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FIG. 6. SPP contribution to the 12 C(e, e′ ) inclusive cross section for different kinematics. Plots show the predictions of the RPWIA and

ED-RMF models with (APPROX) and without (FULL) asymptotic approximation. Data of panel (a) are from [56], data of panels (b) and

(c) are from [57], and data of panel (d) are from [58].

strength affecting the SPP contribution to the inclusive cross

section. We also give the Q2 value in each case.

We find that, in general, the full result and the one with

asymptotic approximation have similar shapes, determined by

the distortion of the nucleon. We find that the full calculation

is always lower than the approximate one up to ω ≈ 430 MeV,

then it is always larger up to ω ≈ 655 MeV, where the relative

magnitude switches again. This can explain, in part, that for

low incident energy we have a reduction of the inclusive cross

section and, as the incident energy increases, the situation is

reversed.

The shift and reduction of the strength from the distorted

wave models with respect to the RPWIA in Fig. 6 is a conse-

quence of the reduction of the cross section that occurs at low

TN , shown in Fig. 7. This reduction at low nucleon kinetic

energies is effectively shifting the full cross section shown

in Fig. 6 to higher energy transfers. It is in turn due to two

effects: (i) Pauli blocking, or in other words the orthogonality

between initial and final state, which is important only when

pN (TN ) is smaller than about 300 MeV (50 MeV); and (ii)

the distortion or FSI, which causes that the momentum of the

nucleon inside the nucleus is smeared out and is not the same

as the asymptotic momentum of the nucleon [32].

The three models tend to overlap as TN grows, where the

distortion effect diminishes. At low TN (<100 MeV) we find

large differences between the three approaches; this is relevant

when the cross section is large in that TN region, as is the

case of first row in Fig. 7, which corresponds to Fig. 6(a), but

irrelevant when the cross section is small for those TN values.

B. Neutrino CC 1π+ production

We have computed CC νµ-induced 1π
+ production on 12 C

differential cross section as a function of Q2 to assess the

effect of the full calculation at the low-Q2 region in the neu-

trino sector, where also the axial part of the current operator

contributes. The double differential cross section as a function

of ω and Q2 reads

d2σ

dω dQ2
=

π

Eνkµ

×
d2σ

dω d cos θµ

.
(23)
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!10 MeV is to be compared to a typical electron energy
loss of few hundreds MeV.

III. COMPARISON TO ELECTRON
SCATTERING DATA

We have employed the formalism described in the pre-
vious sections to compute the inclusive electron scattering
cross section off oxygen at 0:2 & Q2 & GeV2.

The IA cross section has been obtained using the LDA
spectral function shown in Fig. 2 and the nucleon tensor
defined by Eq. (14), that can be written as
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where p ' %Ep;k& and the off-shell four-momentum trans-
fer eq is defined by Eqs. (15) and (16). The two structure
functions wN1 and wN2 are extracted from electron-proton
and electron-deuteron scattering data. In the case of qua-
sielastic scattering they are simply related to the electric
and magnetic nucleon form factors, GEN and GMN

, through

wN1 " #
eq2

4m2 #
!
e"$ eq2

2m

"
G2
MN
; (34)

wN2 "
1

1# eq2=4m2 #
!
e"$ eq2

2m

"!
G2
EN #

eq2

4m2 G
2
MN

"
: (35)

Numerical calculations have been carried out using the
Höhler-Brash parametrization of the form factors [51,52],

resulting from a fit which includes the recent Jefferson Lab
data [53].

In the kinematical region under discussion, inelastic
processes, mainly quasifree ! resonance production, are
also known to play a role. To include these contributions in
the calculation of the inclusive cross section, we have
adopted the Bodek and Ritchie parametrization of the
proton and neutron structure functions [54], covering
both the resonance and deep inelastic region.

The folding functions describing the effect of NN re-
scattering in the final state have been computed from
Eq. (32) with the eikonal propagator UFSI

q %R; t& obtained
using the parametrization of the NN scattering amplitude
of Ref. [55] and the medium modified NN cross sections of
Ref. [56]. The integrations involved in Eq. (28) have been

FIG. 6 (color online). Same as in Fig. 5, but for beam energy
880 MeV.

FIG. 5 (color online). Cross section of the process 16O%e; e0& at
beam energy 700 MeV and electron scattering angle 32(. Solid
line: full calculation, carried out within the approach described
in Sec. II. Dot-dashed line: IA calculation, carried out neglecting
FSI effects. Dashed line: FG model with pF " 225 MeV and
$ " 25 MeV. The experimental data are from Ref. [57].

FIG. 7 (color online). Same as in Fig. 5, but for beam energy
1080 MeV.
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full HN
V model, le

ading to an excelle
nt desc

ription
of the

experim
ental d

istribut
ion. Th

is is particu
larly reassur

ing

becaus
e, thou

gh the HN
V model us

es vect
or form

factors

that ha
ve been in princip

le fitted to data, it
s latest

refine-

ment [22
] (modifica

tion of the Δ
propag

ator, m
otivate

d by

the use of the so-calle
d consist

ent cou
plings

[28]) was

derived
only from neutrin

o pion produc
tion data. N

ote

that the
final p

π0 and nπþ states i
n the electro

n-induc
ed

reactio
ns are

not pur
ely isospin

3=2 states,
and thus th

ey

receive
sizable

contrib
utions

from nonres
onant

mecha-

nisms, in particu
lar from the Δ crossed

term which
is

correct
ed by the use of cons

istent c
oupling

s.

For electro
ns we have access

to very precise
experi-

mental m
easurem

ents of
the pio

n angu
lar dist

ribution
s. It is

common to write the differen
tial cross section

as [see

Eq. (D
4)]
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where
the differen

t quantit
ies have been introdu

ced in

Appen
dix D. It is

a valid express
ion when both electro

ns

are ultr
arelativ

istic an
d the in

itial ele
ctron is

polariz
ed with

well-de
fined helicity

h. As
also mentione

d in Sec. II
I B

and the Ap
pendix

D, the
presenc

e of th
e sinϕ

"
π term

does

not im
ply parity

violatio
n in this case, s

ince the helicity

also change
s sign under

parity.
It is straigh

tforwar
d to

see a di
rect cor

respon
dence o

f the te
rms σT þ εσL, σLT

, σTT

and σLT0 a
nd the A" , B

" , C
" and D" structu

re functio
ns

introdu
ced for neu

trinos i
n Eq. (31

).

After integra
ting over Ω"

π, on
ly the σT and σL terms

contrib
ute to the dσem

=ðdΩ
0dE

0 Þ differe
ntial cr

oss sec
tion.

These
partiall

y integra
ted distribu

tions

σ̃T ¼
Z

σTdΩ
"
π;

σ̃L ¼
Z

σLdΩ
"
π

have b
een measured

for var
ious va

lues of
Q2 and WπN. I

n

Fig. 23
, we pr

esent th
e predi

ctions
for σ̃T;L

obtaine
d from

the DC
C, SL

and HNV models a
nd they are com

pared to

the data of Ref. [3
8]. No

t much can be said about
the

accurac
y of the predict

ions for σ̃L becaus
e of the large

experim
ental u

ncertai
nties. F

or σ̃T, w
hich largely

domi-

nates over σ̃L, w
e find an accepta

ble descrip
tion of the

data, a
nd we observe

a similar beh
avior a

s in the case of

dσem=ðd
Ω0dE

0 Þ presen
ted in F

ig. 22:
the HN

V predict
s less

strengt
h below

the Δ peak, w
hile the SL model u

nder-

estimates th
e experim

ental p
oints a

bove it.

