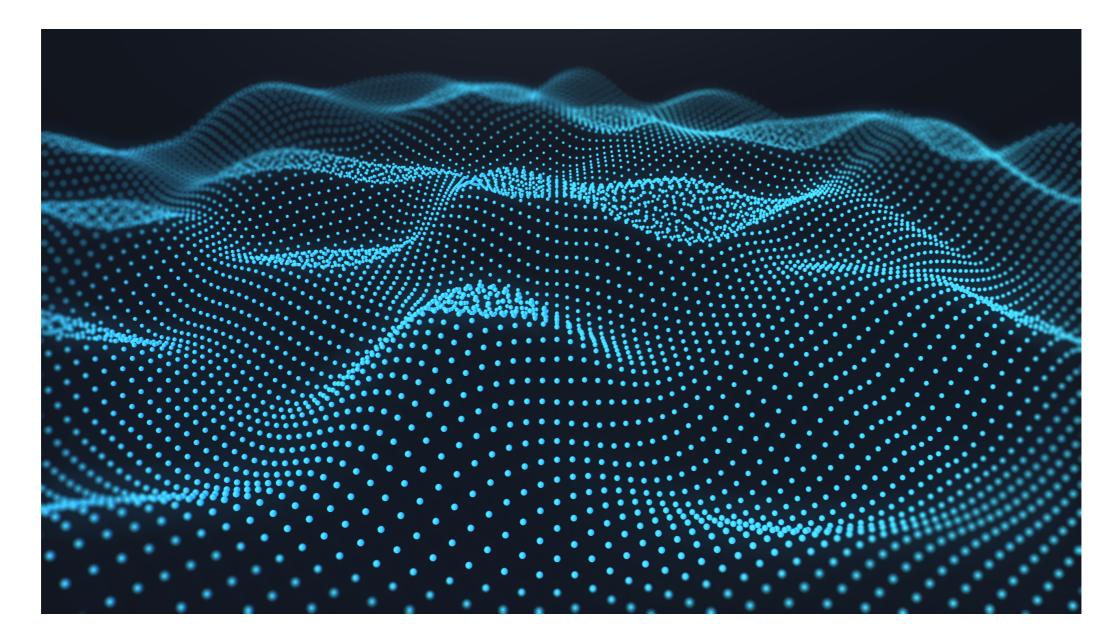
An overview of hydrodynamics for QCD



ECT* Trento, 18.9.2024

Umut Gürsoy

Outline

- Hydrodynamics for heavy ion collisions
- Bayesian analysis and characterization of transport
- Two gaps in theory: magnetic fields and spin flow
- Magneto-hydrodynamics and associated transport channels
- Spin-hydrodynamics

Hydrodynamics: theory of slow variables



Effective theory of conserved quantities, organized in powers of derivatives $\partial_t \varphi_{slow}$, $\nabla \varphi_{slow}$

applicable e.g when $\tau T >> 1$

Slow variables: energy-momentum current

 $T_{\mu\nu}$

Hydrodynamic equations

$$\nabla^{\mu}T_{\mu\nu} = 0$$

Dynamical variables and constitutive relations: $u^{\mu} = dx^{\mu}/d au$, T

$$T^{\mu\nu} = E(\mathbf{T})u^{\mu}\mathbf{u}^{\nu} + P(T)\left(u^{\mu}u^{\nu} + \eta^{\mu\nu}\right) + \mathcal{O}(\nabla)$$

Fluid velocity and temperature $u^{\mu}(x), T(x)$

• Initial conditions: temperature and velocity densities ?

• Microscopic data: EoS and transport coefficients

• Acausal propagation: numerical instabilities

• Initial conditions: temperature and velocity densities ?

Fluctuating Glauber model for incident nucleons; parametrisation of wounded nucleons ⇒ parton densities Moreland et al. `15, `20

• Microscopic data: EoS and transport coefficients

• Acausal propagation: numerical instabilities

• Initial conditions: temperature and velocity densities ?

Fluctuating Glauber model for incident nucleons; parametrisation of wounded nucleons ⇒ parton densities Moreland et al. `15, `20

• Microscopic data: EoS and transport coefficients

Lattice QCD for small baryon density; EFT, holographic models at intermediate density (neutron stars)

• Acausal propagation: numerical instabilities

• Initial conditions: temperature and velocity densities ?

Fluctuating Glauber model for incident nucleons; parametrisation of wounded nucleons ⇒ parton densities Moreland et al. `15, `20

• Microscopic data: EoS and transport coefficients

Lattice QCD for small baryon density; EFT, holographic models at intermediate density

• Acausal propagation: numerical instabilities

Second order hydrodynamics; Müller-Israel-Stewart model **Denicol et al.** '14

14 parameter MIS model

$$T^{\mu\nu} = E u^{\mu} u^{\nu} + (P + \Pi) \left(u^{\mu} u^{\nu} + \eta^{\mu\nu} \right) + \pi^{\mu\nu}$$

bulk viscous pressure

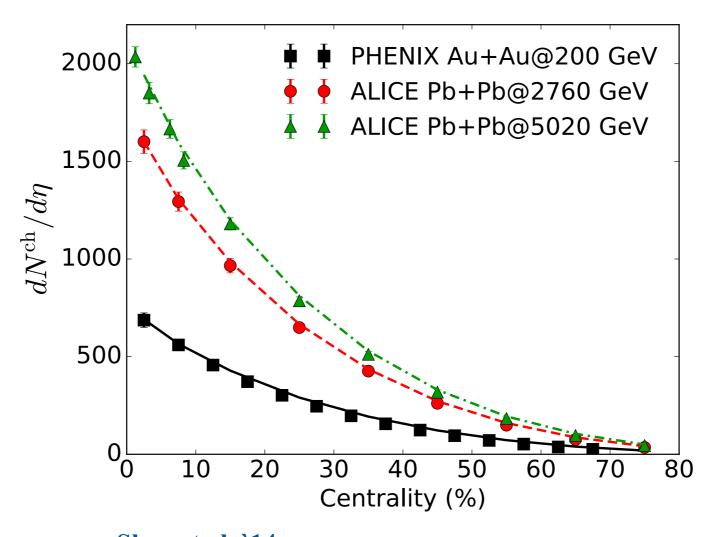
transverse traceless shear

Instabilities avoided by finite relaxation times in dissipative terms

$$(u \cdot \nabla) \Pi = -\frac{1}{\tau_{\Pi}} \left[\Pi + \zeta \nabla \cdot u + \cdots \right],$$
$$\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} (u \cdot \nabla) \pi^{\alpha\beta} = -\frac{1}{\tau_{\pi}} \left[\pi^{\mu\nu} - 2\eta \sigma^{\mu\nu} + \cdots \right]$$

6 parameters for $\eta(T)$ and $\zeta(T)$, and 8 second order parameters

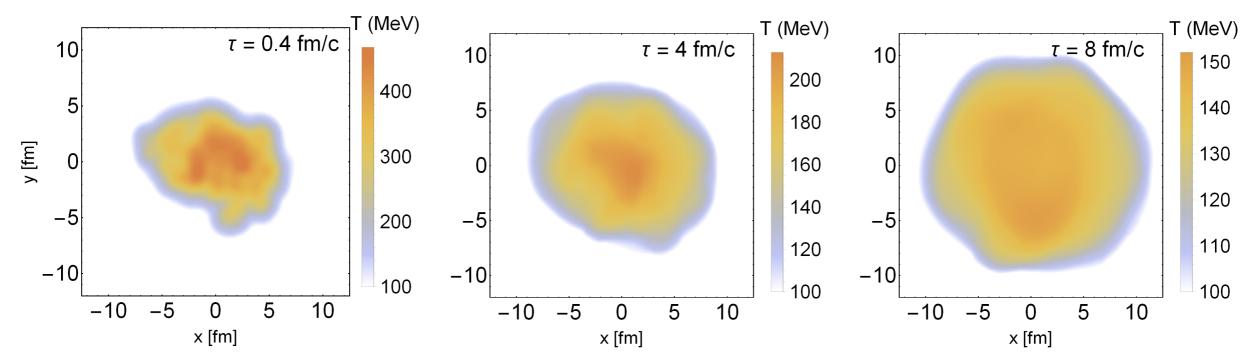
Data vs hydro



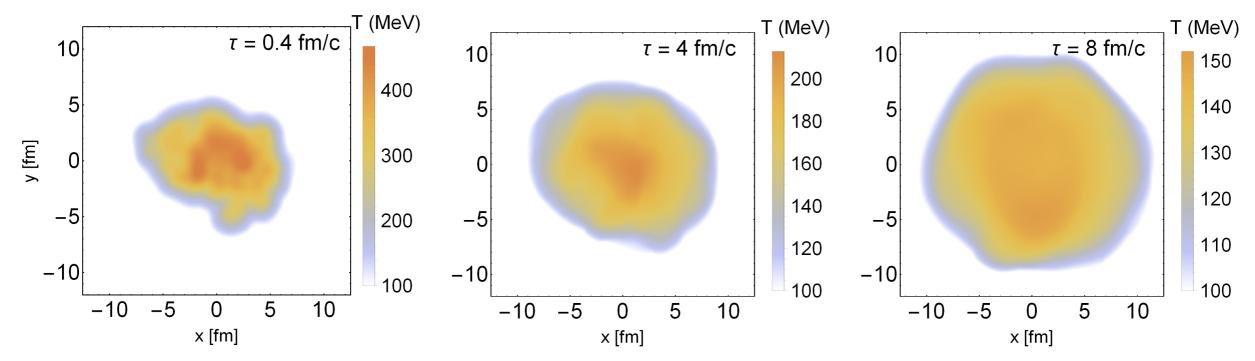
Boost invariant viscous hydro

Lattice QCD \Rightarrow EoS Data fit/kinetic theory $\Rightarrow \eta, \zeta, \tau$'s

