:** low energy constants of the chiral effective theory
- Model uncertainties: \bullet
 - many-body method error
 - order of chiral expansion of Hamiltonian
 - integral transform inversion

LIT-CC error: truncation in chiral expansion + inversion procedure

• In quantum mechanics operators or wave-functions are **not observables**!

 $H|\Psi\rangle = E|\Psi\rangle$ $UHU^{\dagger}U|\Psi\rangle = EU|\Psi\rangle$ • Operators also evolve: $J^{\mu}|\Psi\rangle \rightarrow UJ^{\mu}U^{\dagger}U|\Psi\rangle$

U-unitary transformation

• In quantum mechanics operators or wave-functions are **not observables**!

 $H|\Psi\rangle = E|\Psi\rangle$ $UHU^{\dagger}U|\Psi\rangle = EU|\Psi\rangle$ Operators also evolve: $J^{\mu}|\Psi\rangle \rightarrow UJ^{\mu}U^{\dagger}U|\Psi\rangle$

U-unitary transformation

• In quantum mechanics operators or wave-functions are **not observables**!

 $H|\Psi\rangle = E|\Psi\rangle$ $UHU^{\dagger}U|\Psi\rangle = EU|\Psi\rangle$

U-unitary transformation

• Operators also evolve: $J^{\mu}|\Psi\rangle \rightarrow UJ^{\mu}U^{\dagger}U|\Psi\rangle$

• In quantum mechanics operators or wave-functions are **not observables**!

 $H|\Psi\rangle = E|\Psi\rangle$ U+unitary $UHU^{\dagger}U|\Psi\rangle = EU|\Psi\rangle$ U-unitary transformation• Operators also evolve: $J^{\mu}|\Psi\rangle \rightarrow UJ^{\mu}U^{\dagger}U|\Psi\rangle$ \overline{W} $\overline{$

Disentangle different sources of uncertainty

For kinematics where R_T dominates the SF might seem to work well (FSI & 2-B currents cancel)!

What can we say about responses of ⁶Li at very low momentum transfers?

What can we say about responses of ⁶Li at very low momentum transfers?

Uncertainty is "data driven"

What can we say about responses of ⁶Li at very low momentum transfers?

Uncertainty is "data driven"

Model discrepancy — we should work hard to estimate uncertainties (e.g. using data or other more reliable theories)

What can we say about responses of ⁶Li at very low momentum transfers?

Uncertainty is "data driven"

Model discrepancy — we should work hard to estimate uncertainties (e.g. using data or other more reliable theories)

That's a common situation in MC event generators

Final questions and comments

- Estimating theoretical uncertainties is crucial for nextgeneration experiments (but very challenging!)
- More comparisons between models would be helpful.
 Examples: M. Martini, N. Jachowicz, et al Phys. Rev. C 94 (2016) no.1, 015501 J.E.S., E. Hernandez, S.X. Nakamura, J. Nieves, T. Sato, Phys. Rev. D 98 (2018) no.7, 073001
- How to stitch different models? (Bayesian model mixing?)
- How to address model discrepancy?
- How to include model uncertainties in intra-nuclear cascade?

Thank you!

Backup

Uncertainty estimation (responses) Assessing EFT truncation error

Gaussian process (GP) to assess chiral truncation using 2 orders of expansion

Order k EFT prediction:
$$y_k(p) = y_{ref}(p) \sum_{n=0}^k c_n(p) \left(\frac{p}{\Lambda}\right)^n$$

EFT truncation error: $\delta y_k(p) = y_{ref}(p) \sum_{n=k+1}^\infty c_n(p) \left(\frac{p}{\Lambda}\right)^n$

Draws from an underlying GP

Robust uncertainty quantification

to nuclear forces

Baishan Hu^{®1,11}, Weiguang Jiang^{®2,11}, Takayuki Miyagi^{®1,3,4,11}, Zhonghao Sun^{5,6,11}, Andreas Ekström², Christian Forssén^{®2}, Gaute Hagen^{®1,5,6}, Jason D. Holt^{®1,7}, Thomas Papenbrock^{®5,6}, S. Ragnar Stroberg^{8,9} and Ian Vernon¹⁰

• **Bayesian inference**: explore the space of 17 low energy constants of nuclear Hamiltonian

 $\operatorname{pr}(\theta | D) \propto \mathscr{L}(\theta) \operatorname{pr}(\theta)$

Posterior probability
density functionLikelihood $\mathscr{L}(\theta) \equiv pr(D \mid \theta)$

• posterior predictive distributions

 $\{y(\theta): \theta \sim \operatorname{pr}(\theta \,|\, D)\}$

Robust uncertainty quantification

 $PPD_{parametric} = \{y_k(\theta) : \theta \sim p(\theta|\mathcal{D}_{cal})\}.$

(7)

Various sources of uncertainty taken into account $p(\theta | D_{cal})$

Theory – experiment total error

 $z = M(\theta) + \varepsilon_{\text{exp}} + \varepsilon_{\text{em}} + \varepsilon_{\text{model}} + \varepsilon_{\text{model}}, \qquad (1)$

 ε_{exp}

Posterior predictive distributions

19