In the f
ollowin

g, we s
hall fur

ther co
mpare th

e theor
etical

pion angula
r distribu

tions for the e−p → e−pπ
0 and

e−p → e−nπ
þ channe

ls, for
WπN

invaria
nt masses i

n the

vicinity
of the

Δ peak and for two
Q2 values

for wh
ich

precise
data ar

e availab
le. In Fig. 24

, we show results
for

WπN
¼ 1.221 GeV and a very low Q2 ¼ 0.06 GeV

2=c2

value a
nd compare th

em to data tak
en from Ref. [3

9]. The

latter c
orrespo

nd to the lowest
Q2 measurem

ent of
these

observa
bles th

at has
been perform

ed so far. Th
ey cover a

small θ
"
π ran

ge, abo
ve 140

°, and o
nly for

the e
−p → e−pπ

0

channe
l. We show

results
from the thre

e models,
for bot

h

pπ
0 and nπþ final st

ates, an
d the full θ

"
π range.

For the

e−p → e−nπ
þ channe

l (right
panels

in Fig. 24
) all m

odels

give ve
ry similar res

ults for
all the

structu
re func

tions. F
or

e−p → e−pπ
0 (left panels

in Fig. 24), the theoret
ical

predict
ions differ f

or the
transve

rse-lon
gitudin

al inter
fer-

ence te
rms, σLT0

and σLT, a
nd also for the

longitu
dinal σL

differen
tial cro

ss section
. Thes

e contrib
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are much

smaller th
an σT (

≤ 5%), in pa
rticular

σL, so
that all

models

would
predict

similar dσ
=dQ

2dWπN
cross s

ections
. As it

has bee
n discuss

ed at the
end of Sec.

III B 1, in the case

of the HNV
model, σLT0

(or corresp
onding

ly the D"

functio
n for neutrin

os) appears
as a conseq

uence
of

interfer
ence betwee

n the ΔP term and the backgr
ound

contrib
utions

(which
have di

fferent
phases

mainly becaus
e

of the nonzer
o imaginary

part of the Δ propag
ator).

Backgr
ound terms in the e

−p → e−pπ
0 channe

l are sm
all

within
the HN

V model (is
ospin symmetry forbids

the CT

FIG. 23
. Data an

d theor
etical p
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he σ̃T ¼
R
σTdΩ

"
π and

σ̃L ¼
R
σLdΩ

"
π inc

lusive c
ross se
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ff proto
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0 þ nπþ ),

as a fun
ction o

f the πN
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nt mass, an
d for tw

o fixed
values

of Q
2 ¼ 0.2 GeV
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nel) an

d Q
2 ¼ 0.5 GeV
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ata

are taken from Ref. [3
8].
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very similar to the case of pion electroproduction, we will

show mainly results for processes induced by electron

(anti)neutrinos, though we will also compare to the scarce

available data obtained from neutrino and antineutrino

muon beams.

A. Total cross sections

We start by showing in Figs. 4–6 the total cross section

results for νμ -induced reactions for which there are exper-

imental data measured in deuterium. The theoretical results

we present have been evaluated, however, at the nucleon

level. Taking into account deuteron wave function effects

reduces the cross section by some 5% [31]. For a mean-

ingful comparison between the HNV and DCC models we

impose aW
πN < 1.4 GeV cut. This is done to minimize the

effect of higher order contributions in the chiral expansion

not taken into account in the evaluation of the nonresonant

background within the HNV model and, also, the possible

unphysical behavior of the Δ amplitudes far from the Δ

peak that would affect the HNV model (this unphysical

behavior is discussed in Ref. [32]). Also, below this W
πN

cut, contributions from higher mass resonances, not taken

into account in the HNV model, should be negligible.

For the νμp → μ−pπþ channel we see that the DCC and

HNV models produce similar results that lie above exper-

imental data in the 1–2 GeV neutrino energy region. To a

lesser extent, this seems to also be the case for the DCC

model evaluated with W
πN < 2 GeV and shown in com-

parison with data in the right panel of Fig. 4. Note,

however, that for the latter data no cut in W
πN has been

applied. For the νμn → μ−nπþ
channel the discrepancies

between the two models are larger in the high neutrino

energy region (see the top left panel of Fig. 5). The fact that

the HNV model gives larger cross sections for that channel

is a direct consequence of the Δ propagator modification in

Eq. (9). The HNV predictions for this channel, without

including the additional terms generated by the latter

modification, can be seen (black dashed line) in the bottom

panel of Fig. 3 in Ref. [22], and they were smaller than

those obtained in the DCC model and shown here. For the

νμn → μ−pπ 0 and the NC νμp → νμpπ− channels, both the

HNVand DCC models give again similar results that are in

a good global agreement with data, as can be appreciated in

the right upper panel of Fig. 5 and in Fig. 6.

Moving now to reactions induced by electron (anti)

neutrinos, in Figs. 7 and 8 we compare the HNV, SL and

DCC total cross section predictions for all possible chan-

nels. We show results up to 2 GeV neutrino energy but

imposing the cut W
πN < 1.4 GeV. First, in Fig. 7, we

display the CC channels, where we observe that the HNV

FIG. 6. νμn → νμpπ −
total cross section as a function of the

neutrino energy. The corresponding experimental data have been

taken from Ref. [34] where no kinematical cut was implemented.

A kinematical cut W
πN < 1.4 GeV has been, however, imposed

for the HNV model (it has a moderate effect in this energy range).

We present the DCC results both with W
πN < 1.4 GeV and

W
πN < 2 GeV cuts.

FIG. 7. CC total cross sections as a function of the neutrino energy from different theoretical models. A kinematical cut

W
πN < 1.4 GeV on the final pion-nucleon invariant mass has been included.

J. E. SOBCZYK et al.

PHYS. REV. D 98, 073001 (2018)
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We use coupled-cluster theory and nuclear interactions from chiral e↵ective field theory to compute
the nuclear matrix element for the neutrinoless double-beta decay of 48Ca. Benchmarks with the
no-core shell model in several light nuclei inform us about the accuracy of our approach. For 48Ca
we find a relatively small matrix element. We also compute the nuclear matrix element for the
two-neutrino double-beta decay of 48Ca with a quenching factor deduced from two-body currents
in recent ab-initio calculation of the Ikeda sum-rule in 48Ca [Gysbers et al., Nature Physics 15,
428–431 (2019)].

Introduction and main result.— Neutrinoless double-
beta (0⌫��) decay is a hypothesized electroweak process
in which a nucleus undergoes two simultaneous beta de-
cays but emits no neutrinos [1]. The observation of this
lepton-number violating process would identify the neu-
trino as a Majorana particle (i.e. as its own antiparti-
cle) [2] and provide insights into both the origin of neu-
trino mass [3, 4] and the matter-antimatter asymmetry in
the universe [5]. Experimentalists are working intently to
observe the decay all over the world; current lower limits
on the lifetime are about 1026 y [6–8], and sensitivity will
be improved by two orders of magnitude in the coming
years.

Essential for planning and interpreting these experi-
ments are nuclear matrix elements (NMEs) that relate
the decay lifetime to the Majorana neutrino mass scale
and other measures of lepton-number violation. Un-
fortunately, these matrix elements are not well known
and cannot be measured. Computations based on di↵er-
ent models and techniques lead to numbers that di↵er
by factors of three to five (see Ref. [9] for a recent re-
view). Compounding these theoretical challenges is the
recent discovery that, within chiral e↵ective field theory
(EFT) [10–13], the standard long-range 0⌫�� decay oper-
ator must be supplemented by an equally important zero-
range (contact) operator of unknown strength [14]. Ef-
forts to compute the strengths of this contact term from
quantum chromodynamics (QCD) [15, 16] and attempts
to better understand its impact are underway [17].