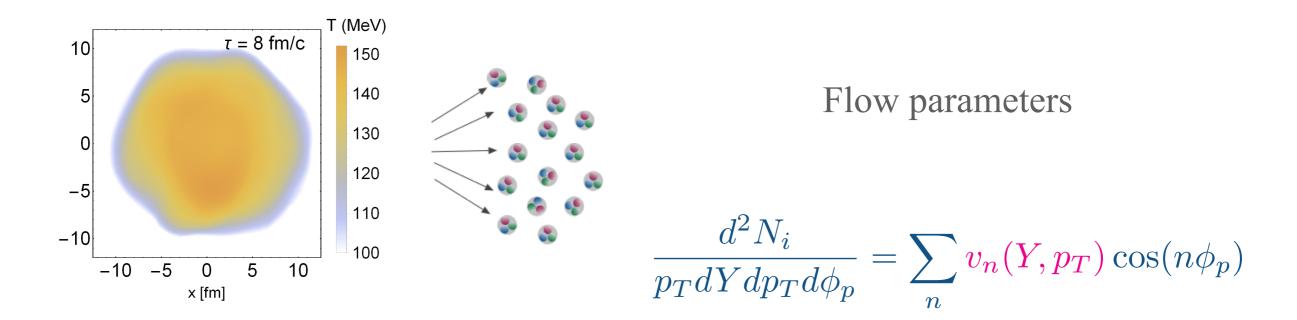
Advanced simulations



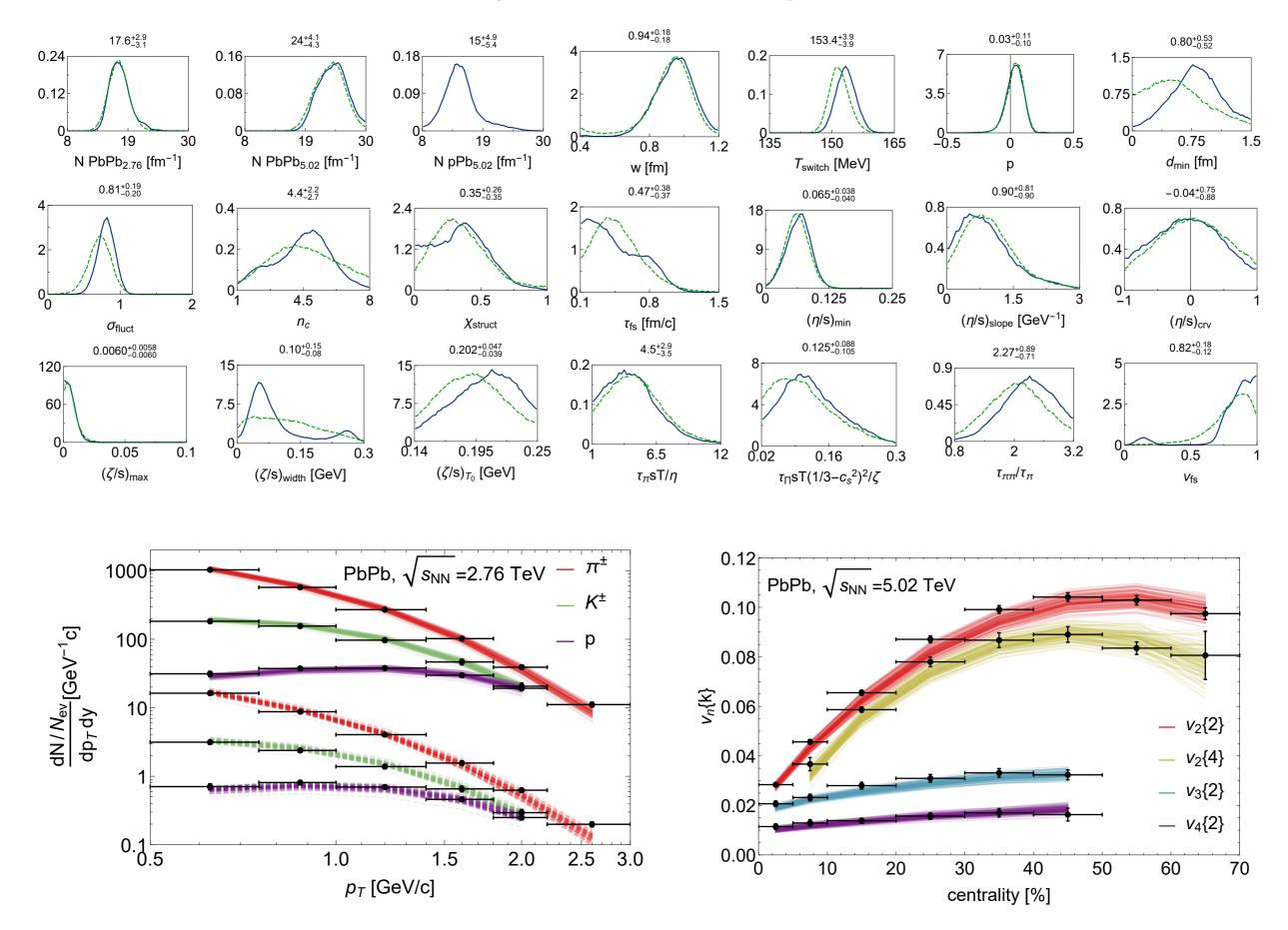
"Trajectum" framework: Nijs, van der Schee, Snellings, UG '20



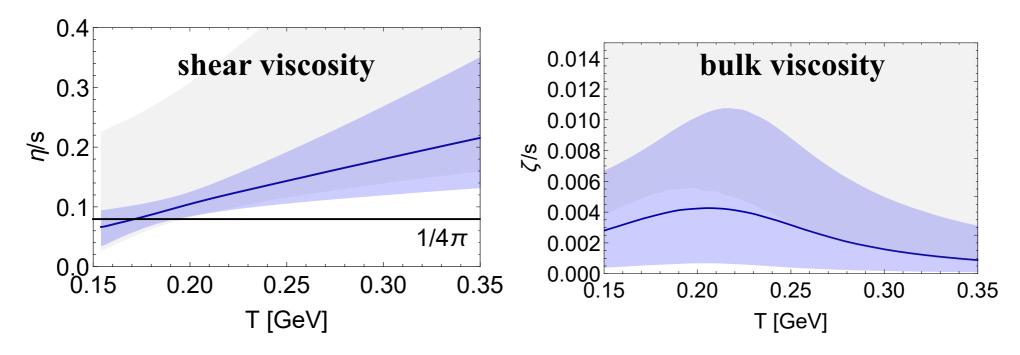
"Trajectum" framework: Nijs, van der Schee, Snellings, UG '20



Bayesian analysis

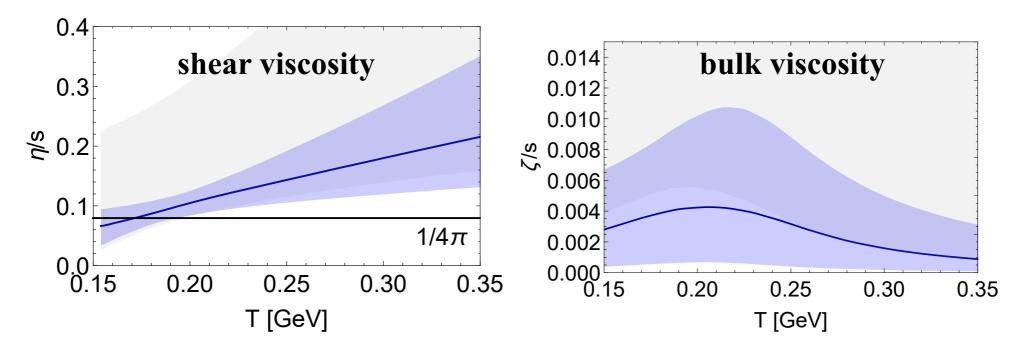


Transport properties

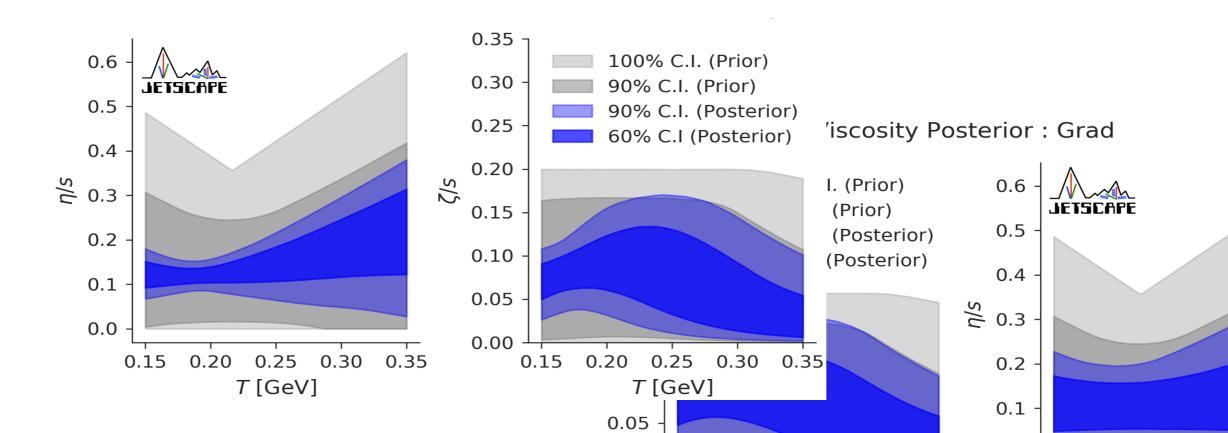


Nijs, van der Schee, Snellings, UG '20

Transport properties



Nijs, van der Schee, Snellings, UG '20



How to reproduce T-dependence of η /s in holography?

