SIS, DIS and hadronization uncertainties

"Neutrino Interactions and the next generation of neutrino experiments"

ECT* Workshop, Torino

Julia Tena Vidal at Tel Aviv University

Processes of interest

Processes of interest

Process	SBN [%]	T2K/HK [%]	DUNE [%]
CCQE	45.9	42.0	20.0
CCMEC	10.5	8.3	5.5
CCRES	38.0	35.5	41.0
CCSIS/DIS	5.0	13.5	30.1

Table from S. Dolan

ECT* Workshop, Oct 2024

Processes of interest - DUNE

DUNE's oscillation sensitivity will be driven by SIS/DIS Systematics

- Pion production events dominate the event rate
- What are the relevant uncertainties?
- Are nuclear effects well understood?
- Can we reconstruct their energy?
 - See <u>Adi Ashkenazi's</u> talk
- Can we propagate the relevant uncertainties to the oscillation analysis?

Processes of interest - SBND

SBND will have unprecedented statistics

Dhysical Drocoss	Model Configurations (CC QE & CC 2p2h)						
r nysicai r rocess	Nieves	SuSAv2	LS-E	\mathbf{SM}			
Charged Current							
QE	2,152,939	2,373,600	2,078,485	2,776,187			
MEC	483,859	552,181	$543,\!418$	0			
RES	$1,\!160,\!763$	1,160,763	1,160,763	1,160,763			
DIS /SIS	220,335	220,335	220,335	220,335			
Coherent	6950	6950	6950	6950			
Other	2384	2384	2384	2384			

Table from R. Johnes Predictions from GENIE

Processes of interest – KM3NeT-ORCA

KM3NeT-ORCA will be **dominated** by SIS/DIS events

- PYTHIA systematics are most relevant
- Impact on oscillation analysis unknown

External constraints needed

- No Near Detector
- Down-going sample contaminated by cosmic muons

The Shallow Inelastic Scattering Region Generators perspective

GENIE's Shallow-Inelastic Scattering model

RES

- Rein-Sehgal or Bergher-Sehgal are the starting point
- Added additional resonances
- Dipole Parameterization

Non-resonant bkg

- Duality-based approach
- Scaled Bodek-Yang model
- Scaling factors depend on initial state
- and hadron multiplicity
 - Coupled to low-WAGKY model

DIS

- Bodek-Yang model
- Cross-section calculation at partonic level
- AGKY hadronization model

$$\frac{d^2\sigma^{inel}}{dQ^2dW} = \begin{cases} \frac{d^2\sigma^{RES}}{dQ^2dW} + \frac{d^2\sigma^{Non-RES}}{dQ^2dW} \text{ for } W < W_{cut} \\ \frac{d^2\sigma^{DIS}}{dQ^2dW} \text{ for } W \ge W_{cut} \end{cases}$$

RES is modelled with Rein-Sehgal or Berger-Sehgal models

- Resonances are added coherently
- Not full kinematical models
- RES models do not account for NRB

Free parameters

$$\frac{d^2\sigma^{inel}}{dQ^2dW} = \begin{cases} \frac{d^2\sigma^{RES}}{dQ^2dW} + \frac{d^2\sigma^{Non-RES}}{dQ^2dW} \text{ for } W < W_{cut} \\ \frac{d^2\sigma^{DIS}}{dQ^2dW} \text{ for } W \ge W_{cut} \end{cases}$$

RES is modelled with Rein-Sehgal or Berger-Sehgal models

- Resonances are added coherently
- Not full kinematical models
- RES models do not account for NRB

Free parameters

$$\frac{d^2\sigma^{Non-RES}}{dQ^2dW} = \frac{d^2\sigma^{DIS}}{dQ^2dW} \cdot \Theta(W_{cut} - W) \cdot \sum_m f_m(Q^2, W)$$

- NRB modelled with Bodek and Yang extrapolated at $W < W_{cut}$
- f_m parameters couple with the AGKY hadronization model

