KAMPAI - Kaonic, Antiprotonic, Muonic, Pionic and "onia" exotic Atoms: Interchanging knowledge and recent results

Experimental challenges in study kaon-nucleon interaction at low energy at DAΦNE collider

Florin Sirghi on behalf of

SIDDHARTA-2 Collaboration

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI FRASCATI

ECT* Trento, 30 October-4 November 2024

KAONIC ATOMS RESEARCH

Kaonic atoms are formed by stopping a negatively charged kaon in a target medium H, He, D, N, ...

X-ray spectroscopy

Li, Be, C, Al, ...

Strong interaction induced width Γ and shift ε obtained by measuring the X-rays emitted

IDEAS

KAONIC ATOMS RESEARCH

Kaon Beam

Experimental setup

Motivated TEAM

Energy (keV) $E(K_{\alpha}) - E(K_{\alpha}^{(EM Only)})$ The study of exotic atoms were started by E. Fermi and E. Teller (1940), who postulated the existence of muonic atoms. Characteristic X-rays from pionic and muonic atoms were identified in the early 1950s.

"The <u>most important experiment to be carried out in low energy K-meson physics today</u> is the <u>definitive determination of the energy level shifts in the K-p and K-d atoms</u>, because of their direct connection with the physics of \overline{K} N interaction and their complete independence from all other kinds of measurements which bear on this interaction".

R.H. Dalitz (1982)

Primary beam: 30 GeV/c protons

Repetition cycle: 5 sec Flat top: 3 sec Production target: Au

Kaon momentum: 1.2 GeV/c (max.)

activities using the unique kaon beams available at J-PARC and DAФNE.

DAФNE collider at LNF

DEAR experiment (2001 - 2005)

(DAФNE Exotic Atom Research) kaonic hydrogen, kaonic nitrogen
Detector technology: Charge Coupled Device (ССD)

CCD55-30 Marconi Applied Technologies 1152 x 1242 pixels / chip pixel size 22.5 x 22.5 μ m total area per chip 7.24 cm² depletion depth ~ 30 μ m read-out time per CCD 120 sec. energy resolution ~150 eV @ 6keV temperature stabilized ~ 165 K

Charge Coupled Device (CCD)

X-ray detection with CCDs

J.-P. Egger, EXA - 02 , Vienna

CCD pixel detectors

- CCD principle
- direct X-ray detection
- background
- energy resolution
- measurement time
- efficiency

CCDs are excellent soft X-ray detectors!

but :

- limited energy range
- measuring time
- no trigger
- transparency of Si to X-rays

Problems in soft X-ray detection:

- background | low signal | windows (gas targets) | high background

Ideal detector: surface, energy + position resolution, efficiency, background suppression energy versus position mode

Charge Coupled Device (CCD)

X-ray detector
characterization:
 temperature stability
 gain stability vs X-ray rates
 Good Energy resolution
 Linearity measurements
Charge transport correction

Topological selection for background reduction

peak position vs pixel coordinates

SIDDHARTA (2004 - 2010)

(SIlicon Drift Detectors for Hadronic Atoms Research by Timed Application) KH, Kd, KHe³, KHe⁴

Detector technology: Silicon Drift Detectors (first large area) with integrated JFET

New x-ray detectors specially designed as well as readout electronics

energy range < 20 keV

energy resolution better than 150 eV (FWHM) at 6 keV; stability and linearity better than 10⁻⁴;

Fast detector - > trigger system at the level of $1\mu s$;

Operating in high radiation environment;

Custom topology – large active area (~ cm² / channel)

New SDD Charge Preamplifier configuration

SIDDHARTA-2 setup: cryogenics

- ✓ new solutions for the cooling scheme target separated from SDD
- ✓ Better control of target parameters (pressure, temperature, density,....)

❖ Target + SDD cooling

Leybold MD10 - 18 W @ 20 K target cell and SDDs are cooled via ultra pure aluminum bars

 $T_{TC} = 20-30 \text{ K}$ $T_{SDD} \sim 130 \text{ K}$

✓ Second stage dedicated to target cooling

SIDDHARTA-2 setup: cryogenic targets

Selected materials in different configuration:

vacuum entrance windows

target walls

would eliminate Nitrogen and Oxygen contamination

SIDDHARTA-2 setup: cryogenics

▲ 68.864

68.7

68.5

- ✓ Dedicated lines for SDD cooling
- ✓ Better control of target parameters
- √ (pressure, temperature, density,....)