The task theorists face at present is to provide more
accurate computations of 0⌫�� NMEs, including those
associated with contact operators, and quantify their un-
certainties. In this Letter, we employ the coupled-cluster
method to perform first-principle computations of the
matrix element that links the 0⌫�� lifetime of 48Ca with
the Majorana neutrino mass scale. Among the dozen
or so candidate nuclei for 0⌫�� decay experiments [18],
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FIG. 1. (Color online) Comparison of the NME for the 0⌫��
decay of 48Ca, calculated within various approaches (see text
for details). The coupled-cluster results use both the CCSD
and CCSDT-1 approximations with both the spherical and
deformed reference states. For IMSRG+GCM, the double
bars show the e↵ects of uncertainty in model-space size; other-
wise they show those of uncertainty in short-range correlation
functions.

48Ca stands out for its fairly simple structure, making it
amenable for an accurate description based on chiral EFT
and state-of-the-art many-body methods [19]. By vary-
ing the details of our calculations, we will estimate the
uncertainty of our prediction. To gauge the quality of our
approach we also compute the two-neutrino double-beta
decay of 48Ca and compare with data. Our results will di-
rectly inform 0⌫�� decay experiments that use 48Ca [20]
and serve as an important stepping stone towards the
accurate prediction of NMEs in 76Ge, 130Te, and 136Xe,
which are candidate isotopes of the next-generation 0⌫��
decay experiments. Calculations in those nuclei presum-
ably require larger model spaces, inclusion of tri-axial
deformation, and symmetry projection.
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We use coupled-cluster theory and nuclear interactions from chiral e↵ective field theory to compute
the nuclear matrix element for the neutrinoless double-beta decay of 48Ca. Benchmarks with the
no-core shell model in several light nuclei inform us about the accuracy of our approach. For 48Ca
we find a relatively small matrix element. We also compute the nuclear matrix element for the
two-neutrino double-beta decay of 48Ca with a quenching factor deduced from two-body currents
in recent ab-initio calculation of the Ikeda sum-rule in 48Ca [Gysbers et al., Nature Physics 15,
428–431 (2019)].

Introduction and main result.— Neutrinoless double-
beta (0⌫��) decay is a hypothesized electroweak process
in which a nucleus undergoes two simultaneous beta de-
cays but emits no neutrinos [1]. The observation of this
lepton-number violating process would identify the neu-
trino as a Majorana particle (i.e. as its own antiparti-
cle) [2] and provide insights into both the origin of neu-
trino mass [3, 4] and the matter-antimatter asymmetry in
the universe [5]. Experimentalists are working intently to
observe the decay all over the world; current lower limits
on the lifetime are about 1026 y [6–8], and sensitivity will
be improved by two orders of magnitude in the coming
years.

Essential for planning and interpreting these experi-
ments are nuclear matrix elements (NMEs) that relate
the decay lifetime to the Majorana neutrino mass scale
and other measures of lepton-number violation. Un-
fortunately, these matrix elements are not well known
and cannot be measured. Computations based on di↵er-
ent models and techniques lead to numbers that di↵er
by factors of three to five (see Ref. [9] for a recent re-
view). Compounding these theoretical challenges is the
recent discovery that, within chiral e↵ective field theory
(EFT) [10–13], the standard long-range 0⌫�� decay oper-
ator must be supplemented by an equally important zero-
range (contact) operator of unknown strength [14]. Ef-
forts to compute the strengths of this contact term from
quantum chromodynamics (QCD) [15, 16] and attempts
to better understand its impact are underway [17].

The task theorists face at present is to provide more
accurate computations of 0⌫�� NMEs, including those
associated with contact operators, and quantify their un-
certainties. In this Letter, we employ the coupled-cluster
method to perform first-principle computations of the
matrix element that links the 0⌫�� lifetime of 48Ca with
the Majorana neutrino mass scale. Among the dozen
or so candidate nuclei for 0⌫�� decay experiments [18],
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FIG. 1. (Color online) Comparison of the NME for the 0⌫��
decay of 48Ca, calculated within various approaches (see text
for details). The coupled-cluster results use both the CCSD
and CCSDT-1 approximations with both the spherical and
deformed reference states. For IMSRG+GCM, the double
bars show the e↵ects of uncertainty in model-space size; other-
wise they show those of uncertainty in short-range correlation
functions.

48Ca stands out for its fairly simple structure, making it
amenable for an accurate description based on chiral EFT
and state-of-the-art many-body methods [19]. By vary-
ing the details of our calculations, we will estimate the
uncertainty of our prediction. To gauge the quality of our
approach we also compute the two-neutrino double-beta
decay of 48Ca and compare with data. Our results will di-
rectly inform 0⌫�� decay experiments that use 48Ca [20]
and serve as an important stepping stone towards the
accurate prediction of NMEs in 76Ge, 130Te, and 136Xe,
which are candidate isotopes of the next-generation 0⌫��
decay experiments. Calculations in those nuclei presum-
ably require larger model spaces, inclusion of tri-axial
deformation, and symmetry projection.
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Predictive theories
What can we learn from estimated uncertainties?

BNN: Bayesian neural network
LIT-CC: ab-initio calculation

dσ
dE′￼dΩ e

= σM(υLRL(ω, q̄) + υTRT(ω, q̄))

B. Acharya, JES, S.Bacca et al. 2410.05962
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Relatively straightforward to calculate (e.g. assuming Gaussian distribution)

Parametric uncertainties
J. Nieves, J.E. Sobczyk / Annals of Physics 383 (2017) 455–496 481

Fig. 16. Neutrino and antineutrino differential cross sections from 16O at various energies. ‘‘Pauli’’ and ‘‘RPA’’ curves were
calculated with non-relativistic kinematics. The use of relativistic kinematics causes a decrease of the cross section shown as
stripped pattern bands below those curves. SF results have been computed using a complex self-energy to dress both, particle
and hole nucleon lines. Theoretical errors on the SF+RPA predictions showMC 68% CL intervals (red bands). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

• We will begin with the continuum RPA (CRPA) scheme examined in Ref. [45]. As explained in
this latter reference, the main difference between RPA and CRPA approaches lies in the treat-
ment of the excited states. In the case of RPA, all of them are treated as bound states, leading to a
discrete excitation spectrum, while within a CRPA scheme, the final states asymptotically have
the appropriate scattering wave-function for energies above the nucleon-emission thresholds;
consequently the excitation spectrum in the CRPA is continuous. In this sense, it is clear that
the approach followed here (see Section 2.2) should be understood as a CRPA one.

In Ref. [45], it is argued that the RPA or CRPA are the methods of choice at intermediate
neutrino energies. The CRPA calculations carried out in this reference used a finite range

Various parameters: binding energies, Fermi momentum, 
RPA parameters, parameters of effective interactions…

2p2h contribution: uncertainty coming from the  treatmentΔVariation in RPA parameters (68%CL)
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• What is the inherent uncertainty 
coming from the framework itself 
(impulse approximation, local density 
approximation, mean-field, RPA, lack 
of interference effects…)?


• What is its region of validity 
(kinematics)?


• Which observables can be described ?

Model uncertainties

In neutrino oscillation experiments we need various descriptions 
(models) to cover a large phase-space. How to “stitch” them?
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The aim of nuclear physics is to understand various properties of atomic
nuclei based on the nucleonic degrees of freedom, where the nuclear force
serves as the fundamental interaction. Enormous effort has been devoted
to studies of the nuclear force, after the meson-exchange mechanism was
proposed by H. Yukawa [1]. Today, thousands of experimental NN scattering
data are available. They are used for a phenomenological determination of
the nuclear force. Now, there are several high precision realistic nuclear forces
available [2], all of which are able to describe the experimental NN scattering
data in many channels simultaneously with χ2/ndf ∼ 1.