Buchel, Liu, Starinets '04; Cremonini, Szepietowski, UG '12; Buchel '18, ...

How to reproduce T-dependence of η /s in holography?

Buchel, Liu, Starinets '04; Cremonini, Szepietowski, UG '12; Buchel '18, ...

Need higher derivative corrections coupled to functions of dilaton!

 $G(\Phi)$ Riemann² suffices to fit Bayesian analysis result

T. Apostilidis, E. Preau, UG, ongoing

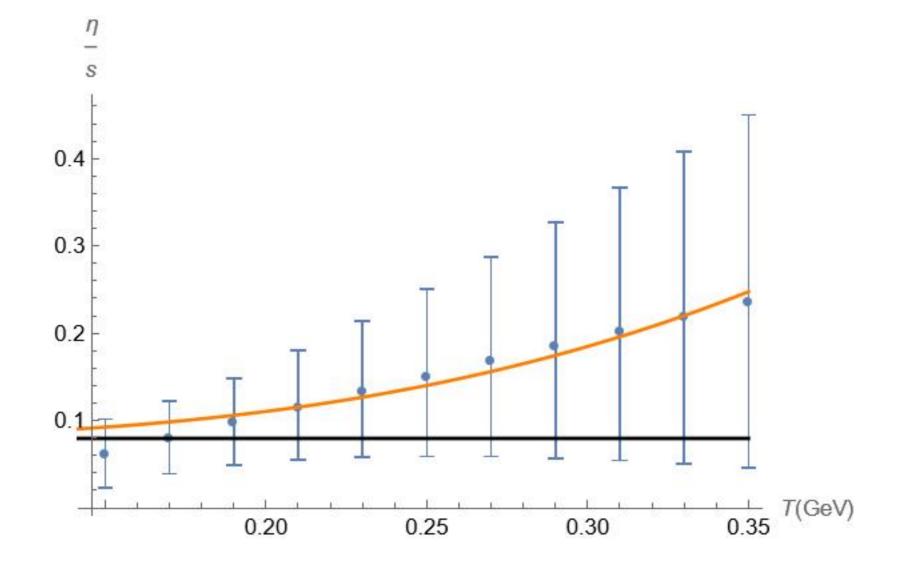
$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \left[R - 2(\nabla\Phi)^2 + V(\Phi) + \ell^2 \beta G(\Phi) R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right]$$

 η /s given by semi-analytic formula

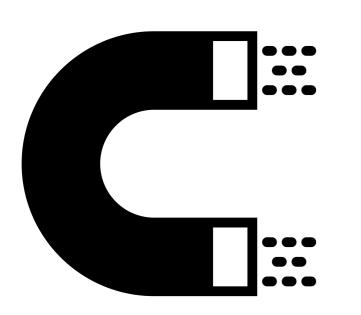
$$\frac{\eta}{s} = \frac{1}{4\pi} \left[1 + \frac{2}{3}\beta\ell^2 \left(-G(\Phi_h)V(\Phi_h) + \frac{3}{4}G'(\Phi_h)V'(\Phi_h) \right) \right]$$

Solve for $G(\Phi)$ to fit data..

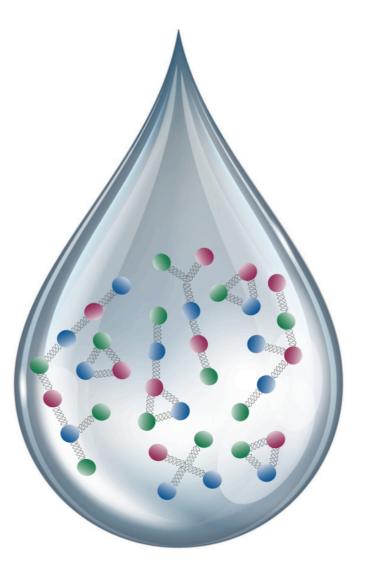
T. Apostilidis, E. Preau, UG, ongoing



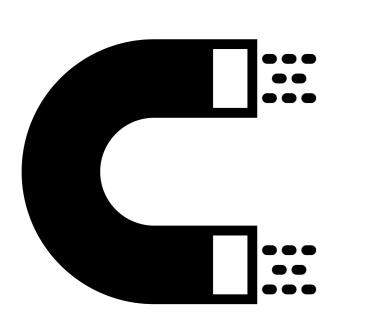
Hydrodynamics



$$\label{eq:B} \begin{split} Magnetic \ field \\ B \sim 10^{14} \, B_{MRI} \end{split}$$

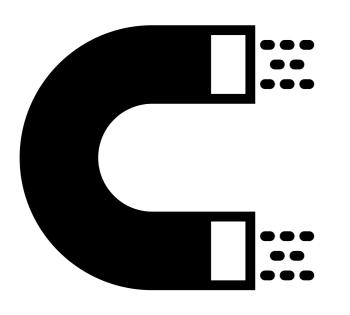


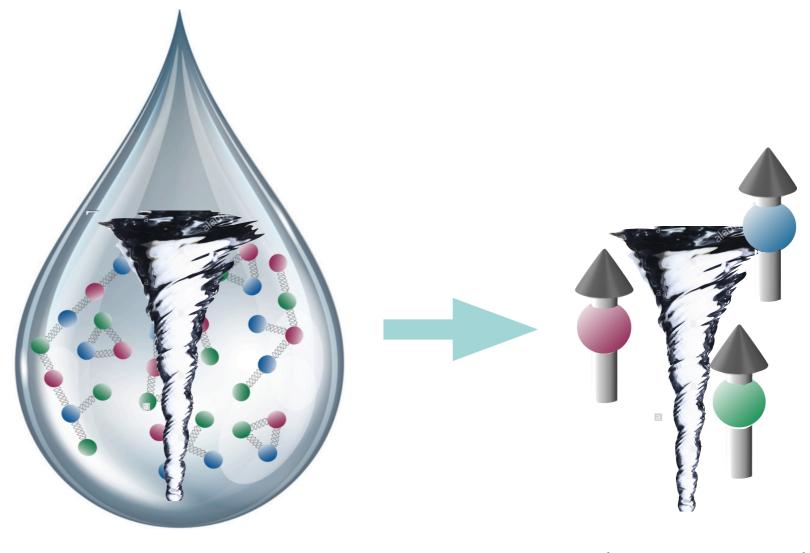
Hydrodynamics



Strong vortical structure $\omega \sim 10^{22} \, \text{s}^{\text{-1}}$

Hydrodynamics





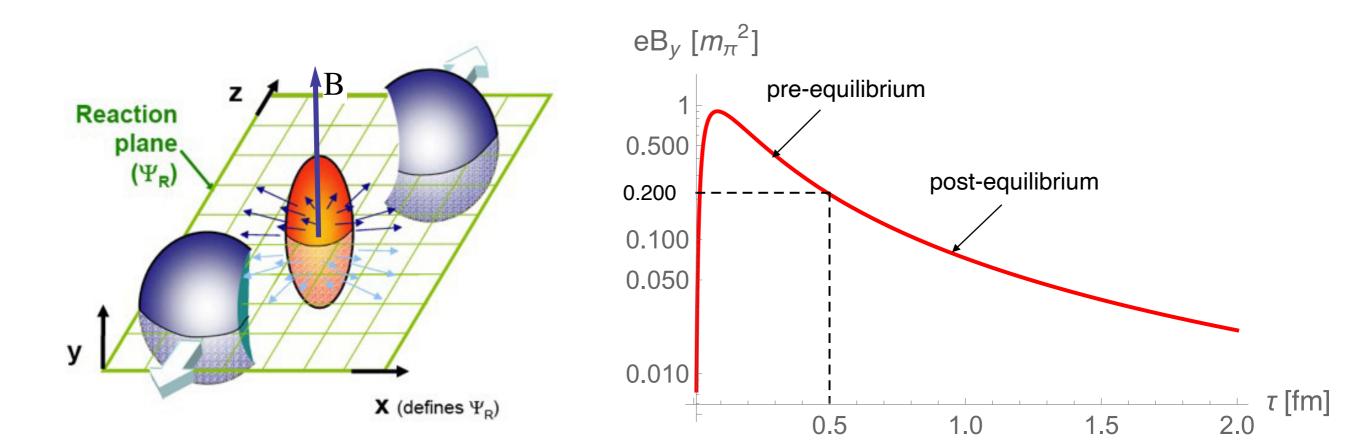
Charge and spin flow

Magnetic field in heavy ion collisions

Spectator nucleons $eB_y [m_\pi^2]$ R pre-equilibrium z Reaction 0.500 plane (Ψ_R) post-equilibrium 0.200 0.100 0.050 у 0.010 τ [fm] **X** (defines Ψ_{R}) 0.5 1.5 2.0 1.0

Skokov et al `09; Tuchin `10 `13; Voronyuk et al `11 Mclerran, Skokov `13 Kharzeev, Rajagopal, UG `14 Inghrami, Becattini, Beraudo, del Zanna`12