Free parameters

- In GENIE, RES, SIS, DIS and Hadronization models must be tuned altogether
 - RES + SIS will determine the total cross-section at the SIS region
 - The DIS model determines the SIS cross-section (before scaling)
 - Hadronization determines the pion multiplicity of non-RES and DIS events
 - The event multiplicity determines the overall scaling of SIS
- Pion production systematics already important at the free nucleon level
 - Electron-scattering inclusive data widely used
 - Neutrino-scattering bubble chamber data

Towards a global tune

Towards a global tune

Model unification

- Ideally, models have clear V-A separation, with specific parameters
 - Not available in all event generators

Tune your generator against eA data

- High precision constraints on V-parameters
- Nuclear models Spectral functions
- Final-State interaction models

Propagate tune results to neutrino tune

- Results from the electron tune can be imposed as priors to avoid bias
- Constrain FSI and nuclear model with electron data break degeneracies
- Ideally, also axial part, but this might be tricky for some models

Tuning of the Shallow-Scattering Inelastic region Datasets available – electron scattering

- Inclusive data from JLAB and SLAC
- as a function of W²
 - Computed using e⁻ information
- For different beam energies and angles
- on hydrogen and deuterium targets

(*) Data is compared against Boosted-Christy prediction

Tuning of the Shallow-Scattering Inelastic region Inclusive electron scattering tunes

- Can tune directly cross section models
- e-N inclusive can be calculated directly using GENIE cross-section algorithms
 - Known beam energy, probe and target type (nucleon)
 - No need to generate events
 - Using Berger-Sehgal model but same concept applies to all models

Tuning of the Shallow-Scattering Inelastic region with *e*-N data

- Non-resonant background parameters never tuned to electron data
 - Double counting is guaranteed
 - Model overpredicts data above the delta region
- Excellent inclusive data available from JLAB and SLAC
 - Fine W binning allows tuning of RES/SIS/DIS
 - Delta peak constrains RES Scaling
 - Multiplicity 2 and 3 non-resonant parameters can be constrained using fine W binning

Propagating pion production uncertainties from electron tunes

- All generators use an ad-hoc non-RES production model
 - Data driven parameters obtained from tunes $rac{1}{3}$ to data
 - Cannot easily apply electron constraints to neutrinos
- But excellent free nucleon description isolates nuclear effects!
 - Currently over-predicting data on ¹²C

see Adi Ashkenazi's talk

Neutrino data – bubble chamber experiments

- Bubble chamber experiments provided with the first flux-unfolded integrated cross-section measurements
- Mostly inclusive measurements, few exclusive (one-, two-pion, QEL..)
- Measurements as a function of E_{ν} , Q2...
 - Big bias on neutrino energy
- Statistically limited, ~ 100 events
- Poor neutrino flux knowledge
- MC-based data-corrections
 - Model dependent cuts
- Missing systematic uncertainties
 - Not quantified by experiments
 - Large normalization uncertainties lead to inconsistencies between experiments
 - Re-analysis of ANL/BNL data [PhysRevD.90.112017]

Limitations of historical neutrino bubble chamber data

- Bubble chamber experiments provided with the first flux-unfolded integrated cross-section measurements
- Mostly inclusive measurements, few exclusive (one-, two-pion, QEL..)
- Measurements as a function of E_{ν} , Q2...
 - Big bias on neutrino energy
 - Many reasons to not use these datasets...
- Poor neutrino flux l
 - ... only data available on hydrogen and
- Missing systemat **deuterium for neutrinos!**
 - Not quantified by experiments
 - Large normalization uncertainties lead to inconsistencies between experiments
 - Re-analysis of ANL/BNL data [PhysRevD.90.112017]