In the meson-exchange picture, the nuclear force is generated by virtual
exchanges of massive mesons. The mechanism employed here is a generaliza-
tion the Coulomb force in quantum electrodynamics which is generated by
the virtual exchange of massless photon. The structure of the nuclear force
is much more complicated than the Coulomb force. This is because varieties
of mesons are involved from a wide range of mass spectrum with different
spin and isospin quantum numbers [3].
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Figure 2. Chiral two-, three- and four nucleon forces through next-to-next-to-next-to-leading order
(N3LO) (see, e.g., [37, 41, 2] ). Dashed lines represent pion exchanges between nucleons. The large
solid circles, boxes and diamonds represent vertices that are proportional to low-energy constants
(LECs) of the theory (see text).

uncertainties that result from working at a given chiral order [34, 35, 36]. This is especially useful
since issues relating to the regularization and renormalization of these interactions remain (see, e.g.,
Refs. [2, 46, 47, 48, 49, 50, 51] and Sec. 4.4).

2.2 The Similarity Renormalization Group

Renormalization group methods are a natural companion to the hierarchy of EFTs for the strong
interaction. They provide the means to systematically dial the resolution scales and cuto↵s of these
theories, and this makes it possible, at least in principle, to connect the di↵erent levels in our
hierarchy of EFTs. The RGs also expand the diagnostic toolkit for assessing the inherent consistency
of EFT power counting schemes, e.g., by tracing the enhancement or suppression of specific operators,
or by identifying important missing operators.

In nuclear many-body theory, the SRG has become the method of choice. In contrast to Wilsonian
RG [52], which is based on decimation, i.e., integrating out high-momentum degrees of freedom,
SRGs decouple low- and high-momentum physics using continuous unitary transformations. Note
that this concept is not limited to RG applications: we can construct transformations that adapt a
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• Parametric uncertainties: 
low energy constants of the chiral 
effective theory


• Model uncertainties: 
- many-body method error 
- order of chiral expansion of 
Hamiltonian 
- integral transform inversion

Responses from coupled-cluster

16O

B. Acharya, JES, S.Bacca et al. 2410.05962

LIT-CC error: truncation in chiral 
expansion + inversion procedure

dσ
dE′￼dΩ ν/ν̄

= σ0(υ00R00 + υ0zR0z + υzzRzz + υxxRxx ± υxyRxy)10



• In quantum mechanics operators or wave-functions are not observables!





  


• Operators also evolve:      

H |Ψ⟩ = E |Ψ⟩

U HU† U |Ψ⟩ = EU |Ψ⟩
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x ! 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α

A

∣∣φα
NN (r)

∣∣2
, (1)

nA
GCF,α (q) = CNN,α

A

∣∣φ̃α
NN (q)

∣∣2
. (2)

Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α

A

∣∣φα
NN (r)

∣∣2
, (1)

nA
GCF,α (q) = CNN,α

A

∣∣φ̃α
NN (q)

∣∣2
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Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x ! 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α

A

∣∣φα
NN (r)

∣∣2
, (1)

nA
GCF,α (q) = CNN,α

A

∣∣φ̃α
NN (q)

∣∣2
. (2)

Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x ! 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α

A

∣∣φα
NN (r)

∣∣2
, (1)

nA
GCF,α (q) = CNN,α

A
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Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x ! 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α
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, (1)

nA
GCF,α (q) = CNN,α
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Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x ! 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α
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Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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FIG. 6. Contributions to the deuteron momentum distribution
nd

λ (q) with AV18 and λ = 1.35 fm−1 from the expectation value of
Eq. (6) in the unevolved (λ = ∞, labeled “High res.”) and evolved
wave functions. The latter is split into three pieces, with the sum
indistinguishable from the unevolved curve. The normalization is
2
π

∫ ∞
0 dq q2nd

λ (q) = 1.

How accurate will the truncation to the two-body level
be for A > 2? Calculations of bulk quantities such as en-
ergies and radii are sensitive to three-body contributions at
low resolution, but their role is amplified by cancellations of
the kinetic and potential energies. The cluster hierarchy of
the potential itself is maintained in the SRG evolution. For
high-momentum distributions, we expect that the two-body
contribution will dominate. This is supported by the work of
Neff et al. [76] on the pair distribution in the alpha parti-
cle, which showed some λ dependence near 2 fm−1 in the
dominant S = 1, T = 0 spin-isospin channel when integrat-
ing over the center-of-mass momentum Q (with significant
dependence in the other channels) but very little dependence
at Q = 0; in all cases there is little dependence above 3 fm−1.
In future work we will use the RG running (i.e., the λ de-
pendence) to test the truncation error in our calculations [74].
We emphasize that corrections from three-body operators are
fully accessible within our approach and that good approxima-
tions to these contributions are possible. Finally, we note that
truncation at the two-body level has much in common with
the leading term of the Brueckner expansion [2,74]. This has
implications for SRC physics at high density, e.g., in neutron
stars, where three-body physics is essential for a quantitative
description.

B. Local density approximation calculations

At low resolution there are various options for calculating
SRC physics as manifested in the experiments described in
Sec. I. By softening the Hamiltonian, the nuclear ground-
state wave functions become less correlated, more amenable
to many-body perturbation theory, and more universal in
nature. Furthermore, for operators evaluated at the highest
momenta, the details of long-range correlations should be-

come less important. Indeed, the physics is focused on short
distances, which suggests that an LDA should work well,
particularly as the unitary transformations in the factorization
region (δŨ (2)

λ (k, k′) with |k| < λ and |k′| $ λ) are weakly
dependent on the low momentum [44]. Figures included as
Supplemental Material [78] illustrate the factorization of the
δŨδŨ † term in Eq. (6).

We illustrate how to formulate an LDA by starting
with the second-quantized version of the unevolved single-
particle momentum distribution for isospin projection τ from
coordinate-space integrals (cf. Ref. [79]):

nτ (q) =
∫

dr
∫

dr′ 〈%A|ψ̂†
τ (r′)ψ̂τ (r)|%A〉e−iq·(r−r′ )

=
∫

dR
∫

ds ρτ
DM(R, s)eiq·s, (9)

where R = (r + r′)/2, s = r′ − r, and ρτ
DM(R, s) is the den-

sity matrix for the A-body nucleus. We implement an LDA as
the leading term in a density matrix expansion (DME) [80]:

ρτ
DM(R, s) ≈ ρτ (R)ρSL

(
skτ

F (R)
)
+ · · · (10)

where the Slater function is ρSL(z) ≡ 3
z j1(z), the local Fermi

momentum is kτ
F (R) = (3π2ρτ (R))1/3 with ρτ the proton or

neutron number density normalized to Z or N , and we have
applied angle averaging. Negele and Vautherin showed this
was a good approximation for not-too-large values of s [80].

If we substitute (10) into (9) and integrate over s, we find

nτ (q) ≈ 2
∫

dR θ
(
kτ

F (R) − q
)
, (11)

with the factor of 2 from the spin sum. This is a poor ap-
proximation at very low q because of the contribution to the
integral from large s, but its generalizations to include the
SRG unitary transformations provide a quantitative reproduc-
tion of momentum distributions at high momenta. All of the
second-quantized terms with δŨ will be of the form a†a†aa.
These have the same structure as a Hartree-Fock energy for a
nonlocal potential, to which we can apply the corresponding
DME from Refs. [80,81]. This approximation has a single
spatial integration with two θ functions featuring the local
Fermi momenta. (The explicit formulas for the low-resolution
LDA momentum distributions are given in the Appendix.)

