SIS, DIS and hadronization uncertainties

"Neutrino Interactions and the next generation of neutrino experiments"

ECT* Workshop, Torino Julia Tena Vidal at Tel Aviv University

Processes of interest

Processes of interest

Table from S. Dolan

ECT* Workshop, Oct 2024 3

Processes of interest - DUNE

DUNE's oscillation sensitivity will be driven by SIS/DIS Systematics

- Pion production events dominate the event rate
- What are the relevant uncertainties?
- Are nuclear effects well understood?
- Can we reconstruct their energy?
	- See [Adi Ashkenazi's](https://indico.ectstar.eu/event/216/contributions/5222/) talk
- Can we propagate the relevant uncertainties to the oscillation analysis?

Processes of interest - SBND

SBND will have unprecedented statistics

Table from R. Johnes Predictions from GENIE

Processes of interest – KM3NeT-ORCA

KM3NeT-ORCA will be **dominated** by cm^{2} SIS/DIS events

- PYTHIA systematics are most relevant
- Impact on oscillation analysis unknown

External constraints needed

- No Near Detector
- Down-going sample contaminated by cosmic muons

The Shallow Inelastic Scattering Region Generators perspective

for the first time by GENIE **GENIE's Shallow-Inelastic Scattering model**

RES

- Rein-Sehgal or Bergher-Sehgal are the starting point
- Added additional resonances
- Dipole Parameterization

Non-resonant bkg

- Duality-based approach
- Scaled Bodek-Yang model
- Scaling factors depend on initial state

and hadron multiplicity
- and hadron multiplicity
- oupled to fow when though Coupled to low-W AGKY model

DIS

- Bodek-Yang model
- Cross-section calculation at partonic level
- AGKY hadronization model

$$
\frac{d^2\sigma^{inel}}{dQ^2dW} = \begin{cases} \frac{d^2\sigma^{RES}}{dQ^2dW} + \frac{d^2\sigma^{Non-RES}}{dQ^2dW} \ for \ W < W_{cut} \\ \frac{d^2\sigma^{DIS}}{dQ^2dW} \ for \ W \ge W_{cut} \end{cases}
$$

RES is modelled with Rein-Sehgal or Berger-Sehgal models

- Resonances are added coherently
- Not full kinematical models
- RES models do not account for NRB

Free parameters

$$
\frac{d^2\sigma^{inel}}{dQ^2dW} = \begin{cases} \frac{d^2\sigma^{RES}}{dQ^2dW} + \frac{d^2\sigma^{Non-RES}}{dQ^2dW} \ for \ W < W_{cut} \\ \frac{d^2\sigma^{DIS}}{dQ^2dW} \ for \ W \ge W_{cut} \end{cases}
$$

RES is modelled with Rein-Sehgal or Berger-Sehgal models

- Resonances are added coherently
- Not full kinematical models
- RES models do not account for NRB

Free parameters

$$
\frac{d^2\sigma^{Non-RES}}{dQ^2dW} = \frac{d^2\sigma^{DIS}}{dQ^2dW} \cdot \Theta(W_{cut} - W) \cdot \sum_m f_m(Q^2, W)
$$

- NRB modelled with Bodek and Yang extrapolated at $W < W_{cut}$
- f_m parameters couple with the AGKY hadronization model

Free parameters

- **In GENIE, RES, SIS, DIS and Hadronization models must be tuned altogether**
	- RES + SIS will determine the total cross-section at the SIS region
		- The DIS model determines the SIS cross-section (before scaling)
		- Hadronization determines the pion multiplicity of non-RES and DIS events
		- The event multiplicity determines the overall scaling of SIS
- **Pion production systematics already important at the free nucleon level**
	- Electron-scattering inclusive data widely used
	- Neutrino-scattering bubble chamber data

Towards a global tune

Towards a global tune

Model unification

- Ideally, models have clear V-A separation, with specific parameters
	- Not available in all event generators

Tune your generator against eA data

- High precision constraints on V-parameters
- Nuclear models Spectral functions
- Final-State interaction models

Propagate tune results to neutrino tune

- Results from the electron tune can be imposed as priors to avoid bias
- Constrain FSI and nuclear model with electron data break degeneracies
- $\mathcal{L}(\mathcal{$ • Ideally, also axial part, but this might be tricky for some models