Neutrino bubble chamber datasets

PhysRevD.104.072009

- ν_{μ} and anti- ν_{μ} CC inclusive
- ν_{μ} and anti- ν_{μ} CC QEL
- $\boldsymbol{\nu}_{\mu}$ and anti- $\boldsymbol{\nu}_{\mu}$ CC single-pion $-\nu_{\mu} + n \rightarrow \mu^{-} + n + \pi^{+}$ $-\nu_{\mu} + p \rightarrow \mu^{-} + p + \pi^{+}$ $-\nu_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0}$ $-\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + p + \pi^{-}$ $-\bar{\nu}_{\mu} + n \rightarrow \mu^{+} + n + \pi^{-}$
- ν_{μ} and anti- ν_{μ} CC two-pion
 - $\begin{aligned} &-\nu_{\mu} + p \to \mu^{-} + n + 2\pi^{+} \\ &-\nu_{\mu} + p \to \mu^{-} + p + \pi^{+} + \pi^{0} \\ &-\nu_{\mu} + p \to \mu^{-} + n + \pi^{+} + \pi^{-} \end{aligned}$

Constraining GENIE model of neutrino induced pion production using reanalized bubble chamber data

 Work by <u>P. Rodrigues et. al</u>. exploits Reweight Fit with single pion production data only Data as a function of E_v and Q² 					
Parameter	GENIE value	0-38			
Resonant axial mass (M_A^{RES})	$1.12 \pm 0.22 \text{ GeV}$ [47]	-) (1			
Resonant normalization	$100\pm20~\%$	p¤_			
(RES norm.)		, µ , ≮			
Non-resonant normalization	$100\pm50~\%$				
(DIS norm.)		بر ت			
Normalization of the axial	100 % (no GENIE uncertainty)	6			
form factor $(F_A(0))$					

Tuning the Shallow-Scattering Inelastic region Parameters of interest

GENIE tune uses Professor (*PhysRevD*.104.072009)

RES model parameters:

- M_A^{RES} : global fit result applied as prior $M_A^{RES} = 1.014 \pm 0.014 \, GeV$
- S_{RES} : overall scaling factor for RES cross-section

NRB model parameters:

- W_{cut} to determine the end of the SIS region
- R_m parameters for proton and neutron, multiplicity 2 and 3
- *Simplification:* we neglect the AGKY low-W parameters

DIS model parameters:

- *S*_{*DIS*}: overall scaling factor for DIS cross-section
- Prior of 1 ± 0.5 to preserve agreement with high E data (>100GeV)

QEL model parameters:

• M_A^{QEL} : global fit result applied as prior - $M_A^{RES} = 1.12 \pm 0.03 \ GeV$

Normalization uncertainty:

• Nuisance parameters per experiment to account for missing flux normalization uncertainties

Tuning the Shallow-Scattering Inelastic region Parameters of interest

PhysRevD.104.072009

Your parameter choice might lead to a degenerate result

Ways to address it:

- Include in the tune • additional data, i.e $\sigma(Q^2)$
- Priors from previous global analysis/tunes

10

Inconsistencies between datasets

Free-nucleon tune example:

Partial tune to inclusive data has opposite behavior to exclusive tune

Consequence of the incorrect flux normalization used in the data

analysis Approach:

- Added QEL data
 - Well known $\sigma_{\nu N}^{QEL}(E_{\nu})$
- Nuisance parameters

р п_

0.0[⊢] b ∧) CCIII CC

ا².2

Tune Results

PhysRevD.104.072009

Parameter	Default	G18_02a
S _{RES}	1.00	0.84±0.03
S _{DIS}	1.032	1.06 ± 0.01
$R_{ u p}^{CC1\pi}$	0.10	0.008
$R_{\nu n}^{CC1\pi}$	0.30	0.03±0.01
$R_{\nu p}^{CC2\pi}$	1.00	0.94±0.08
$R_{\nu n}^{CC2\pi}$	1.00	2.3±0.1
M_A^{QEL}	0.999	1.00±0.013
M_A^{RES}	1.12	1.09±0.014
W _{cut}	1.7	1.81
$\chi^2/157 DoF$		1.64

(a) Comparison of ν_{μ} CC Inclusive cross-section data against against the *default* and tuned CMC.