We demonstrate the LDA for proton momentum distribu-
tions using the AV18 potential in Fig. 7, for which we can
compare to quantum Monte Carlo calculations [77,79,82]. We
use proton and neutron densities generated from the SLy4
Skyrme functional [83] using the HFBRAD code [84]. We
expect the approximations to be valid at least for momenta
above the gray-shaded regions and indeed the agreement is
quite reasonable, particularly at the highest momenta. (We
exclude the predictions below q = 0.6 fm−1 because of the
poor approximation; better treatments will be presented in
Ref. [74].) It is evident that the high momentum tails are
very similar across the nuclei; this is the manifestation of
the universal behavior of these distributions. There is a clear
signature of the sharp cutoff caused by the θ functions in
Eq. (A1) at momenta near the Fermi momentum kF. We expect
a smoother distribution with higher-order contributions to the
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x ! 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α

A

∣∣φα
NN (r)

∣∣2
, (1)

nA
GCF,α (q) = CNN,α

A

∣∣φ̃α
NN (q)

∣∣2
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Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x ! 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α

A

∣∣φα
NN (r)

∣∣2
, (1)

nA
GCF,α (q) = CNN,α
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Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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“Soft” wave-function

El-weak operators Evolved (more 
complicated) operators

→
Two  equivalent pictures

High-momentum tail is generated 
by evolved operators 
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Theoretical insight needed
Disentangle different sources of uncertainty

Calculations do 
not contain 2-
body currents

LIT-CC accounts 
for FSI

For kinematics where RT dominates the SF might seem to work well (FSI & 2-B currents cancel)!
12
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What can we say about responses of 
6Li at very low momentum transfers?
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6Li at very low momentum transfers?

Uncertainty is “data driven” Model discrepancy — we should work hard to 
estimate uncertainties (e.g. using data or other 

more reliable theories) 

How important are final state 
interactions at low momenta?
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Going beyond region of applicability

What can we say about responses of 
6Li at very low momentum transfers?

That’s a common situation in MC event generators

Uncertainty is “data driven” Model discrepancy — we should work hard to 
estimate uncertainties (e.g. using data or other 

more reliable theories) 

How important are final state 
interactions at low momenta?

13



• Estimating theoretical uncertainties is crucial for next-
generation experiments (but very challenging!)


• More comparisons between models would be helpful. 
Examples:  
M. Martini, N. Jachowicz, et al Phys. Rev. C 94 (2016) no.1, 015501 
J.E.S., E. Hernandez, S.X. Nakamura, J. Nieves, T. Sato, Phys. Rev. D 98 (2018) no.7, 073001


• How to stitch different models? (Bayesian model mixing?)


• How to address model discrepancy?


• How to include model uncertainties in intra-nuclear cascade?

Final questions and comments

14
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Gaussian process (GP) to assess chiral truncation using 2 orders of expansion

Uncertainty estimation (responses)
Assessing EFT truncation error

EFT truncation error: δyk(p) = yref(p)
∞

∑
n=k+1

cn(p)( p
Λ )

n

Order k EFT prediction: yk(p) = yref(p)
k

∑
n=0

cn(p)( p
Λ )

n

Draws from an underlying GP



• Bayesian inference:  explore the space of 17 low energy constants of nuclear 
Hamiltonian 
                                          
 

• posterior predictive distributions  
                                         

pr(θ |D) ∝ ℒ(θ)pr(θ)

{y(θ) : θ ∼ pr(θ |D)}

Robust uncertainty quantification
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Neutron stars are extreme astrophysical objects whose interi-
ors may contain exotic new forms of matter. The structure 
and size of neutron stars are linked to the thickness of the 

neutron skin in atomic nuclei via the neutron-matter equation of 
state1–3. The nucleus 208Pb is an attractive target for exploring this 
link in both experimental4,5 and theoretical2,6,7 studies owing to the 
large excess of neutrons and its simple structure. Mean-field cal-
culations predict a wide range for Rskin(208Pb) because the isovector 
parts of nuclear energy density functionals are not well constrained 
by binding energies and charge radii2,7–9. Additional constraints may 
be obtained10 by including the electric dipole polarizability of 208Pb, 
though this comes with a model dependence11 which is difficult to 
quantify. In general, the estimation of systematic theoretical uncer-
tainties is a challenge for mean-field theory.

In contrast, precise ab initio computations, which provide a path 
to comprehensive uncertainty estimation, have been accomplished 
for the neutron-matter equation of state12–14 and the neutron skin in 
the medium-mass nucleus 48Ca (ref. 15). However, up to now, treat-
ing 208Pb within the same framework was out of reach. Owing to 
breakthrough developments in quantum many-body methods, such 
computations are now becoming feasible for heavy nuclei16–19. The  
ab initio computation of 208Pb we report herein represents a signifi-
cant step in mass number from the previously computed tin iso-
topes16,17 (Fig. 1). The complementary statistical analysis in this work 
is enabled by emulators (for mass number A ≤ 16) which mimic the 
outputs of many-body solvers but are orders of magnitude faster.

In this paper, we develop a unified ab initio framework to link 
the physics of nucleon–nucleon scattering and few-nucleon systems 

to properties of medium- and heavy-mass nuclei up to 208Pb,  
and ultimately to the nuclear-matter equation of state near satura-
tion density.

Linking models to reality
Our approach to constructing nuclear interactions is based on chi-
ral effective field theory (EFT)20–22. In this theory, the long-range 
part of the strong nuclear force is known and stems from pion 
exchanges, while the unknown short-range contributions are repre-
sented as contact interactions; we also include the Δ isobar degree 
of freedom23. At next-to-next-to leading order in Weinberg’s power 
counting, the four pion–nucleon low-energy constants (LECs) are 
tightly fixed from pion–nucleon scattering data24. The 13 additional 
LECs in the nuclear potential must be constrained from data.

We use history matching25,26 to explore the modelling capabili-
ties of ab initio methods by identifying a non-implausible region 
in the vast parameter space of LECs, for which the model output 
yields acceptable agreement with selected low-energy experimen-
tal data (denoted herein as history-matching observables). The 
key to efficiently analyse this high-dimensional parameter space 
is the use of emulators based on eigenvector continuation27–29 that 
accurately mimic the outputs of the ab initio methods but at sev-
eral orders of magnitude lower computational cost. We consider 
the following history-matching observables: nucleon–nucleon 
scattering phase shifts up to an energy of 200 MeV; the energy, 
radius and quadrupole moment of 2H; and the energies and radii 
of 3H, 4He and 16O. We perform five waves of this global param-
eter search (Extended Data Figs. 1 and 2), sequentially ruling out 

Ab initio predictions link the neutron skin of 208Pb 
to nuclear forces
Baishan Hu! !1,11, Weiguang Jiang! !2,11, Takayuki Miyagi! !1,3,4,11, Zhonghao Sun5,6,11, Andreas Ekström2, 
Christian Forssén! !2 ✉, Gaute Hagen! !1,5,6, Jason D. Holt! !1,7, Thomas Papenbrock! !5,6, 
S. Ragnar Stroberg8,9 and Ian Vernon10

Heavy atomic nuclei have an excess of neutrons over protons, which leads to the formation of a neutron skin whose thickness 
is sensitive to details of the nuclear force. This links atomic nuclei to properties of neutron stars, thereby relating objects that 
differ in size by orders of magnitude. The nucleus 208Pb is of particular interest because it exhibits a simple structure and is 
experimentally accessible. However, computing such a heavy nucleus has been out of reach for ab initio theory. By combining 
advances in quantum many-body methods, statistical tools and emulator technology, we make quantitative predictions for the 
properties of 208Pb starting from nuclear forces that are consistent with symmetries of low-energy quantum chromodynamics. 
We explore 109 different nuclear force parameterizations via history matching, confront them with data in select light nuclei and 
arrive at an importance-weighted ensemble of interactions. We accurately reproduce bulk properties of 208Pb and determine 
the neutron skin thickness, which is smaller and more precise than a recent extraction from parity-violating electron scattering 
but in agreement with other experimental probes. This work demonstrates how realistic two- and three-nucleon forces act in a 
heavy nucleus and allows us to make quantitative predictions across the nuclear landscape.
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ℒ(θ) ≡ pr(D |θ)