Tuning of the Shallow-Scattering Inelastic region Datasets available – electron scattering

- Inclusive data from JLAB and SLAC
- as a function of W^2
	- Computed using e⁻ information
- For different beam energies and angles
- on hydrogen and deuterium targets

(*) Data is compared against Boosted-Christy prediction

Tuning of the Shallow-Scattering Inelastic region Inclusive electron scattering tunes

- **Can tune directly cross section models**
- **e-N inclusive** can be calculated directly using GENIE cross-section algorithms
	- Known beam energy, probe and target type (nucleon)
	- No need to generate events
	- **Using Berger-Sehgal model but same concept applies to all models**

Tuning of the Shallow-Scattering Inelastic region with $e-N$ data

- Non-resonant background parameters never tuned to electron data
	- Double counting is guaranteed
	- Model overpredicts data above the delta region
- Excellent inclusive data available from JLAB and SLAC
	- Fine W binning allows tuning of RES/SIS/DIS
	- Delta peak constrains RES Scaling
	- Multiplicity 2 and 3 non-resonant parameters can be constrained using fine W binning

Propagating pion production uncertainties from electron tunes

- All generators use an ad-hoc non-RES production model
	- Data driven parameters obtained from tunes \leftarrow to data
	- Cannot easily apply electron constraints to neutrinos
- **But excellent free nucleon description isolates nuclear effects!**
	- Currently over-predicting data on ¹²C

 $C(e,e'1p1\pi^{-})$ @ 2.2 GeV $\times 10^{-3}$ No FSI(GeV/c qn GENIE Data 0.5 p_{m} [GeV/

see [Adi Ashkenazi's](https://indico.ectstar.eu/event/216/contributions/5222/) talk

Neutrino data – bubble chamber experiments

- Bubble chamber experiments provided with the first flux-unfolded integrated cross-section measurements
- Mostly inclusive measurements, few exclusive (one-, two-pion, QEL..)
- Measurements as a function of E_{ν} , Q2...
	- Big bias on neutrino energy
- Statistically limited, ~ 100 events
- Poor neutrino flux knowledge
- MC-based data-corrections
	- Model dependent cuts
- Missing systematic uncertainties
	- Not quantified by experiments
	- Large normalization uncertainties lead to inconsistencies between experiments
		- Re-analysis of ANL/BNL data [\[PhysRevD.90.112017\]](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.112017)

Limitations of historical neutrino bubble chamber data

- Bubble chamber experiments provided with the first flux-unfolded integrated cross-section measurements
- Mostly inclusive measurements, few exclusive (one-, two-pion, QEL..)
- Measurements as a function of E_{ν} , Q2...
	- Big bias on neutrino energy
- Sta<mark>tistica Many reasons to not use these datasets…</mark>
- Poor neutrino flux knowledge
- MC-based data-corrections \blacksquare Model **only data available on hydrogen and • Missing systematdeuterium for neutrinos!**
	- Not quantified by experiments
	- Large normalization uncertainties lead to inconsistencies between experiments
		- Re-analysis of ANL/BNL data [\[PhysRevD.90.112017\]](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.112017)

Neutrino bubble chamber datasets

[PhysRevD.104.072009](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072009)

- v_{μ} and anti- v_{μ} CC inclusive
- v_{μ} and anti- v_{μ} CC QEL
- v_{μ} and anti- v_{μ} CC single-pion $- \nu_{\mu} + n \rightarrow \mu^{-} + n + \pi^{+}$ $- \nu_{\mu} + p \rightarrow \mu^{-} + p + \pi^{+}$ $- \nu_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0}$ $-\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + p + \pi^{-}$ $-\bar{\nu}_\mu + n \rightarrow \mu^+ + n + \pi^-$
- v_{μ} and anti- v_{μ} CC two-pion
	- $\nu_{\mu} + p \rightarrow \mu^{-} + n + 2\pi^{+}$ $- \nu_{\mu} + p \rightarrow \mu^{-} + p + \pi^{+} + \pi^{0}$ $- \nu_{\mu} + p \rightarrow \mu^{-} + n + \pi^{+} + \pi^{-}$