Supression of 1π production cross-MITP workshop 26th-30th Jure Section

Enhancement of 2π production cross-section

1

ANL 12FT ,11

G18_02a def., $\chi^2 = 18.4/15$ DoF

G18_01a tuned, $\chi^2 = 14.3/15$ DoF

G18_02a tuned, $\chi^2 = 11.4/15$ DoF

BNL 7FT ,8

26

E_v[GeV]

Tuning the **AGKY Hadronization** model Tuning non-reweightable models

Hadronization models provide with final-state hadrons properties after a (SIS) DIS interaction

Crucial for experiments:

- Experiments like DUNE expect a large fraction of SIS and DIS events ~ 30%
- It determines the number of hadrons, hadronic shower shape, EM fraction of hadronic shower, hadronic shower energy reconstruction...

Tuning the **AGKY Hadronization** model Tuning non-reweightable models

Most neutrino event generators use (AGKY+) PYTHIA

Fig. 2. Mean value (left plot) and dispersion (right plot) as a function of the square of the hadronic invariant mass W^2 of the number of charged hadrons produced in the interactions of neutrinos with protons.

By C. Bronner

Tuning the **AGKY Hadronization** model Tuning non-reweightable models

Modeling:

- At low-W, model is anchored to bubble chamber data
- Linear transition to PYTHIA
- PYTHIA for W>3 GeV
- In GENIE it is also used to determine the SIS pion multiplicity at the SIS region

PYTHIA MC

- Based on the Lund String Fragmentation function
- The Generator has many parameters available
- The default parameters are tuned to high energy pp and e⁻e⁺ experiments
- In GENIE, not all are directly available in the configuration files
 - But adding more is very easy to do
- Tuned with Professor

https://pythia.org

PYTHIA parameters relevant for charged multiplicity tuning

PYTHIA AGKY parameters

- $P_{s\bar{s}}$ controls the $s\bar{s}$ suppression
- $\langle p_{\perp}^2 \rangle$ determines the average hadron transverse momentum squared at the breaking point
- $E_{Cut Off}$ determines the minimum energy at which the fragmentation process can occur
- Lund *a* (*a*) and Lund *b* (*b*) are related with the Lund symmetric fragmentation function:

$$f(z) \propto rac{(1-z)^a}{z} \exp\left(rac{-b m_{\perp}^2}{z}
ight)$$

where $m_{\perp}^2 \equiv m^2 + p_{\perp}^2/c$ is the hadron transverse mass and z is the fraction of energy shower transferred to the hadron.

Low-WAGKY

- Data-driven model aimed at describing showers below W < 3 GeV
 - where PYTHIA is no longer valid
- Most crucial for accelerator neutrino experiments Aims to describe:
 - Averaged charged multiplicity
 - Averaged neutral multiplicity
 - Total multiplicity
 - Baryon multiplicity
 - Shower kinematics
- Anchored to bubble chamber data

Low-WAGKY: How many hadrons?

• We use an empirical law extracted from data

 $< n_{ch} > = a + b \cdot \ln(W^2/GeV^2)$

Default GENIE values:

	νρ	ν n	ν̄ρ	νn
а	0.40	-0.20	0.02	0.80
b	1.42	1.42	1.28	0.95

Not really coming from a consistent fit to data

- Extracted from Deuterium fits only
- From different datasets (not compatible)