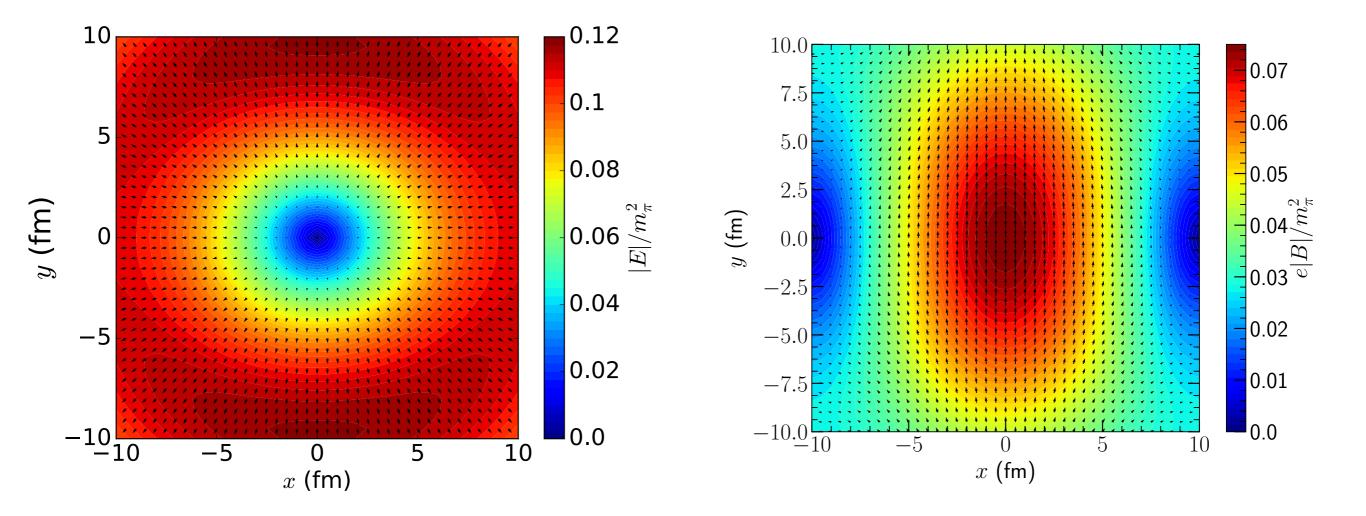
Magnetic field in heavy ion collisions



Skokov et al `09; Tuchin `10 `13; Voronyuk et al `11 Mclerran, Skokov `13 Kharzeev, Rajagopal, UG `14 Inghrami, Becattini, Beraudo, del Zanna`12

Cannot ignore *electric field* $E \approx E_0 \exp(-\sigma \tau) \sim E_0$ with $\sigma = 0.023$ fm⁻¹ and $\tau \sim 10$ fm

Electromagnetic fields in QGP



z=0, τ =1 fm/c, Pb-Pb collision at 20-30% centrality, 2.76TeV

Marcus, Kharzeev, Rajagopal, Shen, UG '18

Magneto-hydrodynamics

Slow variables: energy-momentum, electromagnetic field

 $T_{\mu\nu}$ B^{μ} E^{μ}

• Magnetohydrodynamic equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\rho\nu}J_{ext\,\rho} \qquad 4 \text{ equations}$$

$$\nabla_{\mu}\left(F^{\mu\nu} - M^{\mu\nu}\right) = \rho u^{\nu} + J^{\mu}_{ext} \qquad 4 \text{ equations}$$

$$\epsilon^{\mu\nu\alpha\beta}\nabla_{\nu}F_{\alpha\beta} = 0 \qquad 3 \text{ equations}$$

• Dynamical variables:

 $u^{\mu}(x)$ T(x) $\mu(x)$ $E^{\mu}(x)$ $B^{\mu}(x)$ 3 1 1 3 3

with charge and electromagnetic polarization

$$\rho = \frac{\delta \mathcal{L}_m}{\delta \mu} \quad M^{\mu\nu} = \frac{\delta \mathcal{L}_m}{\delta F_{\mu\nu}} \quad \mu = u \cdot A$$

Kovtun, Hernandez `17; Grozdanov, Hofman, Iqbal `17

Perturbative magneto-hydrodynamics

• Solve hydro without E, B \Rightarrow fluid velocity \vec{u}

• Demand "no-force" in the rest frame

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B}' + q\vec{E}' - \mu m\vec{v} = 0$$

