

Cross section Uncertainties in NOvA Analyses

Jeremy Wolcott Tufts University on behalf of the NOVA collaboration

ECT* Workshop on v Interactions October 22, 2024

Context

[NOvA physics scene & expt] — [Base cross section model]

Oct. 22, 2024 / ECT*

Which way are the **neutrino states ordered**?

 $\Delta P_{\nu\bar{\nu}} \propto \sin \delta_{CP}$ Do neutrinos exhibit

CP violation?

Oct. 22, 2024 / ECT*

3-flavor neutrino oscillations

4

Which way are the neuginflates ordered?

neutrino oscillations

 $\Delta P_{\nu \overline{\nu}} \propto \sin \delta_{CP}$ Do neutrinos exhibit **CP violation**? Are there light sterile neutrinos?

 $H = UH_0U^{\dagger} + H_{matter} \ \dots + H_{NSI}??$

Do we fully understand **neutrino propagation in matter**?

Neutrinooscillationsbeyond PMNS

Oct. 22, 2024 / ECT*

Which way are the neuginflates ordered?

neutrino oscillations

 $\Delta P_{
u \overline{
u}} \propto \sin \delta_{CP}$ Do neutrinos exhibit **CP violation**? Are there light sterile neutrinos?

Symme Neutressie Ooscillations beyond PMNS $H = UH_0U^{\dagger} + H_{matter}$ $H = H_{MSI}$?

Do we fully understand **neutrino propagation in matter**?

Is our picture of **neutrino scattering** sufficient?

3 Neutrino scattering

Which way are the neuginflates ordered?

neutrino oscillations

 $\Delta P_{
u \overline{
u}} \propto \sin \delta_{CP}$ Do neutrinos exhibit **CP violation**?

Oct. 22, 2024 / ECT*

Are there light sterile neutrinos?

Some Network Friday O OSCILLATIONS beyond PMNS $H = UH_0U' + H_{matter}$

Do we fully understand **neutrino propagation in matter**?

J. Wolcott / Tufts U.

3 Neutrino Is scattering scattering sufficient?

Will we observe a galactic supernova?

What can we learn from **cosmic muons**?

Do we see **magnetic monopoles** or other exotic phenomena?

NOvA: apparatus & vs

NOvA: apparatus & vs

Oct. 22, 2024 / ECT*

. . .

Analysis context

- Most uncertainties developed in context of **3-flavor oscillations**
 - Rely on strong ND-FD correlations/cancellation via "extrapolation" technique
 → next slide
 - Uncertainties typically chosen conservatively to "bracket possibilities"
 - Central value of model less important than plausible bounds from uncertainties
- Other customers (beyond-PMNS osc., cross section measurements) develop **separate uncertainties as needed**
 - ... where ND-data-driven uncertainties risk biasing results
 - ... where other v interaction processes (e.g.: NC) become dominant

Analysis context

մասհահահա

X

Base Simulation

X

հեւչնականո

ltion

probabilit

Convert

to reco E

Correct ND simulation to agree with data in reco $E_{v...}$

... via Far/Near transformation that comprises well understood effects (beam divergence, detector acceptance) + oscillations

True energy (GeV)

... results in **constrained FD E_v prediction** highly correlated with ND correction

Reconstructed energy (GeV)

Base Simulation

Upwards

correction

Data-Driven Prediction

FD

Downwards

correction

J. Wolcott / Tufts U.

GeV

Events/1

Base cross section model

Base simulation: GENIE 3.0.6

We begin with a "theory-driven" set of models* ...

... but it agrees poorly with our data (as do all other stock model configurations we t

so we apply post hoc "tuning" to get the model "close

QE	Multinucleon	RES	DIS	FSI
València 1p1h <mark>w/</mark> Z-expansion axial	València MEC	Berger-Sehgal	Bodek-Yang +	hN semi-classical cascade
form factor			AGKY/Pythia	

* We call our model collection N18_10j_00_000. It is built by starting with GENIE's G18_10b_00_000 and substituting the Z-expansion QE axial form factor for the dipole one. This combination was not available in the 3.0.6 release, but it could be in future versions.

Oct. 22, 2024 / ECT*

Base cross section model

Base simulation: GENIE 3.0.6

- We begin with a "theory-driven" set of models ...
- ... but it agrees poorly with our data
 (as do all other stock model configurations we tested) ...

Oct. 22, 2024 / ECT*

Base cross section model

Base simulation: GENIE 3.0.6

- We begin with a "theory-driven" set of models ...
- ... but it agrees poorly with our data
 (as do all other stock model configurations we tested) ...
 - ... so we apply *post hoc* "tuning" to get the model "close enough"

Tuning: multinucleon

"2p2h" Knock out two nucleons with an elastic-like interaction.