Constraining GENIE model of neutrino induced pion production using reanalized bubble chamber data

Work by <u>P. Rodrigues et. al</u>. exploits Reweight

- Fit with single pion production data only
- Data as a function of $\mathrm{E_{v}}$ and $\mathrm{Q^{2}}$

Tuning the Shallow-Scattering Inelastic region Parameters of interest

PhysRevD.104.072009 **GENIE tune uses Professor (***[PhysRevD.104.072009\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072009)*

- **RES model parameters:**
- M_A^{RES} : global fit result applied as prior $M_A^{RES} = 1.014 \pm 0.014$ GeV
- S_{RES} : overall scaling factor for RES cross-section

NRB model parameters:

- \bullet W_{cut} to determine the end of the SIS region
- R_m parameters for proton and neutron, multiplicity 2 and 3
- *Simplification:* we neglect the AGKY low-W parameters

DIS model parameters:

- S_{DIS} : overall scaling factor for DIS cross-section
- Prior of 1 ± 0.5 to preserve agreement with high E data (>100GeV)

QEL model parameters:

- M_A^{QEL} : global fit result applied as prior $M_A^{RES} = 1.12 \pm 0.03$ GeV **Normalization uncertainty:**
- Nuisance parameters per experiment to account for missing flux normalization uncertainties

Tuning the Shallow-Scattering Inelastic region Parameters of interest *[PhysRevD.104.072009](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072009)*

Your parameter choice might lead to a degenerate result

Ways to address it:

- Include in the tune additional data, i.e $\sigma(Q^2)$
- Priors from previous global analysis/tunes

Inconsistencies between datasets

Free-nucleon tune example:

Partial tune to inclusive data has opposite behavior to exclusive tune

Consequence of the incorrect flux normalization used in the data

analysis Approach:

- Added QEL data
	- Well known $\sigma_{\nu N}^{QEL}(E_{\nu})$
- Nuisance parameters

р π")

Tune Results

[PhysRevD.104.072009](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072009)

(a) Comparison of ν_{μ} CC Inclusive cross-section data against against the *default* and tuned CMC.

MITP workshop 26th-30th June 26 Supression of 1π production crosssection

Enhancement of 2π production cross-section

 E_v^1 ^QGeV]

Tuning the **AGKY Hadronization** model Tuning non-reweightable models

Hadronization models provide with final-state hadrons properties after a (SIS) DIS interaction

Crucial for experiments:

- Experiments like DUNE expect a **large fraction of SIS and DIS events** ∽ **30%**
- It determines the number of hadrons, hadronic shower shape, EM fraction of hadronic shower, hadronic shower energy reconstruction…

Tuning the **AGKY Hadronization** model Tuning non-reweightable models

Most neutrino event generators use (AGKY+) PYTHIA

Fig. 2. Mean value (left plot) and dispersion (right plot) as a function of the square of the hadronic invariant mass W^2 of the number of charged hadrons produced in the interactions of neutrinos with protons.

[By C. Bronner](https://www.semanticscholar.org/reader/83ae10865b5c1a7635f529a062b3af0417fc5b07)

Tuning the **AGKY Hadronization** model Tuning non-reweightable models

Modeling:

- At low-W, model is anchored to bubble chamber data
- Linear transition to PYTHIA
- PYTHIA for W>3 GeV
- In GENIE it is also used to determine the SIS pion multiplicity at the SIS region

PYTHIA MC

- Based on the Lund String Fragmentation function
- The Generator has many parameters available
- The default parameters are tuned to high energy pp and e^-e^+ experiments
- In GENIE, not all are directly available in the configuration files
	- But adding more is very easy to do
- Tuned with Professor

https://pythia.org

PYTHIA parameters relevant for charged multiplicity tuning

PYTHIA AGKY parameters

- $P_{s\bar{s}}$ controls the $s\bar{s}$ suppression
- $\langle p_1^2 \rangle$ determines the average hadron transverse momentum squared at the breaking point
- $E_{\text{Cut Off}}$ determines the minimum energy at which the fragmentation process can occur
- Lund $a(a)$ and Lund $b(b)$ are related with the Lund symmetric fragmentation function:

$$
f(z) \propto \frac{(1-z)^a}{z} \exp\left(\frac{-b m_\perp^2}{z}\right)
$$

where $m_{\perp}^2 \equiv m^2 + p_{\perp}^2/c$ is the hadron transverse mass and z is the fraction of energy shower transfered to the hadron.