Posterior probability 
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 5. If step 4(a) is true, we generate a number of acceptable runs from the !nal 
non-implausible volume Q

final

, sampled according to scienti!c need.
The ab initio model for the observables we consider includes at most 17 

parameters: 4 subleading pion–nucleon couplings, 11 nucleon–nucleon contact 
couplings and two short-ranged 3N couplings. To identify a set of non-implausible 
parameter samples, we performed iterative history matching in four waves using 
observables and implausibility measures, as summarized in Extended Data Fig. 
1b. For each wave, we employ a sufficiently dense Latin hypercube set of several 
million candidate parameter samples. For the model evaluations, we utilized fast 
computations of neutron–proton scattering phase shifts and efficient emulators 
for the few- and many-body history-matching observables. See Extended Data 
Table 1 and Extended Data Fig. 2 for the list of history-matching observables and 
information on the errors that enter the implausibility measure in equation (3). 
The input volume for wave 1 incorporates the naturalness expectation for LECs, 
but still includes large ranges for the relevant parameters as indicated by the panel 
ranges in Extended Data Fig. 1a. In all four waves, the input volume for c1,2,3,4 is a 
four-dimensional hypercube mapped onto the multivariate Gaussian probability 
density function (PDF) resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. In wave 1 and wave 2, we sampled all relevant parameter 
directions for the set of included two-nucleon observables. In wave 3, the 3H and 
4He observables were added such that the 3N force parameters cD and cE can also be 
constrained. Since these observables are known to be rather insensitive to the four 
model parameters acting solely in P waves, we ignored this subset of the inputs 
and compensated by slightly enlarging the corresponding method errors. This 
is a well-known emulation procedure called inactive parameter identification25. 
For wave 4, we considered all 17 model parameters and added the ground-state 
energy and radius of 16O to the set Z

4

 and emulated the model outputs for 
5 × 108 parameter samples. By including oxygen data, we explore the modelling 
capabilities of our ab initio approach. Extended Data Fig. 1a summarizes the 
sequential non-implausible volume reduction, wave-by-wave, and indicates the set 
of 4,337 non-implausible samples after the fourth wave. Note that the use of history 
matching would, in principle, allow a detailed study of the information content of 
various observables in heavy-mass nuclei. Such an analysis, however, requires an 
extensive set of reliable emulators and lies beyond the scope of the present work. 
The volume reduction is determined by the maximum implausibility cut-off in 
equation (4) with additional confirmation from the optical depths (which indicate 
the density of non-implausible samples; see equations (25) and (26) in ref. 71). 
The non-implausible samples summarize the parameter region of interest and 
can directly provide insight regarding the interdependences between parameters 
induced by the match to observed data. This region is also where we would 
expect the posterior distribution to reside, and we note that our history-matching 
procedure has allowed us to reduce its size by more than seven orders of magnitude 
compared with the prior volume (Extended Data Fig. 1b).

As a final step, we confront the set of non-implausible samples from 
wave 4 with neutron–proton scattering phase shifts such that our final set of 
non-implausible samples has been matched with all history-matching observables. 
For this final implausibility check, we employ a slightly less strict cut-off and allow 
the first, second and third maxima of Ii(θ) (for z

i

∈ Z
final

) to be 5.0, 4.0 and 3.0, 
respectively, accommodating the more extreme maxima we may anticipate when 
considering a significantly larger number of observables. The end result is a set of 
34 non-implausible samples that we use for predicting 48Ca and 208Pb observables, 
as well as the equation of state of both symmetric nuclear matter and pure neutron 
matter.

Posterior predictive distributions. The 34 non-implausible samples from the final 
history-matching wave are used to compute energies, radii of proton and neutron 
distributions and electric dipole polarizabilities (αD) for 48Ca and 208Pb. They are 
also used to compute the electric and weak charge form factors for the same nuclei 
at a relevant momentum transfer, and the energy per particle of infinite nuclear 
matter at various densities to extract key properties of the nuclear equation of state 
(see below). These results are shown in Fig. 3(blue circles).

To make quantitative predictions, with a statistical interpretation, for 
Rskin(208Pb) and other observables, we use the same 34 parameter sets to extract 
representative samples from the posterior PDF p(θ|D

cal

). Bulk properties (energies 
and charge radii) of 48Ca together with the structure-sensitive 2+ excited-state 
energy of 48Ca are used to define the calibration data set D

cal

. The IMSRG and 
CC convergence studies make it possible to quantify the method errors. These are 
summarized in Extended Data Table 1. The EFT truncation errors are quantified 
by adopting the EFT convergence model74,75 for observable y

y = y

ref




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i +
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c

i

Q

i





, (5)

with observable coefficients ci that are expected to be of natural size, and the 
expansion parameter Q = 0.42 following our Bayesian error model for nuclear 
matter at the relevant density (see below). The first sum in the parenthesis is the 
model prediction yk(θ) of observable y at truncation order k in the chiral expansion. 
The second sum than represents the model error because it includes the terms 

that are not explicitly included. We can quantify the magnitude of these terms by 
learning about the distribution for ci, which we assume to be described by a single 
normal distribution per observable type with zero mean and a variance parameter 
c̄

2. We employ the nuclear-matter error analysis for the energy per particle of 
symmetric nuclear matter (described below) to provide the model error for E/A in 
48Ca and 208Pb. For radii and electric dipole polarizabilities, we employ the next-to 
leading order and next-to-next-to leading order interactions of ref. 60 and compute 
these observables at both orders for various Ca, Ni and Sn isotopes. The reference 
values yref are set to r0 A1/3 for radii (with r0 = 1.2 fm) and to the experimental 
value for αD. From these data, we extract c̄2 and perform the geometric sum of the 
second term in equation (5). The resulting standard deviations for model errors are 
summarized in Extended Data Table 1.

At this stage, we can approximately extract samples from the parameter 
posterior p(θ|D

cal

) by employing the established method of sampling/importance 
resampling33,76. We assume a uniform prior probability for the non-implausible 
samples, and we introduce a normally distributed likelihood L(D

cal

|θ), assuming 
independent experimental, method and model errors. The prior for c1,2,3,4 is the 
multivariate Gaussian resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. Defining importance weights

q

i

= L(D
cal

|θ
i

)/
n

∑

j=1

L(D
cal

|θ
j

), (6)

we draw samples θ* from the discrete distribution {θ1, …, θn} with probability 
mass qi on θi. These samples are then approximately distributed according to the 
parameter posterior that we are seeking33,76.

Although we are operating with a finite number of n = 34 representative 
samples from the parameter PDF, it is reassuring that about half of them are within 
a factor of two from the most probable one in terms of the importance weight 
(Extended Data Fig. 5). Consequently, our final predictions will not be dominated 
by a very small number of interactions. In addition, as we do not anticipate the 
parameter PDF to be of a particularly complex shape, based on the results of the 
history match, consideration of the various error structures in the analysis and 
on the posterior predictive distributions (PPDs) shown in Fig. 3, and as we are 
mainly interested in examining such lower one- or two-dimensional PPDs, this 
sample size was deemed sufficient and the corresponding sampling error assumed 
subdominant. We use these samples to draw corresponding samples from

PPD

parametric

= {y
k

(θ) : θ ∼ p(θ|D
cal

)}. (7)

This PPD is the set of all model predictions computed over likely values of the 
parameters, that is, drawing from the posterior PDF for θ. The full PPD is then 
defined, in analogy with equation (7), as the set evaluation of y which is the sum

y = y

k

+ ϵ

method

+ ϵ

model

, (8)

where we assume method and model errors to be independent of the parameters. 
In practice, we produce 104 samples from this full PPD for y by resampling the 
34 samples of the model PPD in equation (7) according to their importance 
weights, and adding samples from the error terms in equation (8). We perform 
model checking by comparing this final PPD with the data used in the iterative 
history-matching step, and in the likelihood calibration. In addition, we find that 
our predictions for the measured electric dipole polarizabilities of 48Ca and 208Pb as 
well as bulk properties of 208Pb serve as a validation of the reliability of our analysis 
and assigned errors (Fig. 2 and Extended Data Table 1).

