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Pitch 1011
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In correlation analysis, a multiply exposed picture of 
the particle-laden fluid shows displaced pairs of particle 
images. The correct correlation of particle images allows 
determination of the displacement of a particle over 
the interval between short, non streaking exposures, and 
hence determination of the particle's velocity, as well as 
that of the surrounding fluid. 

Correlation analysis has been applied using fine-
grained photographic media, allowing extremely high 
precision in velocity determination, at the cost of a great 
deal of analog-to-digital conversion and subsequent com-
putation. Simply replacing the photographic media with 
a digital imager removes the analog-to-digital conver-
sion, replacing it with a prohibitive data storage problem. 
We chose to pursue a lower-accuracy, near-real-time, all-
digital approach. 

The experiments being conducted in the Research 
Center (a two-dimensional jet in a stratified fluid and a 
cylinder towed perpendicular to its symmetry axis in a 
stratified fluid) produce essentially two-dimensional ve-
locity fields. The analysis of these velocity fields is 
beyond the scope of this article, but it requires many 
individual instances that collectively capture the overall 
temporal statistical characteristics of the flows while pre-
serving spatial relationships between distant points in the 
fluid. Thus, PDV presented the only real option for an 
experimental technique. However, the need for many 
samples would create a serious data problem in either 
analog or digital form if the approach were to collect 
images for subsequent analysis. The specific analysis 
planned for these data is not particularly sensitive to small 
velocity errors, thus allowing us to envision a low-
accuracy real-time system, where we only need to store 
the reduced velocity field rather than raw imagery, with 
a consequent huge reduction in required data storage 
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capacity. This approach appeared to be marginally fea-
sible at the project's start and might not have been war-
ranted for our applications alone. We realized, however, 
that the exponential improvement in computational re-
sources would soon allow for the generalization of our 
system to higher-accuracy requirements, and felt that we 
could therefore begin something with significant general 
utility and much greater convenience than available sys-
tems, in addition to meeting our present, somewhat spe-
cialized needs. 

The following sections describe the acquisition of par-
ticle displacement data, the algorithm on which our PDV 
system is based, our approach to developing and testing 
it, and some considerations regarding its implementation. 

TYPICAL EXPERIMENT 
A towed cylinder experimental setup is shown in 

Fig. 1. A platform containing a charge-coupled device 
(CCD) camera is attached to the top of the vertical cyl-
inder in the tank. To the side of the tank are a light source 
and a shutter that interrupts and disperses the light. The 
light passes through the shutter, reflects off the particles 
in their density-matched fluid layer, and impinges on the 
camera. The camera's field of view is roughly centered 
on the cylinder and is sufficiently broad to include all 
salient flow locations. 

Once the particles have been introduced into the strat-
ified tank and the fluid has stabilized, the camera is 
prepared for image acquisition. The cylinder is towed 
through the tank to create the desired velocity flow, the 
camera is triggered, and the shutter is opened twice to 
generate the double-exposure image in the camera. This 
image is transferred to the computer for analysis. 

A portion of a typical image is shown in Fig. 2. The 
brighter white dots represent particles illuminated in the 

Stratified 
fluid 

Figure 1. Towed cylinder experimental 
setup. 
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V1 → V1 cos θ + V2 sin θ
Under a rotation we have, e.g.,

So it makes sense to organize the components of a vector in a multiplet:

V = (V1 V2)

Likewise,

Tμν = ( ϵ …
⋮ ⋱ )

Consider the energy, E.

E → γ (E − βpx)
Under a Lorentz transformation,

Pμ = (E px py pz)
Thus,
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