Most (?) uncertain part of the model...

Employ **fits to NOvA ND data** to get in the ballpark

[detailed discussion of technique with different base model in NuSTEC CTGWG Seminar Dec. 14, 2022 (J. Wolcott)]

Dedicated uncertainties address dependence on the other components of prediction (QE, RES) (more shortly)

[Note: tuning procedure is used for **3-flavor osc., NSI.** But **Sterile v, cross sections** use *unaltered* Valencia base model.]

Oct. 22, 2024 / ECT*

Tuning: FSI

Adjust central value to better match

π^{\pm} scattering data

in regions most relevant to NOvA ($T_{\pi} \leq 500 \text{ MeV}$)

NOvA Preliminary

Impact

- 5-10% effect on pion kinematics (more on uncertainties shortly)
- Ultimately subdominant for calorimetric E_{v} reco. used in NOvA

FSI model choice: **"hN"**

- Propagates hadrons through nucleus in finite steps
- Interaction probabilities simulated according to Oset quantum model
- More rigorous foundation than "hA" effective model?...
- Challenge: hN not directly reweightable
 - Addressed with BDT reweighting technique adapted from DUNE (see overflow)

Unlike MEC tuning, FSI adjustment is used by *all* analyses since it does not depend on v data

Current cross section uncertainties

[Philosophy] — [GENIE knobs] — [Bespoke knobs]

Cross section philosophy

- We have not sought "the right" cross section model just a *functional* model
 - "Extrapolation" insulates against many potential pitfalls, only requires being "close enough"
 - Viable theoretical underpinnings are not always needed (so long as data description is reasonable), though unquestionably preferred
 - NOvA detector design is relative coarse (by modern standards) \rightarrow hadronic systems are poorly resolved
 - Cross section measurements help us gauge how far off we are
- We typically choose *representative* uncertainties
 - Uncertainties to gauge whether "extrapolation" has weaknesses—don't need an exhaustive collection to get the right answer
 - "Bracketing" space of possibilities is usually sufficient
 - Fake data studies with out-of-model warping used to test for possible issues
- We have taken a NOvA-centric view to which "holes" to prioritize plugging first
 - 1p1h/2p2h 0π 3 RES 1π ≫ DIS/Nπ
 - $v \stackrel{?}{>} \overline{v}$

.

"There is only one thing a philosopher can be relied upon to do, and that is to contradict other philosophers" – William James, philosopher

Types of uncertainties

GENIE-Reweight uncertainties

CC QE	CC RE	S	CC "SIS"		
Dipole FF masses Coulomb M _A , M _V off/on	Dipole FF masses M _A , M _V	Δ→Nγ branching fraction	$\{v, v\} \times \{n, p\} \times \{1, 2\}\pi$ normalization		
Z-exp. FF coeffs RPA a ₀ , a ₁ , a ₂ , a ₃ , a ₄ off/on	Δ polarization	Δ→Nη branching fraction	$\begin{array}{c} \textbf{CC DIS} \\ \textbf{Bodek-Yang} \textbf{AGKY} \\ \textbf{A}_{ht}, \textbf{B}_{ht}, \textbf{C}_{V1u}, \textbf{C}_{V2u} \textbf{X}_{F}^{1\pi}, \textbf{p}_{T}^{1\pi} \end{array}$		
CC MEC	СОН		hA FSI		
np fraction of init. state "decay" angle	Axial mass M _A	NC norm	$\begin{array}{c} \mbox{Mean} & \mbox{"Fate fractions"} \\ \mbox{free paths} & \mbox{f}^{\pi}_{\mbox{Inel}},\mbox{f}^{\pi}_{\mbox{CEX}},\mbox{f}^{\pi}_{\mbox{ABS}},\mbox{f}^{\pi}_{\mbox{mprod}} \end{array}$		
$\begin{array}{c} \text{fraction} \\ \text{of MEC from} \\ \text{intermediate } \Delta \end{array} \begin{array}{c} \text{kinematic} \\ \text{shape} \end{array}$	Effective nuclear radius R₀	CC norm	$ \begin{array}{c} \lambda_{\pi}, \lambda_{N} & f^{N}_{Inel}, f^{N}_{CEX}, f^{N}_{ABS}, f^{N}_{\pi \ prod} \\ \\ \hline \\ \textbf{ plus NC variants} \end{array} $		
			of many of these		

GENIE comes bundled with a large suite of reweightable uncertainties

Oct. 22, 2024 / ECT*

GENIE-Reweight uncertainties

For NOvA:

- We use **some** of these knobs as-is
- Some **others** are irrelevant for our chosen configuration
- We've implemented our own knobs that provide alternate behavior to many others