	Experiment	W^{2} [G eV $^{2}/c^{4}$]	Target	α_{ch}	β_{ch}	R ef.	
	$\nu_{\mu} + p \rightarrow \mu^{-} X^{++}$						
	FNAL 15 ft (1976)	[1.5, 150]	Н	1.09 ± 0.38	1.09 ± 0.03	[70]	
	BEBC (1983)	[12, 112]	н	-0.05 ± 0.11	1.43 ± 0.04	[64]	
	FNAL 15 ft (1983)	[1.5, 160]	² H	0.05 ± 0.07	1.42 ± 0.03	[37]	
	BEBC (1990)	[6, 150]	Н	0.911 ± 0.224	1.131 ± 0.086	[65]	
	BEBC (1992)	[12, 144]	Н	0.40 ± 0.13	1.25 ± 0.04	[66]	
	$\nu_{\mu} + n \rightarrow \mu^{-} X^{+}$						
	BEBC (1984)	[6, 112]	² H	1.75 ± 0.12	1.31 ± 0.04	[72]	
	FNAL 15 ft (1983)	[1.5, 160]	² H	-0.20 ± 0.07	1.42 ± 0.03	[37]	
		ν _μ +	p → μ+ Χ ^α)			
	FNAL 15 ft (1982)	[1.7, 74]	Н	-0.44 ± 0.13	1.48 ± 0.06	[68]	
	BEBC (1982)	[5, 75]	² H	0.02 ± 0.20	1.28 ± 0.08	[38]	
1	BEBC (1983)	[12, 96]	Н	-0.56 ± 0.25	1.42 ± 0.08	[64]	
	BEBC (1990)	[6, 144]	Н	0.222 ± 0.362	1.117 ± 0.100	[65]	
	BEBC (1992)	[12, 144]	Н	-0.44 ± 0.20	1.30 ± 0.06	[66]	
		ν _μ + ι	n → μ ⁺ Χ ⁻	-			
	BEBC (1982)	[1.5, 56]	² H	0.80 ± 0.09	0.95 ± 0.04	[38]	
•	Default GENIE Parameters						
	References given in ArXIV:2100.05884.						

Average multiplicity parameters

Low-W AGKY parameters

The parameters relevant for the $\langle n_{ch} \rangle$ calculation are tuned:

$$\langle n_{ch}
angle = \frac{\alpha_{ch}}{\alpha_{ch}} + \frac{\beta_{ch}}{\beta_{ch}} \cdot \ln\left(\frac{W^2}{GeV^2/c^4}\right)$$

• α_{ch} and β_{ch} are tuned against H and ²H data from FNAL 15 ft and BEBC on:

1.
$$\nu_{\mu} p \rightarrow \mu^{-} X^{++}$$

2. $\nu_{\mu} n \rightarrow \mu^{-} X^{+}$
3. $\bar{\nu}_{\mu} p \rightarrow \mu^{+} X^{0}$
4. $\bar{\nu}_{\mu} n \rightarrow \mu^{+} X^{-}$

These were used in the GENIE tune

• Therefore, a parameter per channel is extracted. I.e: $\langle n_{\nu p} \rangle$ for $\nu_{\mu} p$ interactions.

Effect of low-W and PYTHIA parameters

Relevant datasets

A total of 154 data points on $\langle n_{ch} \rangle (W^2)$ are available:

$\langle n_{ch} \rangle$ vs W^2 data from FNAL 15 ft and BEBC					
Initial state	Target	W^2 range [GeV ² /c ⁴]	Year		
$\nu_{\mu}p$	Н	[1.5,160]	[1976, 1992]		
ν_{μ} n	H and ² H	[1.5,160]	[1983,1989]		
$\bar{\nu}_{\mu}p$	Н	[1.7,144]	[1981,1992]		
$\bar{ u}_{\mu}$ n	H and ² H	[1.5,56]	[1982,1989]		

- The data is obtained from (anti)neutrino CC interactions
- The data used is from the 70's and 80's
- The same analysis requirements are implemented to the corresponding predictions
- The $\langle n_{ch} \rangle$ data is independent of the cross section
- Most of the datapoints have $W > 3 \text{ GeV}/c^2$