Low-W AGKY

- Data-driven model aimed at describing showers below W<3 GeV
	- where PYTHIA is no longer valid
- Most crucial for accelerator neutrino experiments Aims to describe:
	- Averaged charged multiplicity
	- Averaged neutral multiplicity
	- Total multiplicity
	- Baryon multiplicity
	- Shower kinematics
- **Anchored to bubble chamber data**

Low-W AGKY: How many hadrons?

• **We use an empirical law extracted from data**

 $\langle n_{ch} \rangle = a + b \cdot \ln(W^2 / \text{GeV}^2)$

Default GENIE values:

Not really coming from a consistent fit to data

- Extracted from Deuterium fits only
- From different datasets (not compatible)

References given in ArXiv:2106.05884.

Average multiplicity parameters

Low-W AGKY parameters

The parameters relevant for the $\langle n_{ch} \rangle$ calculation are tuned:

$$
\langle n_{ch} \rangle = \alpha_{ch} + \beta_{ch} \cdot \ln \left(\frac{W^2}{\text{GeV}^2/\text{c}^4} \right)
$$

• α_{ch} and β_{ch} are tuned against H and ²H data from FNAL 15 ft and BEBC on:

1.
$$
\nu_{\mu}p \rightarrow \mu^{-}X^{++}
$$
\n2.
$$
\nu_{\mu}n \rightarrow \mu^{-}X^{+}
$$
\n3.
$$
\bar{\nu}_{\mu}p \rightarrow \mu^{+}X^{0}
$$
\n4.
$$
\bar{\nu}_{\mu}n \rightarrow \mu^{+}X^{-}
$$

These were used in the GENIE tune

• Therefore, a parameter per channel is extracted. I.e: $\langle n_{\nu\rho} \rangle$ for ν_{μ} p interactions.

Effect of low-W and PYTHIA parameters

Relevant datasets
A total of 154 data points on $\langle n_{ch} \rangle$ (W^2) are available:

- The data is obtained from (anti)neutrino CC interactions
- The data used is from the 70's and 80's
- The same analysis requirements are implemented to the corresponding predictions
- The $\langle n_{ch} \rangle$ data is independent of the cross section
- Most of the datapoints have $W > 3$ GeV/ c^2

GENIE AGKY tune results

The main effect of the tunes is observed at the PYTHIA region:

 \rightarrow The tunes increase $\langle n_{ch} \rangle$

This is a consequence of the *increase* in Lund a and Lund b

 ν_{μ} + p on hydrogen.

Tuning the AGKY Hadronization tune

Fully exploiting the GENIE tuning machinery

- First global AGKY tune
	- Tunning the low-W AGKY + PYTHIA altogether
- Focus on averaged charged multiplicity data
- Data-driven constrains to 13 **non-reweightable parameters**
	- Improved description of H+D data
	- Best-fit parameter estimations
	- Uncertainty estimations

(*) How can we propagate this uncertainties?

Professor-based Reweight

How can experiments further exploit the GENIE data-driven systematics in their analysis?

YOUR

i.e. hadronization uncertainties

Reweighting low-AGKY and PYTHIA

- Test sample $\frac{1}{x} v_{\mu}$ flux on H
- Parameters of interest
	- KNO-Alpha- ν p, unweighted (0.8), reweighted (1.8)
	- PYTHIA-Lunda, unweighted (1.9), reweighted (1.0)

The current observable is W plus another variable:

- p_T of hadronic system
- p_T , p of leading hadron in the final state
- ν value
- p of leading π and channel information
- n_{ch} (chapped at 17)
- $n_{neutral}$ (chapped at 3)

Reweighting low-AGKY and PYTHIA

Reweighting low-AGKY and PYTHIA

Not possible to tune without hadronization

We must start with the hadronization tune for a consistent description of the SIS region

- The SIS region in GENIE is affected by low-W AGKY parameters
	- We simplified the problem into two separate tunes
- When the hadronization tune results are applied on the SIS region, we observe an increase of two-pion production
- The tunings are not fully independent in this configuration
	- This difference is absorbed as an increase of $R_{\nu p}^{CC2\pi}$ and $R_{\nu n}^{CC2\pi}$ in the free nucleon tune

Other parameters of interest

Angular decay in Resonance rest frame

Crucial point: Hadronization time scales?