GENIE comes bundled with a large suite of reweightable uncertainties

Oct. 22, 2024 / ECT*

Bespoke NOvA uncertainties

NOvA focus areas

CCQE

- Reimplementation of z-expansion a₁-a₄
 to preserve correlations
- RPA [predates similar GENIE knob]
- MEC
 - Kinematic shape [coupled to fitting]
 - E_{ν} dependence
 - np fraction [predates similar GENIE knob]
- RES
 - Low Q^2 suppression
 - Δ vs. non- Δ resonance composition
- Pion production [RES + {D/S}IS]
 - Charged vs. neutral baryon production
 - "SIS" channel normalizations

Oct. 22, 2024 / ECT*

Making non-reweightable GENIE parameters reweightable

- hN FSI
- Hadronization formation zone

Replacing GENIE knobs that used to be broken

- Coherent
 - CC, NC norms

No comparable GENIE knob(s)

 v_e / v_μ

- Radiative corrections
- 2nd class currents

Bespoke NOvA uncertainties

NOvA focus areas

CCQE

- Reimplementation of z-expansion a₁-a₄ to preserve correlations
- RPA [predates similar GENIE knob]
- MEC
 - Kinematic shape [coupled to fitting]
 - E_{ν} dependence
 - np fraction [predates similar GENIE knob]
- RES
 - Low Q^2 suppression
 - Δ vs. non- Δ resonance composition
- Pion production [RES + {D/S}IS]
 - Charged vs. neutral baryon production
 - "SIS" channel normalizations

Oct. 22, 2024 / ECT*

Making non-reweightable GENIE parameters reweightable

Replacing GENIE knobs that used to be broken

١S

Coherent

Hadronization formation zone

hN FSI

I'm going to explore these 3 further, where NOvA choices are more unique

(but feel free to ask about any others you're interested in as well)

Multinucleon uncertainties

Two separate use cases

ND provides *systematic control:*

3-flavor osc., NSI measurements

Fit-based uncertainty

Based on NOvA data

ND provides *signal*:

Sterile v, cross section measurements

Model-spread uncertainty

Based on external info

Multinucleon: fit-based unc.

Recall: central value fitted to ND data

Multinucleon: fit-based unc.

Recall: central value fitted to ND data

> Re-perform fit, with alternate base models, for uncertainties

(interpolate between these extremes)

Based on NOvA data

Multinucleon: model spread unc.

Variance in (q₀, |**q**|) over 3 MEC models:

SuSA, Valencia, GENIE "Empirical"

- Result just touches NOvA ND data at "+1σ"
 - → but note less flexibility in
 "moderate q₀" region compared to
 "fitted" unc. (previous)

1.2 True q₀ (GeV) 1.3 lance 0.8 0.6 Nomina 0.4 0.2 0.2 0.4 0.6 ^{0.8} True q_3^1 (GeV)^{1.2}

Based on external info

FSI: uncertainties

Based on external info

NOvA Preliminary

 f_{MFP} =0.4 and f_{MFP} =0.8

Use same "BDT reweight" technique as CV to implement in analysis

Oct. 22, 2024 / ECT*

FSI: uncertainties

Use same "BDT reweight" technique as CV to implement in analysis

Oct. 22, 2024 / ECT*

J. Wolcott / Tufts U.

Incoming pion KE (GeV)

Pion production uncertainties

Two new categories of syst:

- Relative strength of Δ vs non- Δ resonant production (1 uncertainty)
 - → Shift Δ and non- Δ resonances ±20% independently
 - Default GENIE: all resonances affected together
 - Overcounts Δ-specific uncertainty somewhat with other GENIE knobs, but "conservative"
- Charged vs. neutral baryon production in RES, DIS (2 uncertainties)
 - Shift ratio of RES Δ-channel proton/neutron final states by \pm 5%
 - Shift composition of proton/neutron final states in DIS
- Moderate impacts on pion-rich subsamples, but overall effect on uncertainty budget is minor

[see Neutrino '24 poster by M. Dolce & M. Martinez-Casales for more]

Oct. 22, 2024 / ECT*

For **3-flavor oscillations** (and NSI), **v interaction uncertainties do not dominate**

(and we don't expect this to change even when data-taking is completed)

J. Wolcott / Tufts U.

The **largest contributors** are not surprising:

- CCQE z-expansion FF
- CCQE RPA
- CC RES M_A and M_V
- v_e / v_μ (unconstrained by ND)

(and we don't expect this to change even when data-taking is completed)

J. Wolcott / Tufts U.

The **largest contributors** are not surprising:

- CCQE z-expansion FF
- CCQE RPA
- CC RES M_A and M_V

• v_e / v_μ (unconstrained by ND)