GENIE AGKY tune results

The main effect of the tunes is observed at the PYTHIA region:

ightarrow The tunes increase $\langle n_{ch}
angle$

This is a consequence of the **increase** in Lund *a* and Lund *b*

Parameter	2010 GENIE 2021 Global Fit		2021 ² H Fit				
	Low-W empirical model						
$\alpha_{\nu p}$	0.40	1.1 ± 0.3	1.2 ± 0.4				
$\alpha_{\nu n}$	-0.20	$1.75^{+0.14}_{-0.11}$	-0.58 ± 0.07				
$\alpha_{\bar{\nu}\rho}$	0.02	$1.32^{+0.16}_{-0.14}$	1.9 ± 0.08				
$\alpha_{\bar{\nu}n}$	0.80	1.11 ± 0.09	1.07 ± 0.3				
$\beta_{\nu p}$	1.42	$\textbf{0.79} \pm \textbf{0.15}$	$\textbf{0.9}\pm\textbf{0.3}$				
$\beta_{\nu n}$	1.42	0.5 ± 0.1	1.9 ± 0.3				
$\beta_{\bar{\nu}p}$	1.28	$\textbf{0.8}\pm\textbf{0.1}$	0.3 ± 0.1				
$\beta_{\bar{\nu}n}$	0.95	$0.88\substack{+0.09\\-0.08}$	$\textbf{0.9}\pm\textbf{0.2}$				
PYTHIA							
$P_{s\bar{s}}$	0.30	0.27 ± 0.04	0.29 ± 0.05				
$\langle p_{\perp}^2 \rangle [\text{GeV}^2/c^2]$	0.44	$\textbf{0.43} \pm \textbf{0.05}$	$\textbf{0.43} \pm \textbf{0.04}$				
E _{CutOff} [GeV]	0.20	$\textbf{0.30} \pm \textbf{0.04}$	$\textbf{0.24} \pm \textbf{0.05}$				
Lund a	0.30	1.53 ± 0.13	1.85 ± 0.15				
Lund $b [c^4/GeV^2]$	0.58	1.16 ± 0.09	1.0 ± 0.2				
	$\chi^2 =$	87.9/62 DoF	29.5/32 DoF				

 $\nu_{\mu} + p$ on hydrogen.

Tuning the AGKY Hadronization tune

Fully exploiting the GENIE tuning machinery

- First global AGKY tune
 - Tunning the low-W AGKY + PYTHIA altogether
- Focus on averaged charged multiplicity data
- Data-driven constrains to 13 non-reweightable
 parameters
 - Improved description of H+D data
 - Best-fit parameter estimations
 - Uncertainty estimations
 - (*) How can we propagate this uncertainties?

NuXTract @ CERN, October 2023

Professor-based Reweight

How can experiments further exploit the GENIE data-driven systematics in their analysis?

i.e. hadronization uncertainties

YOUR

Reweighting low-AGKY and PYTHIA

- Test sample $1/x \nu_{\mu}$ flux on H
- Parameters of interest
 - KNO-Alpha- ν p, unweighted (0.8), reweighted (1.8)
 - PYTHIA-Lunda, unweighted (1.9), reweighted (1.0)

The current observable is W plus another variable:

- p_T of hadronic system
- p_T , p of leading hadron in the final state
- *y* value
- p of leading π and channel information
- n_{ch} (chapped at 17)
- $n_{neutral}$ (chapped at 3)

Reweighting low-AGKY and PYTHIA

Reweighting low-AGKY and PYTHIA

Not possible to tune without hadronization

We must start with the hadronization tune for a consistent description of the SIS region

- The SIS region in GENIE is affected by low-W AGKY parameters
 - We simplified the problem into two separate tunes
- When the hadronization tune results are applied on the SIS region, we observe an increase of two-pion production
- The tunings are not fully independent in this configuration
 - This difference is absorbed as an increase of $R_{\nu p}^{CC2\pi}$ and $R_{\nu n}^{CC2\pi}$ in the free nucleon tune

Other parameters of interest

Angular decay in Resonance rest frame

Crucial point: Hadronization time scales?

In GENIE it is a single formation time

Additional Low-WAGKY

- Parameters determine which type of baryon is produced – always one, n or p
 - Hyperon production
 - Shower kinematics ...

And many more!