SDD with external CUBE preamplifier

New monolithic SDDs arrays have been developed by Fondazione Bruno Kessler

new technology, lower production cost

- 2x4 matrix SDD units (0.64 cm²)
- active/total surface ratio of 0.75

A CMOS low-noise charge sensitive preamplifier (CUBE operate at lower cryogenic temperature (up to 50k)

SIDDHARTA-2 Ceramic carrier

SDDs Calibration Procedure in DAPNE

Silicon Drift Detectors (2020-2021) laboratory tests

Characterization and optimization of the SDDs energy and time response in preparation for the SIDDHARTA-2 experiment

Silicon Drift Detectors spectroscopy response

The energy response is linear within few (<5 eV between 4 keV and 14 keV) Excellent energy and time resolution @ 140 K

Monte Carlo simulations, modern algorithms and machine learning techniques

Optimization of the setup and detectors response (degrader curve, trigger, SDDs, veto, ...)

SIDDHARTA-2 setup: kaon trigger and luminosity monitor

SIDDHARTA-2 setup: kaon trigger and luminosity monitor

The combined used of Kaon Trigger and SDDs drift time allows to reduce the asynchronous background by a factor $\sim 2\cdot 10^4$

SIDDHARTA-2 setup: Bottom Kaon Detector

Count 10² **Bottom Kaon** detector

scintillator

SIDDHARTA-2 setup: veto systems

optical cement

VETO system adds - VETO-3

2 pairs of scintillator
 640 x 130 x 10 mm³ Scionix EJ-200

R10533 PMTs Hamamatsu

SIDDHARTA-2 setup: shielding

 Improve the lateral shielding around the vacuum chamber after adding VETO3 detector

Redesign and complete the bottom shielding near to IR

Kaonic Atoms measurements

The road to the first Kaonic Deuterium measurement

DEAR 2002 SIDDHARTA 2009 SIDDHARTA-2 2022 **EXKALIBUR**

Project Timeline – Kaonic deuterium run completed

- First run with SIDDHARTA-2 optimized setup for 200 pb-1 integrated luminosity: May July 2023 completed
- Second run Autumn Winter 2023 goal: estimated 300-400 pb⁻¹ completed
- Third run 2024 goal: 400 pb⁻¹ completed
- Post-Calibration: goal100-150 pb completed

Goal: integrated luminosity $\sim 200 \text{ pb}^{-1}$ (with injections)

End of kaonic deuterium Run1

2023, July

Total: ~200pb-1

Goal: integrated luminosity $\sim 300 - 400$ pb⁻¹

End of kaonic deuterium Run2

2023, December Total: ~344 pb⁻¹

HPGe and CdZnTe

Goal: integrated luminosity ~ 400pb^{-1}

End of kaonic deuterium Run3

2024, April

Total: ~450 pb⁻¹ (to ensure 800 pb⁻¹

of useful data)

Integrated luminosity 150-200 pb⁻¹ (1 month)

Extension of the SIDDHARTA-2 run, also as post-calibration

2024, July

Total: ~200 pb-1 (low density run)

- \sim 1200 shifts for a total of \sim 10 000 hours of data taking and
- $\sim 1700~pb^{-1}$ deliverd by DAΦNE allowed to perform the kaonic deuterium, helium, neon and hydrogen measurements

SPARE

EXtensive
Kaonic
Atoms research: from
Lithium and
Beryllium to
URanium

Kaonic Hydrogen: 200 pb⁻¹ - with SIDDHARTA2 setup - to get a precision < 10 eV (KH)

Future plans

- proposal to perform fundamental physics at the strangeness frontier at DAФNE for a 3-years period (post-SIDDHARTA-2)
- presented in varies Scientific Comity and INFN commissions

Selected light kaonic atoms (LHKA)

Selected intermediate and heavy kaonic atoms charting the periodic table (IMKA)

Ultra-High precision measurements of Kaonic Atoms (UHKA)

Dedicated runs with different types of detectors: SDD 1mm, CZT detectors – R&D in advanced phase HPGe, crystal HAPG spectrometer-VOXES project