Recent theory work has concentrated on QE, but only ~20% of NOvA sample :(

		$ u_{\mu} \operatorname{CC}_{\mu} $ [PRD 107, 052011]	$\overline{\nu}_{\!\mu} { m CC}$	<i>V_e</i> CC [PRL 130, 051802]	 q - E avail [arXiv:2410.05526]	LOW Ehad	$ u_{\mu} \operatorname{CC} \pi^0$ [PRD 107, 112008]	
	Flux	9.1	9.9	10.3	11.4	~11%	8.3	
Predominantly v_{μ} CC π^{0} channels (major bkgd) and v_{e} MEC (in signal; not called out separately)	E-Scale + Det Model	6.1	6.1	8.6	3.8	~5-6%	7.6	
	Cross Section Model	1.9	2.5	9.8	5.6	~2%	4.6	Observables deliberately
	Neutron Modeling	1.5	2.3			~3%		in hadronic system, thus inevitable
	Statistical			7.4				
	2p2h Model				7.1			
	Pi Charge Exchange						3.8	FSI is major production
For neutrino scattering measurements, 3 xsec systs are sometimes important, but <i>which</i> depends a lot on the channel								mechanism for π ⁰
Oct. 22, 2024 / ECT*	J. Wolcott / Tufts U.							

electer and a second

.

Future directions

2-detector fitting

Cincin

[M. Rajaoalisoa, Neutrino '24 poster]

Strong collaboration interest in **exploring** simultaneous 2-det fits in lieu of "extrapolation" for 3-flavor oscillations

Oct. 22, 2024 / ECT*

I. Wolcott / Tufts U.

Not being able to depend on "extrapolation" forcing us to grapple with **need** for more exhaustive v int systematics

- Extending work begun • for sterile v search & xsec measurements (model spread MEC)
- New π-production systs emerged from this work

GENIE "AR23" and 'nusystematics'

- Recent flurry of effort from DUNE/SBN to produce models usable in multiple expt contexts
 - GENIE configuration AR23_20i_00_000 encapsulates base model choices
 - nusystematics contains publicly-accessible cross section uncertainty knobs (like NOvARwgt)
- We are seriously exploring leveraging this effort for our last major simulation production campaign
 - Base model has desirable flexibility for *post hoc* reweighting
 - Many systematics are in same spirit as, but more sophisticated than, our custom knobs
- Some technical hurdles to overcome
 - Legacy choices about MC format & persistence from 10+ years ago make this ... creaky, but doable with effort

Oct. 22, 2024 / ECT*

Summary thoughts

NOvA experience with xsec systs

- "Functionally equivalent" detector design & "extrapolation" paradigm a powerful combination
 - Blunted impact of intrigue over 1p1h & 2p2h
 - Enabled *staged* improvements to the model with limited personnel
 - Even at full exposure don't anticipate xsec systs limiting 3-flavor results
- "Owning" complete xsec model requires critical mass of interested generator experts
 - Our targeted "bespoke" uncertainties approach only possible against the larger backdrop of centralized GENIE library
 - We have profited extensively from cross-collaboration ... collaboration (MINERvA, T2K, DUNE)
- Effort required to convert non-reweightable to reweightable worth the investment
 - Expanded usable model space in regions important to NOvA (π FSI, hadronization)
 - Interesting intellectual / technical challenge, fun for students / postdocs

Lessons for future experiments

- Experiment & analysis design sculpt uncertainty needs
 - Different weaknesses of global cross section picture are thrown into relief at 600 MeV vs. 2 GeV vs.
 5+ GeV
 - "Extrapolation" vs. "simultaneous 2-detector fit" (vs. PRISM!) impose different demands on model
- Real data is a blessing and a curse
 - Don't always have the luxury of fully rigorous model-based uncertainties
 - Judicious "blends" of model- and data-based uncertainties can be effective stand-ins when all else fails
- Technical model synergy with the wider community is extremely profitable, but requires some "homework"
 - Choices made in early stages of persistence & large-scale simulation infrastructure can later become obstacles

Overflow slides follow

Oct. 22, 2024 / ECT*

BDT reweights

We use a boosted decision tree technique....

$$f_{BDT} = \alpha_{1} + \dots + \alpha_{N}$$

$$\simeq \frac{1}{N} \sum_{\substack{tree \\ i=1}}^{N} \alpha_{i} \Theta \left(\vec{x} - \vec{x}_{0}^{i} \right)$$

$$\stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{$$

BDT trained using binary logistic loss to distinguish between simulated GENIE CV and desired "alternate" sample ... to create reweights from the nominal to the uncertainty samples

$$w(\vec{x}) = \frac{f_{BDT}(\vec{x})}{1 - f_{BDT}(\vec{x})}$$

(detailed discussion of technique in NuSTEC CTGWG Seminar Dec. 14, 2022)

Oct. 22, 2024 / ECT*