Nuclear effects I.e. FSI

Conclusions

RES, SIS and DIS region must be tuned altogether

- For νN , complications arise due to the lack of data
 - Electron-scattering is a clear alternative
- Large set of parameters to tune SIS contribution in GENIE, but need to tune it consistently with RES model
- Hadronization plays a non-crucial role and should be first tuned model of SIS region
- Little emphasis on systematic quantification, especially for hadronization
- DIS models tuned to electron data have well defined parameters to tune

More effort needed – revise hadronization models at energies relevant for neutrinos and quantify uncertainties with electron data

PYTHIA

- LUND string fragmentation model
- Uses the assumption of linear confinement as a starting point.
- As partons move apart, their colour flux tube gets stretched.
- Stored potential energy increases linearly with distance of colour charges.
- You can think of the "string" as the axis of the flux tube.
- The string constant is $\sim 1 \text{ GeV/fm}$.
- As the potential energy increases, the string may break producing a $q\bar{q}$ pair.
- String breaks causally disconnected; simulated in a convenient order. A break typically creates a meson.
- Baryons also produced; A string can break by antidiquark-diquark production, or baryons can be produced using a 'popcorn' model. With every break, a produced hadron takes away a fraction of the available energy/momentum.
- Continuing till some cut-off point.

Extending the validity of GENIE model to lower W

- On the right, the invariant mass distributions for inelastic events. (Distribution is smeared due to Fermi momentum.)
- Up plot: DUNE, Down: HK Red component: Resonances
- Kinematic area below 2.5 3.0 GeV in invariant mass is critically important.
- Augment PYTHIA with an empirical GENIE model, anchored to data and valid in the area below 3 GeV. Install handles to express uncertainty.

Empirical low-W model: How many hadrons are produced?

Average charged hadron multiplicities $< n_{ch} >$ could, more generally, have an additional Q^2 dependence:

$$< n_{ch} >= a + b \cdot ln(W^2/GeV^2) + b'ln(Q^2/GeV^2)$$

No Q^2 dependence has been observed in $\nu/\bar{\nu}$ scattering [H. Grassler et al., Nucl. Phys., **B223**, 269 (1983)].

Values of b' are 0.04 \pm 0.02 for ν p and 0.05 \pm 0.04 for $\bar{\nu}$ p

In GENIE, b' = 0 for all channels.

Empirical low-W model: Generating the particle spectrum

Because of kinematical constraints, it is assumed that the shower contains only 1 baryon. We decide between a p or n, with probabilities P_p and P_n (=1- P_p):

	n _{tot}	νρ	ν n	νp	ν̈́n
D	2	1.00	0.33	0.67	0.
rp	>2	0.67	0.50	0.50	0.33

Subsequently, one of those will be converted to a strange baryon (for ν interactions: $p \rightarrow \Sigma^+$ and $n \rightarrow \Lambda$; for $\bar{\nu}$ interactions: $p \rightarrow \Lambda$ and $n \rightarrow \Sigma^-$) The probability for generating a strange baryon is given by:

$$< n_{hyperon} >= a_{hyperon} + b_{hyperon} \cdot log(W^2)$$

where

	νρ	νn	νp	ν̈́n
a hyperon	0.022	0.022	0.022	0.022
b _{hyperon}	0.042	0.042	0.042	0.042

-

 $\nu_{\mu} + p$ on hydrogen.

 $\nu_{\mu} + p$ on deuterium.

 $\nu_{\mu} + n$ on deuterium.

- The 2021 GENIE global tune (red) underpredicts ²H data
- The 2021 GENIE ²H tune (green) overpredicts H data

Additional Low-WAGKY parameters of interest

- KNO scaling
- Draw actual multiplicities from a Poisson distribution with given average
- < n > P(n) = f(n/ < n >) is independent of W
- The function is parameterized using the Levi function

$$L(z;c) = \frac{2e^{-c}c^{cz+1}}{\Gamma(cz+1)}$$

	νρ	ν n	$\bar{\nu} p$	ν̈́n
с	7.93	5.22	as in νn	as in νp