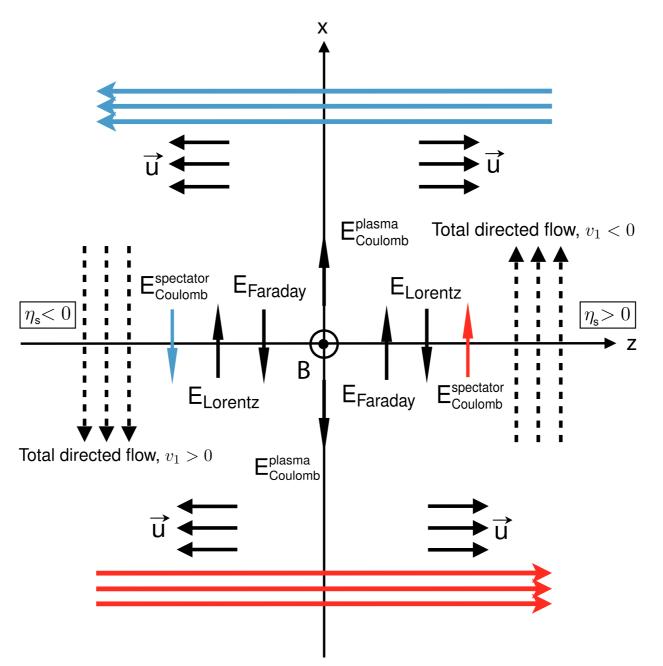
$$\vdots$$

drag force

• Lorentz transform back to CM frame $\Rightarrow \vec{u}[\vec{v}]$

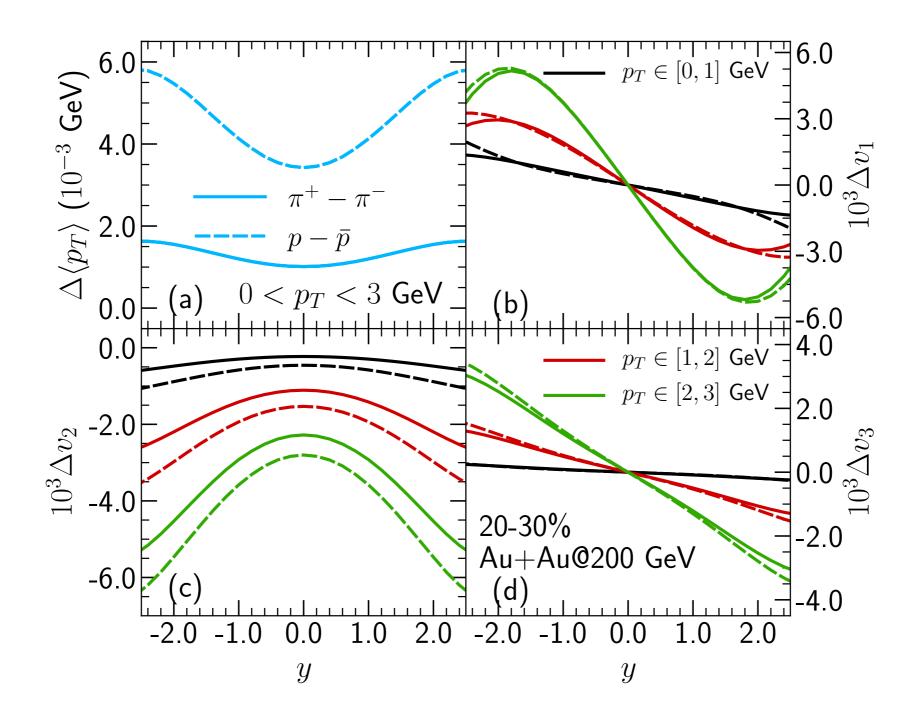
Kharzeev, Rajagopal, UG '14

Magnetically induced rapidity-odd flow

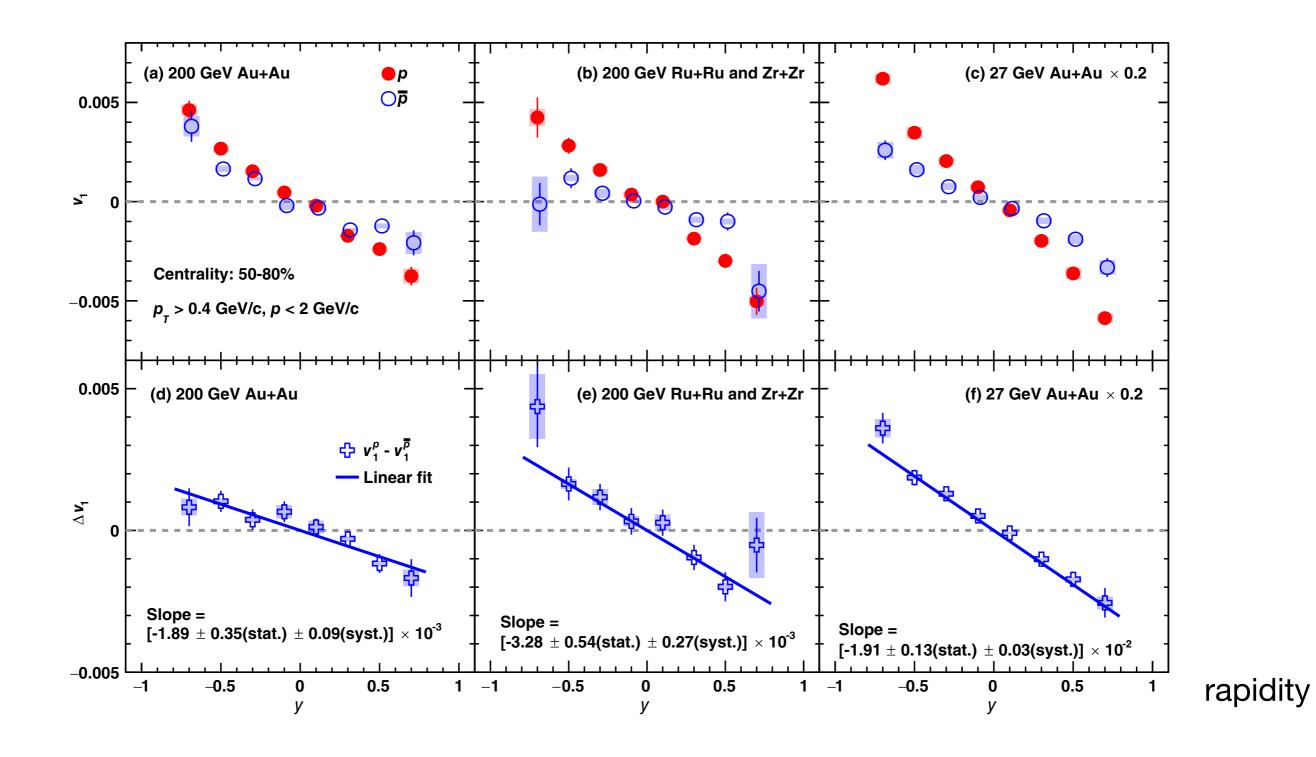


Results in *rapidity-odd directed flow* $\langle cos \theta \rangle$

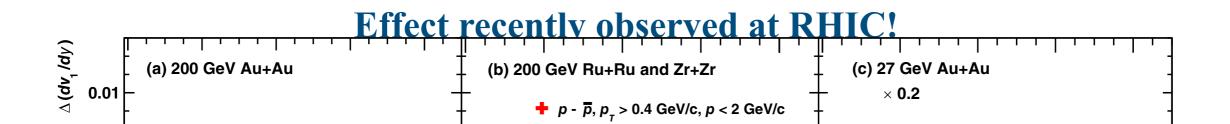
Magnetically induced currents in QGP

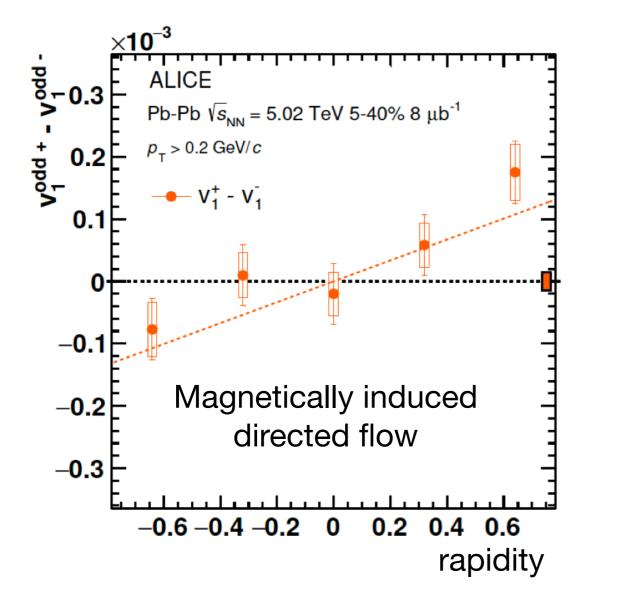


Kharzeev, Rajagopal, UG '14; Kharzeev, Rajagopal, Shen, Marcus, UG '18



STAR Collaboration, Phys. Rev. X. 14, 011028 (2024)





Effect also observed at LHC but with wrong sign...

ALICE Collaboration, Phys. Rev. Lett. 125, 022301 (2020)

Comparison to data:

Dubla, Snellings, UG '20

- Non-perturbative backreaction of EM fields
- Electric and magnetic polarisation of medium
- Time dependence of transport coefficients
- Other transport, e.g. Hall conductivity, viscosities

Spin-hydrodynamics

Strong vortical structure $\omega \sim 10^{22} \, \text{s}^{\text{-1}}$

Hydrodynamics with spin current

Slow variables: energy-momentum and spin current

Becattini et al '08; Becattini, Piccinini '08 Karabali, Nair '14; Rischke et al '14 Florkowski et al '18 '19; Hattori, X.-G. Huang et al '19 Gallegos, UG '19; Li, Stephanov, Yee '20 Gallegos, Yarom, UG '21; '22

Spin effective action

Consider quantum field in a nontrivial Lorentz representation

$$e^{iW[e,\omega]} = \int D\Psi e^{iI[e,\omega,\Psi]}$$

Variations define the energy-momentum and spin current

$$T^{\mu\nu} = \frac{\delta W}{\delta e^a_{\mu}} e^{\nu}_a, \qquad S^{\lambda}_{ab} = \frac{\delta W}{\delta \omega^{ab}_{\lambda}}$$

Spin effective action

Consider quantum field in a nontrivial Lorentz representation

$$e^{iW[e,\omega]} = \int D\Psi e^{iI[e,\omega,\Psi]}$$

Variations define the energy-momentum and spin current

$$T^{\mu\nu} = \frac{\delta W}{\delta e^a_{\mu}} e^{\nu}_a, \qquad S^{\lambda}_{ab} = \frac{\delta W}{\delta \omega^{ab}_{\lambda}}$$

Treat metric and spin connection independently in presence of torsion:

$$de^a + \omega^a_b e^b = T^a$$

 \Rightarrow Keep T^a as external source, $T^a \rightarrow 0$ at the end.

Gallegos, Yarom, UG `21 `22

Hydrodynamic degrees of freedom

$$\overset{\circ}{\nabla}_{\mu}T^{\mu\nu} = \frac{1}{2}R^{\rho\sigma\nu\lambda}S_{\rho\lambda\sigma} - T_{\rho\sigma}K^{\nu ab}e^{\rho}{}_{a}e^{\sigma}{}_{b} \qquad \text{4 equations}$$
$$\overset{\circ}{\nabla}_{\lambda}S^{\lambda}{}_{\mu\nu} = 2T_{[\mu\nu]} - 2S^{\lambda}{}_{\rho[\mu}e_{\nu]}{}^{a}e_{\rho}{}^{b}K_{\lambda ab}, \qquad \text{6 equations}$$

Hydrodynamic degrees of freedom

$$\overset{\circ}{\nabla}_{\mu}T^{\mu\nu} = \frac{1}{2}R^{\rho\sigma\nu\lambda}S_{\rho\lambda\sigma} - T_{\rho\sigma}K^{\nu ab}e^{\rho}{}_{a}e^{\sigma}{}_{b} \qquad \text{4 equations}$$
$$\overset{\circ}{\nabla}_{\lambda}S^{\lambda}{}_{\mu\nu} = 2T_{[\mu\nu]} - 2S^{\lambda}{}_{\rho[\mu}e_{\nu]}{}^{a}e_{\rho}{}^{b}K_{\lambda ab}, \qquad \text{6 equations}$$

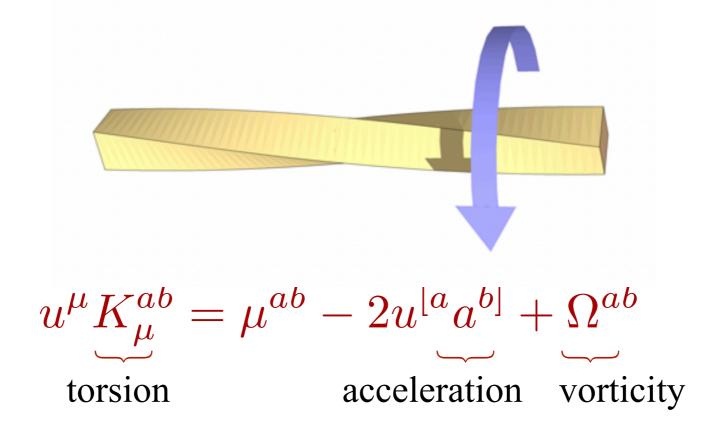
Hydrostatic action W[e, ω] invariant under ξ

10 dynamical variables:

$$T = \frac{T_0}{\sqrt{-\xi^2}}, \qquad u^a = \frac{e^a_{\mu}\xi^{\mu}}{\sqrt{-\xi^2}}, \qquad \mu^{ab} = \frac{\omega_{\mu}{}^{ab}\xi^{\mu}}{\sqrt{-\xi^2}}$$

Spin "chemical" potential

Solution to spin hydrodynamics



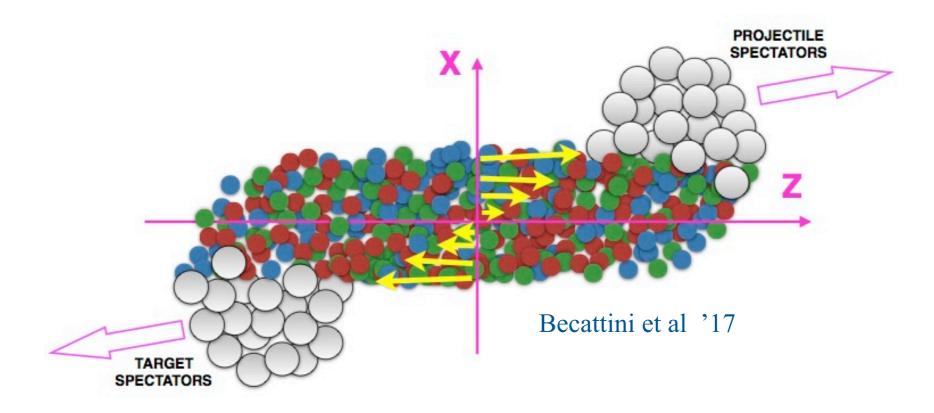
Holds beyond hydrostatics

Gallegos, Yarom, UG '14

Spin is "slave" to background flow:

$$\mu^{ab} = -2u^{[a}a^{b]} + \Omega^{ab}$$

spin potentials acceleration vorticity
up to O(∇^2)

