Constraining the strength of the vector interaction
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Outline:

Motivation: why is the vector interaction (Gy//gy ) important?

Major goal of the exercise

The formalism of our approach, namely the NJL model

Results

Conclusion



Motivation

Why is the vector interaction (Gy//gy) important?



Importance of vector interaction

1. In a dense environment, it becomes necessary to consider a non-zero vector
interaction due to its direct coupling with the number density operator.
m==) A typtical example: (77"q)?
m==) The zeroth component corresponds to the density operator: (¢! ¢;)?

mm=) The non-zero density environment induces a non-zero vector interaction.



Importance of vector interaction

2. It affects the restoration of the chiral symmetry at non-zero i g:
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Importance of vector interaction

3. It directly influences the location of the critical endpoint (CEP) and the curvature of

the chiral crossover line at zero U g:
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4. It can also impact the baryon numberdensity and the pressure of the system and thus
plays an important role in obtaining acceptable equation of state (EOS)

for astrophysical objects like neutron stars.



Strenght of the vector interaction

» The strenght of the vector interaction (Gy//gy ) is not a well-known quantity:

Induced by the medium and thus cannot be fixed using vector meson properties
in the vacuum. This is in contrast to the scalar interaction.

=) It strength is varied in units of the scalar interaction.

» In fact, its sign is not universally agreed upon: either positive or negative
== Implications



Existing knowledge on vector interaction

Multiple efforts have been put in the past to understand the vector interaction and
its implications for QCD.

= Either by playing with the strength of the interaction parameter
[K. Fukushima, arXiv:0803.3318]

== Or by comparing the curvature calculated by LQCD studies
[N. M. Bratovic et al., arXiv:1204.3788]
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Goal

What we want to achieve?



How do we constrain the vector interaction?

Both CEP and curvatures are affected by the vector interaction, as already discussed.

We choose curvature (not CEP!) to decide on its strength, which has also been previously
exploited.

More precise and controlled lattice data provides narrower bound.

In addition, we investigate the effects of flavour independent and dependent vector

interactions. Also the effect of strangeness neutrality. Note: We assume no restrictions on
the sign of the vector interaction.

As a model prediction we estimate the behaviour of the curvature as a function of
strangeness chemical potential (if I get time).



Formalism

Which method do we use to serve our purpose?



Formalism

 We work with a 2+1 flavour NJL Lagrangian,

&
L=q(id —m+1"0) a+Gs D [(@Na)? + (77" Xaq)?]

a=0

— 8K |det(qPrq) + det(qPrLq)]

_JGv(@*e) Model-I
gv Zi:[} [(@7“)"&@')2 o 2 (_Q'F?:”f“'}’ﬁ)‘-aQ)E} Model-II

Where: qT — (’Lr:: d: S)) m = dlag(mu mgy, ms) and :E} = diag(ﬂu: Hd aus)

e Model-I: flavour independent vector interaction

e Model-II: flavour dependent vector interaction



Thermodynamic potential

e The thermodynamic potential is (7', 1t) = Qeona + Lvac + Lmea

2
Where, Qcond — ZGS‘ Z G‘"? — 4K H{Ti = {GV (Zi ;’1) —% Model-I
[K. Masuda et al., arXiv:1212.6803] - | gv 2ini -~ Model-II

[ K. Fukushima, arXiv:0803.3318]
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with E; = \/p? + M?, 0; = (g;q;) is the quark condensate and n; = (qf ¢;) is the number density.

Qmed — _QINT(;TZ (].H |:]_ _|_ {_j_{Et{EJJ+!11]XT]

i —2Gy > ;nj — Model-I (mixing)

M; =m; — 4Gg0; — 2Ko 1; =
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Gap equatons and parameters

e We solve the gap equations:

012

do,, - doy B do -

e The chemical potentials of the system:

e The parameters of the model:

of2

Q
0 0

Hs = 3 HB — Ps-

1

1

My = Hd = § HB,

A (MeV) | GsA? | KA® | my(MeV) | mq(MeV)
Set I| 631.4 | 1.835 | 9.29 5.5 1367
Set II| 602.3 | 1.835 | 12.36 5.5 140.7
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How to calculate the curvature coefficients?

For small chemical potential (j1x ), the pseudocritical line can be Taylor expanded at the lowest order in ;@{j where
one defines the line with the following ansatz:

2 4
Toc(ix) _ | _,ox ( px ) - mf( px ) |
]_'}]f.'.(o) j—jrlt‘(o) TP"J(U)

Here, pux corresponds to chemical potential associated with various charges like baryon charge B, electric charge @,
and strangeness S.

==) Methods utilised: Taylor expansion/imaginary chem pot Relevant LQCD refs:

They agree with each other. [R. Bellwied et al., arXiv:1507.07510]

[C. Bonati et al., arXiv:1805.02960]
[A. Bazavov et al., arXiv:1812.08235]
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Results



Curvature comparison (K »)

0.03 . . . 0.03
Setl Setll
[ =
0.025 0.025 -
0.02 0.02 -
(3} [3Y}
X X
0.015 0.015
0.01 ¢ 0.01 |
0.005 0.005 r
Model |
0— : : : ; : ' 0
-0.2 -0.1 0 | 0.2 0.3 0.4 0.5
&V/GS
A (MeV) | GsA? | KA® | my(MeV) | ms(MeV)
Set 1| 631.4 | 1.835 | 9.29 5.8 135:7
Set II| 602.3 | 1.835 | 12.36 5.5 140.7

» (Constraining vector interaction:
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Phase diagram
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Phase diagram
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e In comparison with other existing studies.
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Curvature coefficient:K 4
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e Lattice QCD estimates for K 4 are consistently zero within the error bars (0.001(7)), as small ng/T
limit, the parametric form has a weaker dependence on K 4.

» This coefficient provides limited constraints on the coupling strengths Gy and gy .
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Conclusion

We used improved LQCD data on the curvature (K ) of the chiral crossover line to
constrain vecotr interaction. Improved bound can be obtained.

We perform our analysis in both zero strangeness and strangeness neutral conditions.
The results are consistent with each other.

With the constrained vector interaction we obtained the phase diagram along with critical
end point. In the model, it is present only for attractive interaction.

From the fourth order of the curvature coefficents (K 4) we cannot really put constraints
on vector interactions.
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Thank you
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e It decreases for both models and for both repulsive and attractive interactions
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