In GENIE it is a single formation time

Additional Low-W AGKY

- Parameters determine which type of baryon is produced – always one, n or p
	- Hyperon production
	- Shower kinematics …

And many more!

Nuclear effects I.e. FSI

Conclusions

RES, SIS and DIS region must be tuned altogether

- For vN , complications arise due to the lack of data
	- Electron-scattering is a clear alternative
- Large set of parameters to tune SIS contribution in GENIE, but need to tune it consistently with RES model
- Hadronization plays a non-crucial role and should be first tuned model of SIS region
- Little emphasis on systematic quantification, especially for hadronization
- DIS models tuned to electron data have well defined parameters to tune

More effort needed – revise hadronization models at energies relevant for neutrinos and quantify uncertainties with electron data

PYTHIA

- LUND string fragmentation model
- Uses the assumption of linear confinement as a starting point.
- As partons move apart, their colour flux tube gets stretched.
- Stored potential energy increases linearly with distance of colour charges.
- You can think of the "string" as the axis of the flux tube.
- The string constant is ~ 1 GeV/fm.
- As the potential energy increases, the string may break producing a $q\bar{q}$ pair.
- String breaks causally disconnected; simulated in a convenient order. A break typically creates a meson.
- Baryons also produced; A string can break by antidiquark-diquark production, or baryons can be produced using a 'popcorn' model. With every break, a produced hadron takes away a fraction of the available energy/momentum.
- Continuing till some cut-off point.

Extending the validity of GENIE model to lower W

- On the right, the invariant mass distributions for inelastic events. (Distribution is smeared due to Fermi momentum.)
- Up plot: DUNE, Down: HK Red component: Resonances
- Kinematic area below 2.5 3.0 GeV in invariant mass is critically important.
- Augment PYTHIA with an empirical GENIE model, anchored to data and valid in the area below 3 GeV. Install handles to express uncertainty.

Empirical low-W model: How many hadrons are produced?

Average charged hadron multiplicities $< n_{ch} >$ could, more generally, have an additional Q^2 dependence:

$$
\langle n_{ch} \rangle = a + b \cdot \ln(W^2/\text{GeV}^2) + b' \ln(Q^2/\text{GeV}^2)
$$

No Q^2 dependence has been observed in $\nu/\bar{\nu}$ scattering [H. Grassler et al., Nucl. Phys., B223, 269 (1983)].

Values of b' are 0.04 \pm 0.02 for ν p and 0.05 \pm 0.04 for $\bar{\nu}$ p

In GENIE, $b' = 0$ for all channels.

Empirical low-W model: Generating the particle spectrum

Because of kinematical constraints, it is assumed that the shower contains only 1 baryon. We decide between a p or n, with probabilities P_p and P_n $(=1-P_{p})$:

Subsequently, one of those will be converted to a strange baryon (for ν interactions: $p \to \Sigma^+$ and $n \to \Lambda$; for $\bar{\nu}$ interactions: $p \to \Lambda$ and $n \to \Sigma^-$) The probability for generating a strange baryon is given by:

$$
\langle n_{hyperon} \rangle = a_{hyperon} + b_{hyperon} \cdot log(W^2)
$$

where

 ν_{μ} + p on hydrogen.

 ν_{μ} + p on deuterium.

 ν_{μ} + n on deuterium.

- The 2021 GENIE global tune (red) underpredicts ²H data
- The 2021 GENIE ²H tune (green) overpredicts H data

Additional Low-W AGKY parameters of interest

- KNO scaling
- Draw actual multiplicities from a Poisson distribution with given average
- \bullet < n > P(n) = f (n/ < n >) is independent of W
- The function is parameterized using the Levi function

$$
L(z;c)=\frac{2e^{-c}c^{cz+1}}{\Gamma(cz+1)}
$$