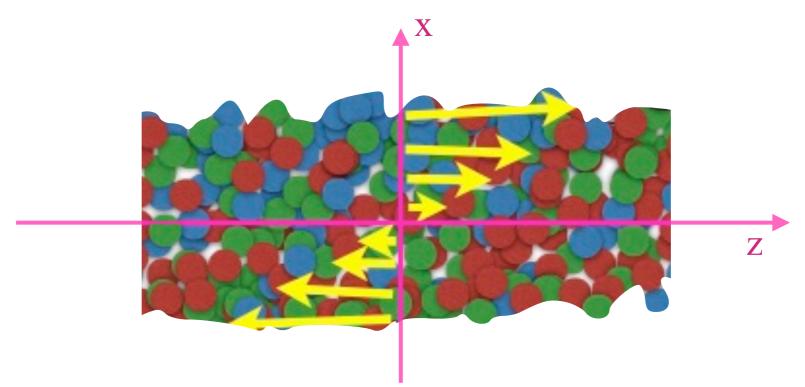


Polarization of identified particle: Becattini et al. '13; Florkowski et al '19

$$\Pi_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \underbrace{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}_{\mathbf{A} \stackrel{\circ}{\leftarrow} 2 \int d\Sigma_{\lambda} p^{\lambda} n_{F}^{\cdot} \cdots}_{\mathbf{A}} \text{Boltzmann type}$$
freezout surface distribution

Spin hydrodynamics \implies spin potential

Bjorken flow with spin current



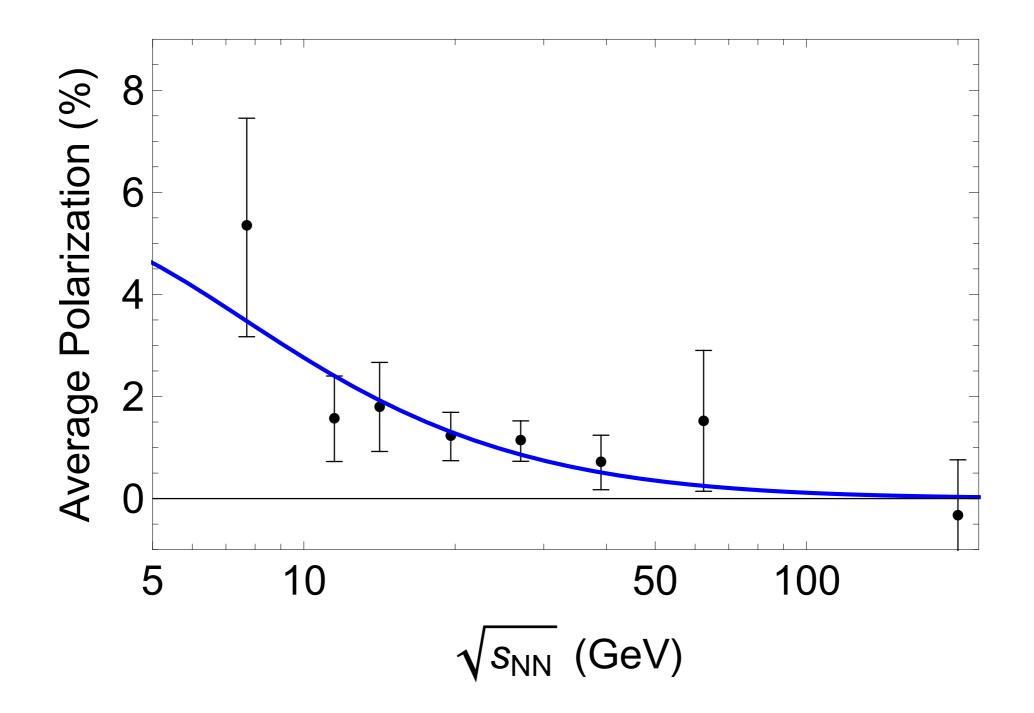
Nearly flat rapidity distribution \Rightarrow u, T, μ independent of η Full symmetry of Bjorken flow: SO(1,1) x ISO(2) x Z₂

$$u^{\tau} = 1, \qquad T = T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{1}{3}} - \frac{\eta_0}{2\epsilon_0 \tau},$$

No global spin polarization \Rightarrow break symmetry by initial conditions

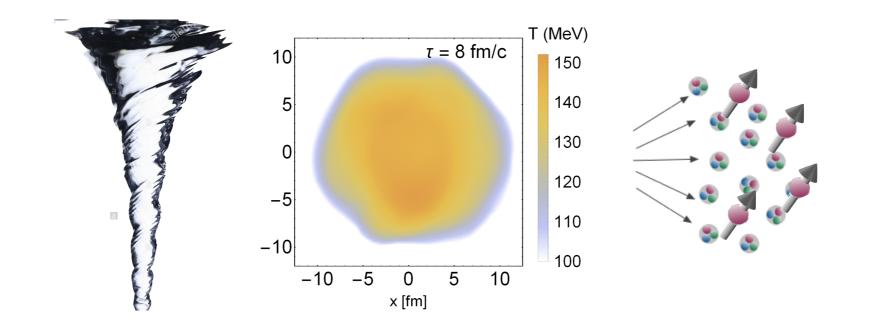
 $\delta u^{\eta}(\tau_0) \propto b \, q_x$

Comparison to data



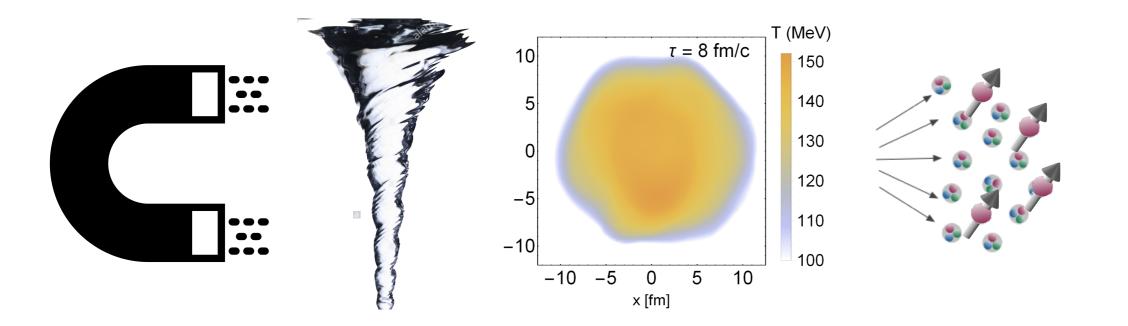
Gallegos, Yarom, UG '21

Loose ends



• Add vorticity to Trajectum → longitudinal polarization?

Loose ends



- Add vorticity to Trajectum \Rightarrow longitudinal polarization?
- Develop a theory of spin-magneto-hydro ?
- Interplay between chiral and spin transport?

Ambiguity in spin current

Total angular momentum

Conservation laws

Preserved by

orbital spin

$$J^{\lambda\mu\nu} = x^{\mu}T^{\lambda\nu} - x^{\nu}T^{\lambda\mu} + S^{\lambda\mu\nu}$$

$$\partial_{\mu}T^{\mu\nu} = 0, \qquad \partial_{\lambda}J^{\lambda\mu\nu} = 0$$

$$T^{\prime\mu\nu} = T^{\mu\nu} + \frac{1}{2}\partial_{\lambda}\left(\Phi^{\lambda\mu\nu} - \Phi^{\mu\lambda\nu} - \Phi^{\nu\lambda\mu}\right)$$

$$S^{\prime\lambda\mu\nu} = S^{\lambda\mu\nu} - \Phi^{\lambda\mu\nu}$$

Choice I:
$$\nabla_{\mu}T^{\mu\nu} = 0$$
, $\nabla_{\lambda}S^{\lambda}_{ab} = T_{ab} - T_{ba}$

Choice II:
$$\nabla_{\mu} T^{'\mu\nu} = 0, \quad T^{'\mu\nu} - T^{'\nu\mu} = 0$$

Satisfied only under the EoM

Choice III:

$$T^{''\mu\nu} \equiv T^{'\nu\mu} - \frac{1}{2} \left(T^{'\nu\mu} - T^{'\mu\nu} \right) ,$$

 $\nabla_{\mu}T^{\ \mu\nu} = 0$

No access to spin transport

Choice I:
$$\nabla_{\mu}T^{\mu\nu} = 0$$
, $\nabla_{\lambda}S^{\lambda}_{ab} = T_{ab} - T_{ba}$