In addition, we explored the sensitivity of our results to modifications of the 
likelihood definition. Specifically, we used a Student t distribution (ν = 5) to see 
the effects of allowing heavier tails, and we introduced an error covariance matrix 
to study the effect of possible correlations (with ρ ≈ 0.7) between the errors in 
the binding energy and radius of 48Ca. In the end, the differences in the extracted 
credibility regions was ~1%, and we therefore present only results obtained with 
the uncorrelated, multivariate normal distribution.

Our final predictions for Rskin(208Pb), Rskin(48Ca) and nuclear-matter properties 
are presented in Fig. 3 and Extended Data Table 2. For these observables, we use 
the Bayesian machine learning error model described below to assign relevant 
correlations between equation-of-state observables. For the model errors in 
Rskin(208Pb) and L, we use a correlation coefficient of ρ = 0.9 as motivated by the 
strong correlation between the observables computed with the 34 non-implausible 
samples. Note that S, L and K are computed at the specific saturation density of the 
corresponding non-implausible interaction.

Bayesian machine learning error model. Similar to equation (1), the predicted 
nuclear matter observables can be written as

y = y

k

(ρ) + ε

k

(ρ) + ε

method

(ρ), (9)

where yk(ρ) is the CC prediction using our EFT model truncated at order k, εk(ρ) 
is the EFT truncation (model) error and εmethod(ρ) is the CC method error. In this 
work, we apply a Bayesian machine learning error model14 to quantify the density 
dependence of both the method and truncation errors. The error model is based 
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The ab initio model for the observables we consider includes at most 17 

parameters: 4 subleading pion–nucleon couplings, 11 nucleon–nucleon contact 
couplings and two short-ranged 3N couplings. To identify a set of non-implausible 
parameter samples, we performed iterative history matching in four waves using 
observables and implausibility measures, as summarized in Extended Data Fig. 
1b. For each wave, we employ a sufficiently dense Latin hypercube set of several 
million candidate parameter samples. For the model evaluations, we utilized fast 
computations of neutron–proton scattering phase shifts and efficient emulators 
for the few- and many-body history-matching observables. See Extended Data 
Table 1 and Extended Data Fig. 2 for the list of history-matching observables and 
information on the errors that enter the implausibility measure in equation (3). 
The input volume for wave 1 incorporates the naturalness expectation for LECs, 
but still includes large ranges for the relevant parameters as indicated by the panel 
ranges in Extended Data Fig. 1a. In all four waves, the input volume for c1,2,3,4 is a 
four-dimensional hypercube mapped onto the multivariate Gaussian probability 
density function (PDF) resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. In wave 1 and wave 2, we sampled all relevant parameter 
directions for the set of included two-nucleon observables. In wave 3, the 3H and 
4He observables were added such that the 3N force parameters cD and cE can also be 
constrained. Since these observables are known to be rather insensitive to the four 
model parameters acting solely in P waves, we ignored this subset of the inputs 
and compensated by slightly enlarging the corresponding method errors. This 
is a well-known emulation procedure called inactive parameter identification25. 
For wave 4, we considered all 17 model parameters and added the ground-state 
energy and radius of 16O to the set Z

4

 and emulated the model outputs for 
5 × 108 parameter samples. By including oxygen data, we explore the modelling 
capabilities of our ab initio approach. Extended Data Fig. 1a summarizes the 
sequential non-implausible volume reduction, wave-by-wave, and indicates the set 
of 4,337 non-implausible samples after the fourth wave. Note that the use of history 
matching would, in principle, allow a detailed study of the information content of 
various observables in heavy-mass nuclei. Such an analysis, however, requires an 
extensive set of reliable emulators and lies beyond the scope of the present work. 
The volume reduction is determined by the maximum implausibility cut-off in 
equation (4) with additional confirmation from the optical depths (which indicate 
the density of non-implausible samples; see equations (25) and (26) in ref. 71). 
The non-implausible samples summarize the parameter region of interest and 
can directly provide insight regarding the interdependences between parameters 
induced by the match to observed data. This region is also where we would 
expect the posterior distribution to reside, and we note that our history-matching 
procedure has allowed us to reduce its size by more than seven orders of magnitude 
compared with the prior volume (Extended Data Fig. 1b).

As a final step, we confront the set of non-implausible samples from 
wave 4 with neutron–proton scattering phase shifts such that our final set of 
non-implausible samples has been matched with all history-matching observables. 
For this final implausibility check, we employ a slightly less strict cut-off and allow 
the first, second and third maxima of Ii(θ) (for z

i

∈ Z
final

) to be 5.0, 4.0 and 3.0, 
respectively, accommodating the more extreme maxima we may anticipate when 
considering a significantly larger number of observables. The end result is a set of 
34 non-implausible samples that we use for predicting 48Ca and 208Pb observables, 
as well as the equation of state of both symmetric nuclear matter and pure neutron 
matter.

Posterior predictive distributions. The 34 non-implausible samples from the final 
history-matching wave are used to compute energies, radii of proton and neutron 
distributions and electric dipole polarizabilities (αD) for 48Ca and 208Pb. They are 
also used to compute the electric and weak charge form factors for the same nuclei 
at a relevant momentum transfer, and the energy per particle of infinite nuclear 
matter at various densities to extract key properties of the nuclear equation of state 
(see below). These results are shown in Fig. 3(blue circles).

To make quantitative predictions, with a statistical interpretation, for 
Rskin(208Pb) and other observables, we use the same 34 parameter sets to extract 
representative samples from the posterior PDF p(θ|D

cal

). Bulk properties (energies 
and charge radii) of 48Ca together with the structure-sensitive 2+ excited-state 
energy of 48Ca are used to define the calibration data set D

cal

. The IMSRG and 
CC convergence studies make it possible to quantify the method errors. These are 
summarized in Extended Data Table 1. The EFT truncation errors are quantified 
by adopting the EFT convergence model74,75 for observable y

y = y

ref





k

∑

i=0

c

i

Q

i +
∞

∑

i=k+1

c

i

Q

i





, (5)

with observable coefficients ci that are expected to be of natural size, and the 
expansion parameter Q = 0.42 following our Bayesian error model for nuclear 
matter at the relevant density (see below). The first sum in the parenthesis is the 
model prediction yk(θ) of observable y at truncation order k in the chiral expansion. 
The second sum than represents the model error because it includes the terms 

that are not explicitly included. We can quantify the magnitude of these terms by 
learning about the distribution for ci, which we assume to be described by a single 
normal distribution per observable type with zero mean and a variance parameter 
c̄

2. We employ the nuclear-matter error analysis for the energy per particle of 
symmetric nuclear matter (described below) to provide the model error for E/A in 
48Ca and 208Pb. For radii and electric dipole polarizabilities, we employ the next-to 
leading order and next-to-next-to leading order interactions of ref. 60 and compute 
these observables at both orders for various Ca, Ni and Sn isotopes. The reference 
values yref are set to r0 A1/3 for radii (with r0 = 1.2 fm) and to the experimental 
value for αD. From these data, we extract c̄2 and perform the geometric sum of the 
second term in equation (5). The resulting standard deviations for model errors are 
summarized in Extended Data Table 1.

At this stage, we can approximately extract samples from the parameter 
posterior p(θ|D

cal

) by employing the established method of sampling/importance 
resampling33,76. We assume a uniform prior probability for the non-implausible 
samples, and we introduce a normally distributed likelihood L(D

cal

|θ), assuming 
independent experimental, method and model errors. The prior for c1,2,3,4 is the 
multivariate Gaussian resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. Defining importance weights

q

i

= L(D
cal

|θ
i

)/
n

∑

j=1

L(D
cal

|θ
j

), (6)

we draw samples θ* from the discrete distribution {θ1, …, θn} with probability 
mass qi on θi. These samples are then approximately distributed according to the 
parameter posterior that we are seeking33,76.