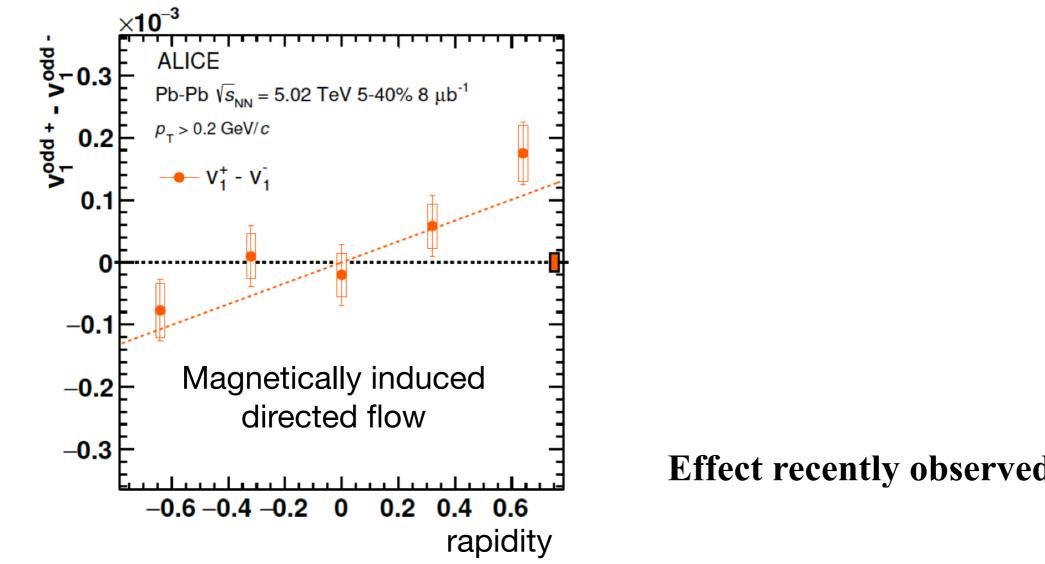
Choice II:
$$\nabla_{\mu} T^{'\mu\nu} = 0, \quad T^{'\mu\nu} - T^{'\nu\mu} = 0$$

Satisfied only under the EoM

Choice III:
$$T^{''\mu\nu} \equiv T^{'\nu\mu} - \frac{1}{2} \left(T^{'\nu\mu} - T^{'\mu\nu} \right) ,$$
$$\nabla_{\mu} T^{''\mu\nu} = 0$$

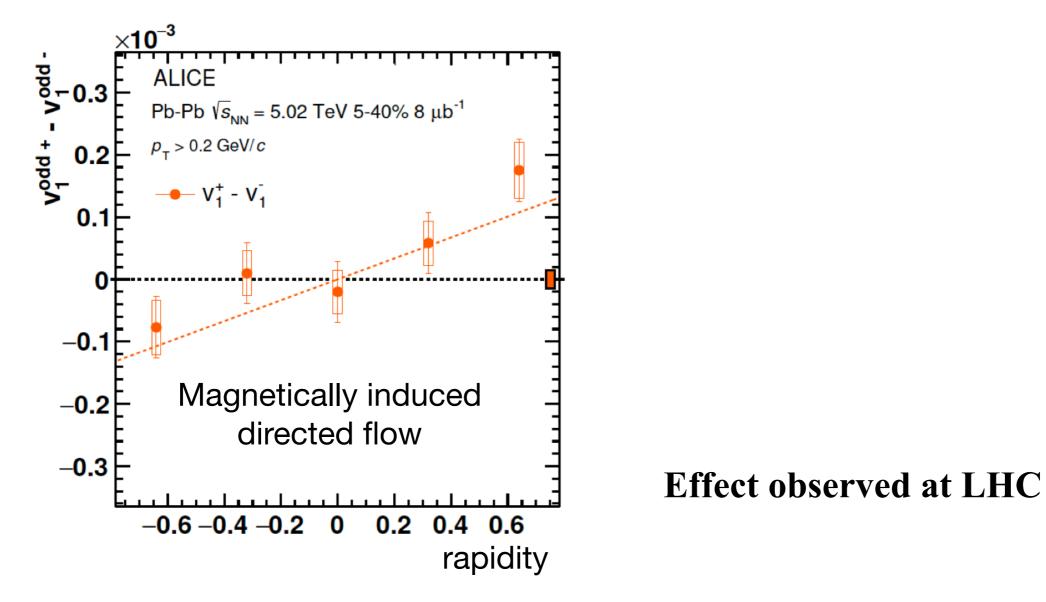
No access to spin transport

Consistency with choice III \Rightarrow spin transport determined by energy-momentum flow External torsion fixes the ambiguity, organizes hydro expansion unambiguously



ALICE Collaboration, Phys. Rev. Lett. 125, 022301 (2020)

Effect recently observed at LHC!



ALICE Collaboration, Phys. Rev. Lett. 125, 022301 (2020)

Comparison to data:

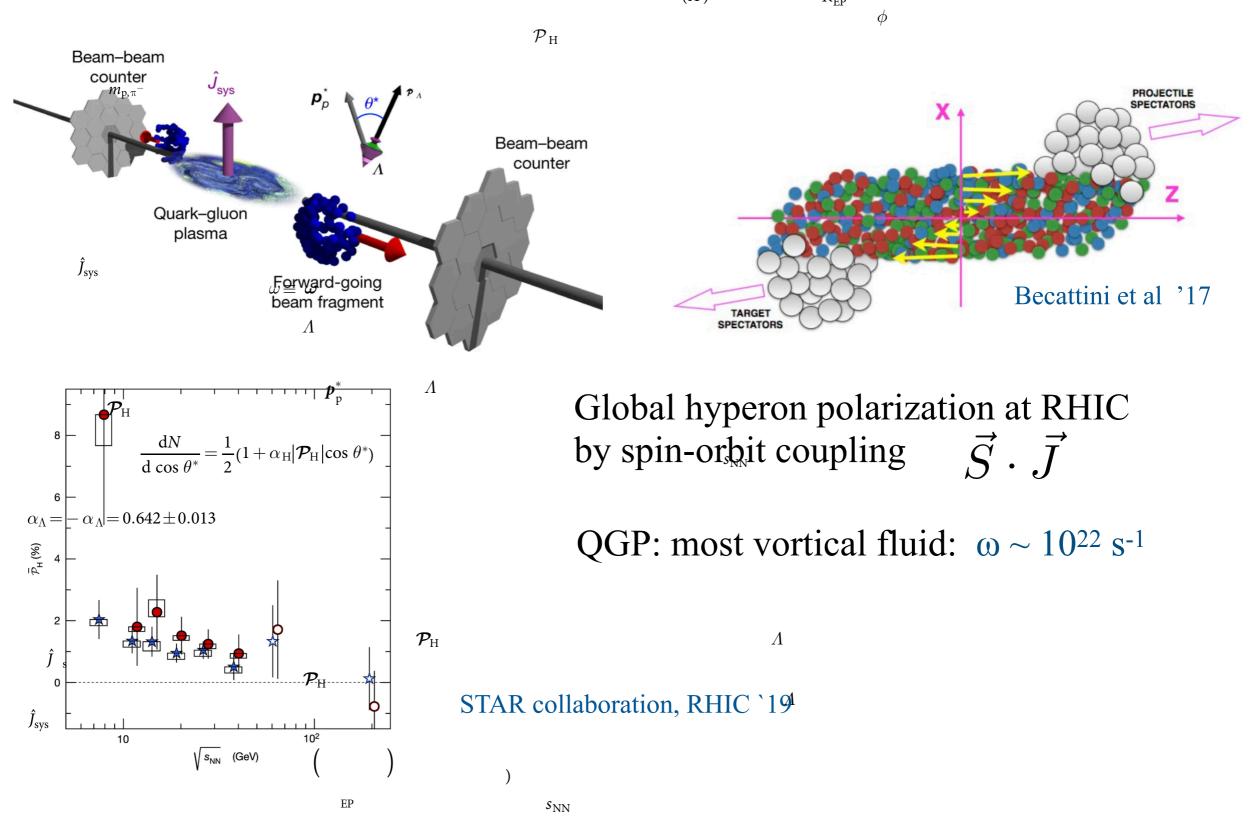
Dubla, Snellings, UG '20

- Non-perturbative backreaction of EM fields
- Electric and magnetic polarisation of medium
- Time dependence of transport coefficients
- Other transport, e.g. Hall conductivity, viscosities