Although we are operating with a finite number of n = 34 representative 
samples from the parameter PDF, it is reassuring that about half of them are within 
a factor of two from the most probable one in terms of the importance weight 
(Extended Data Fig. 5). Consequently, our final predictions will not be dominated 
by a very small number of interactions. In addition, as we do not anticipate the 
parameter PDF to be of a particularly complex shape, based on the results of the 
history match, consideration of the various error structures in the analysis and 
on the posterior predictive distributions (PPDs) shown in Fig. 3, and as we are 
mainly interested in examining such lower one- or two-dimensional PPDs, this 
sample size was deemed sufficient and the corresponding sampling error assumed 
subdominant. We use these samples to draw corresponding samples from

PPD

parametric

= {y
k

(θ) : θ ∼ p(θ|D
cal

)}. (7)

This PPD is the set of all model predictions computed over likely values of the 
parameters, that is, drawing from the posterior PDF for θ. The full PPD is then 
defined, in analogy with equation (7), as the set evaluation of y which is the sum

y = y

k

+ ϵ

method

+ ϵ

model

, (8)

where we assume method and model errors to be independent of the parameters. 
In practice, we produce 104 samples from this full PPD for y by resampling the 
34 samples of the model PPD in equation (7) according to their importance 
weights, and adding samples from the error terms in equation (8). We perform 
model checking by comparing this final PPD with the data used in the iterative 
history-matching step, and in the likelihood calibration. In addition, we find that 
our predictions for the measured electric dipole polarizabilities of 48Ca and 208Pb as 
well as bulk properties of 208Pb serve as a validation of the reliability of our analysis 
and assigned errors (Fig. 2 and Extended Data Table 1).

In addition, we explored the sensitivity of our results to modifications of the 
likelihood definition. Specifically, we used a Student t distribution (ν = 5) to see 
the effects of allowing heavier tails, and we introduced an error covariance matrix 
to study the effect of possible correlations (with ρ ≈ 0.7) between the errors in 
the binding energy and radius of 48Ca. In the end, the differences in the extracted 
credibility regions was ~1%, and we therefore present only results obtained with 
the uncorrelated, multivariate normal distribution.

Our final predictions for Rskin(208Pb), Rskin(48Ca) and nuclear-matter properties 
are presented in Fig. 3 and Extended Data Table 2. For these observables, we use 
the Bayesian machine learning error model described below to assign relevant 
correlations between equation-of-state observables. For the model errors in 
Rskin(208Pb) and L, we use a correlation coefficient of ρ = 0.9 as motivated by the 
strong correlation between the observables computed with the 34 non-implausible 
samples. Note that S, L and K are computed at the specific saturation density of the 
corresponding non-implausible interaction.

Bayesian machine learning error model. Similar to equation (1), the predicted 
nuclear matter observables can be written as

y = y

k

(ρ) + ε

k

(ρ) + ε

method

(ρ), (9)

where yk(ρ) is the CC prediction using our EFT model truncated at order k, εk(ρ) 
is the EFT truncation (model) error and εmethod(ρ) is the CC method error. In this 
work, we apply a Bayesian machine learning error model14 to quantify the density 
dependence of both the method and truncation errors. The error model is based 
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implausible LECs that yield model predictions too far from exper-
imental data. For this purpose, we use an implausibility measure 
(Methods) that links our model predictions and experimental 
observations as

z = M(θ) + ε

exp

+ ε

em

+ ε

method

+ ε

model

, (1)

relating the experimental observations z to emulated ab initio pre-
dictions M(θ) via the random variables ε

exp

, εem, εmethod and εmodel 
that represent experimental uncertainties, the emulator precision, 
method approximation errors and the model discrepancy due to the 
EFT truncation at next-to-next-to leading order, respectively. The 
parameter vector θ corresponds to the 17 LECs at this order. The 
method error represents, for example, model space truncations and 
other approximations in the employed ab initio many-body solv-
ers. The model discrepancy εmodel can be specified probabilistically 
since we assume to operate with an order-by-order improvable EFT 
description of the nuclear interaction (see Methods for details).

The final result of the five history-matching waves is a set of 34 
non-implausible samples in the 17-dimensional parameter space 
of the LECs. We then perform ab initio calculations for nuclear 
observables in 48Ca and 208Pb, as well as for properties of infinite 
nuclear matter.

Ab initio computations of 208Pb
We employ the coupled-cluster (CC)12,30,31, in-medium similarity 
renormalization group (IMSRG)32 and many-body perturbation 
theory (MBPT) methods to approximately solve the Schrödinger 
equation and obtain the ground-state energy and nucleon densities 
of 48Ca and 208Pb. We analyse the model space convergence and use 
the differences between the CC, IMSRG and MBPT results to esti-
mate the method approximation errors (Methods and Extended 
Data Figs. 3 and 4). The computational cost of these methods 
scales (only) polynomially with increasing numbers of nucleons 
and single-particle orbitals. The main challenge in computing 
208Pb is the vast number of matrix elements of the three-nucleon 
(3N) force which must be handled. We overcome this limita-
tion by using a recently introduced storage scheme in which we 
only store linear combinations of matrix elements directly enter-
ing the normal-ordered two-body approximation19 (see Methods  
for details).

Our ab initio predictions for finite nuclei are summarized in 
Fig. 2. The statistical approach that leads to these results is com-
posed of three stages. First, history matching identified a set of 
34 non-implausible interaction parameterizations. Second, model 
calibration is performed by weighting these parameterizations—
serving as prior samples—using a likelihood measure according to 
the principles of sampling/importance resampling33. This yields 34 
weighted samples from the LEC posterior probability density func-
tion (Extended Data Fig. 5). Specifically, we assume independent 
EFT and many-body method errors and construct a normally dis-
tributed data likelihood encompassing the ground-state energy per 
nucleon E/A and the point-proton radius Rp for 48Ca, and the energy 
E

2

+ of its first excited 2+ state. Our final predictions are therefore 
conditional on this calibration data.

We have tested the sensitivity of final results to the likelihood 
definition by repeating the calibration with a non-diagonal covari-
ance matrix or a Student t distribution with heavier tails, finding 
small (~1%) differences in the predicted credible regions. The EFT 
truncation errors are quantified by studying ab initio predictions at 
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Fig. 1 | Trend of realistic ab initio computations for the nuclear A-body 
problem. The bars highlight the years of the first realistic computations 
of doubly magic nuclei. The height of each bar corresponds to the mass 
number A divided by the logarithm of the total compute power RTOP500 (in 
flops!s−1) of the pertinent TOP500 list45. This ratio would be approximately 
constant if progress were solely due to exponentially increasing computing 
power. However, algorithms which instead scale polynomially in A have 
greatly increased the reach.
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Fig. 2 | Ab initio posterior predictive distributions for light to heavy nuclei. 
Model checking is indicated by green (blue) distributions, corresponding to 
observables used for history-matching (likelihood calibration), while pure 
predictions are shown as pink distributions. The nuclear observables shown 
are the quadrupole moment Q, point-proton radii Rp, ground-state energies 
E (or energy per nucleon E/A), 2+ excitation energy E

2

+ and electric dipole 
polarizabilities αD. See Extended Data Table 1 for the numerical specification 
of the experimental data (z), errors (σi), medians (white circle) and 68% 
credibility regions (thick bar). The prediction for Rskin(208Pb) in the bottom 
panel is shown on an absolute scale and compared with experimental 
results using electroweak5 (purple), hadronic34,35 (red), electromagnetic4 
(green) and gravitational wave36 (blue) probes (from top to bottom; see 
Extended Data Fig. 7b for details).
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