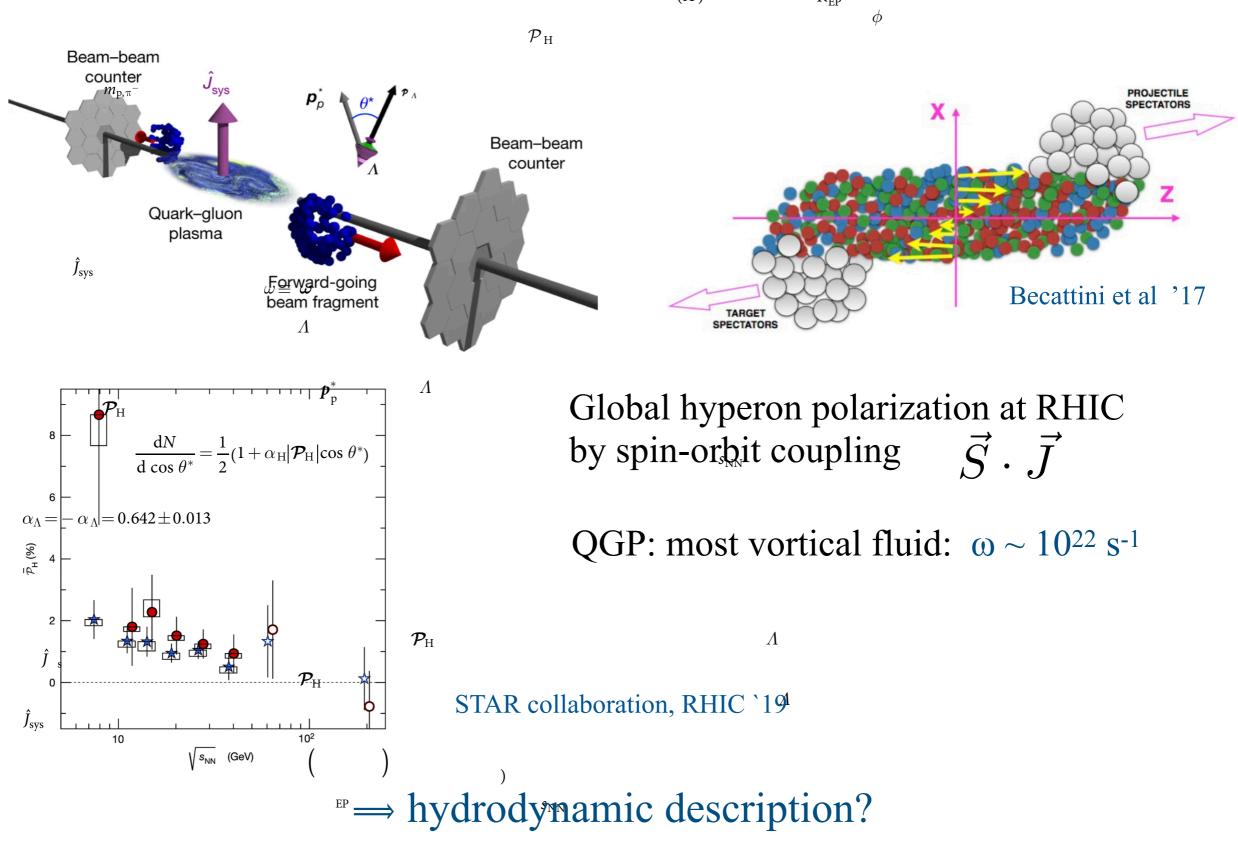
Spin-hydrodynamics

Strong vortical structure $\omega \sim 10^{22} \, \text{s}^{\text{-1}}$

Spin hydrodynamics (A)



Spin hydrodynamics (A)



Hydrodynamics with spin current

Gallegos, Yarom, UG `21

Slow variables: energy-momentum and spin current

Salute to earlier work:	Becattini et al '08; Becattini, Piccinini '08 Karabali, Nair '14 Florkowski et al '18 '19; Hattori, XG. Huang et al '19 Gallegos, UG '19; Li, Stephanov, Yee '20
	Sum 505, 00 19, 21, Stephanov, 100 20

Ambiguity in spin current

Total angular momentum

Conservation laws

Preserved by

orbital spin

$$J^{\lambda\mu\nu} = x^{\mu}T^{\lambda\nu} - x^{\nu}T^{\lambda\mu} + S^{\lambda\mu\nu}$$

$$\partial_{\mu}T^{\mu\nu} = 0, \qquad \partial_{\lambda}J^{\lambda\mu\nu} = 0$$

$$T^{\prime\mu\nu} = T^{\mu\nu} + \frac{1}{2}\partial_{\lambda}\left(\Phi^{\lambda\mu\nu} - \Phi^{\mu\lambda\nu} - \Phi^{\nu\lambda\mu}\right)$$

$$S^{\prime\lambda\mu\nu} = S^{\lambda\mu\nu} - \Phi^{\lambda\mu\nu}$$

Ambiguity in spin current

Total angular momentum

Conservation laws

Preserved by

orbital spin

$$J^{\lambda\mu\nu} = x^{\mu}T^{\lambda\nu} - x^{\nu}T^{\lambda\mu} + S^{\lambda\mu\nu}$$

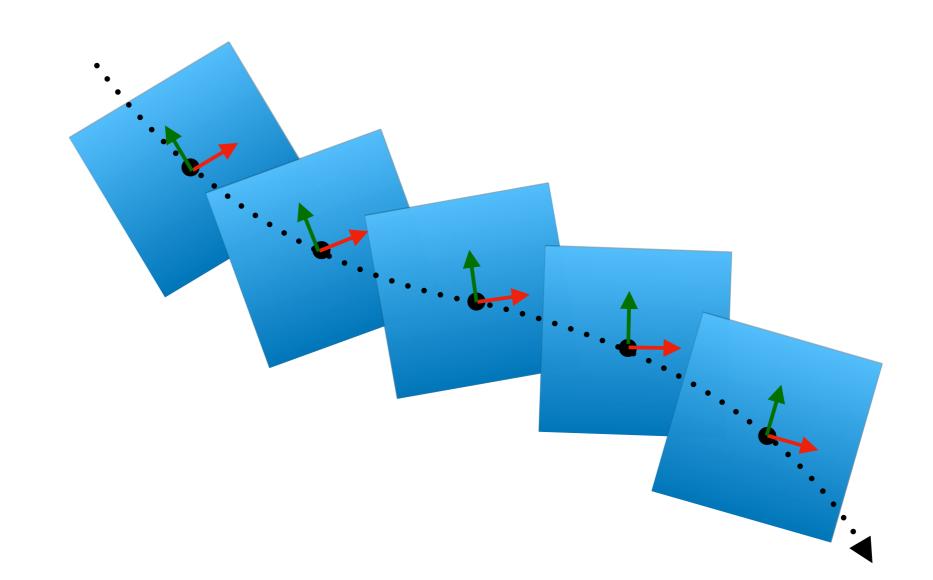
$$\partial_{\mu}T^{\mu\nu} = 0, \qquad \partial_{\lambda}J^{\lambda\mu\nu} = 0$$

$$T^{\prime\mu\nu} = T^{\mu\nu} + \frac{1}{2}\partial_{\lambda} \left(\Phi^{\lambda\mu\nu} - \Phi^{\mu\lambda\nu} - \Phi^{\nu\lambda\mu}\right)$$

$$S^{\prime\lambda\mu\nu} = S^{\lambda\mu\nu} - \Phi^{\lambda\mu\nu}$$

Torsion removes the ambiguity

Torsion



$$T^{\alpha}_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu} - \Gamma^{\alpha}_{\nu\mu}$$

Asymmetric affine connection

Hydrodynamics with torsion

• More precisely, contorsion sources spin :

$$\omega_{\mu}^{ab} = \mathring{\omega}_{\mu}^{ab} + K_{\mu}^{ab}, \qquad \mathring{\omega} \sim \partial e$$

Hydrodynamics with torsion

• More precisely, contorsion sources spin :

$$\omega_{\mu}^{ab} = \mathring{\omega}_{\mu}^{ab} + K_{\mu}^{ab}, \qquad \mathring{\omega} \sim \partial e$$

• Hydrodynamics on a manifold with non-trivial torsion:

$$T^{\mu\nu} = \frac{\delta W}{\delta e^a_{\mu}} e^{\nu}_a, \qquad S^{\lambda}_{ab} = \frac{\delta W}{\delta \omega^{ab}_{\lambda}}$$

• Eventually $K \rightarrow 0$, e.g. in QGP, non trivial spin current from O(K) terms in W[K]

Hydrodynamic equations

$$\overset{\circ}{\nabla}_{\mu}T^{\mu\nu} = \frac{1}{2}R^{\rho\sigma\nu\lambda}S_{\rho\lambda\sigma} - T_{\rho\sigma}K^{\nu ab}e^{\rho}{}_{a}e^{\sigma}{}_{b} \qquad \text{4 equations}$$
$$\overset{\circ}{\nabla}_{\lambda}S^{\lambda}{}_{\mu\nu} = 2T_{[\mu\nu]} - 2S^{\lambda}{}_{\rho[\mu}e_{\nu]}{}^{a}e_{\rho}{}^{b}K_{\lambda ab}, \qquad \text{6 equations}$$

Hydrodynamic equations

$$\overset{\circ}{\nabla}_{\mu}T^{\mu\nu} = \frac{1}{2}R^{\rho\sigma\nu\lambda}S_{\rho\lambda\sigma} - T_{\rho\sigma}K^{\nu ab}e^{\rho}{}_{a}e^{\sigma}{}_{b} \qquad \text{4 equations}$$
$$\overset{\circ}{\nabla}_{\lambda}S^{\lambda}{}_{\mu\nu} = 2T_{[\mu\nu]} - 2S^{\lambda}{}_{\rho[\mu}e_{\nu]}{}^{a}e_{\rho}{}^{b}K_{\lambda ab}, \qquad \text{6 equations}$$

10 dynamical variables:

$$T \qquad u^{\mu} \qquad \mu^{ab} = \omega^{ab}_{\mu} u^{\mu}$$

Spin "chemical" potential

Analogous to electric potential

$$\mu_E = \frac{A_\mu \xi^\mu}{\sqrt{-\xi^2}}$$

Constitutive relations

Hydrodynamic action: most general scalar from T, u, e, K and derivatives

Constitutive relations

Hydrodynamic action: most general scalar from T, u, e, K and derivatives

$$\mu^{ab} = 2u^{[a}m^{b]} + \epsilon^{abcd}u_c \tilde{M}_d$$

"electric" "magnetic"
3 d.o.f. 3 d.o.f.

Constitutive relations

Hydrodynamic action: most general scalar from T, u, e, K and derivatives

$$\mu^{ab} = 2u^{[a}m^{b]} + \epsilon^{abcd}u_c \tilde{M}_d$$

"electric" "magnetic"
3 d.o.f. 3 d.o.f.

Hydrodynamic action:

 $W = P(T, m^2, \tilde{M}^2, m \cdot \tilde{M}) + \mathcal{O}(\partial u, \partial T, K_{\perp}, \partial m, \partial \tilde{M})$ ideal fluid pressure gradient corrections

Ideal spin fluid

Pressure of ideal spin fluid: $P(T, m^2, \tilde{M}^2, m \cdot \tilde{M})$

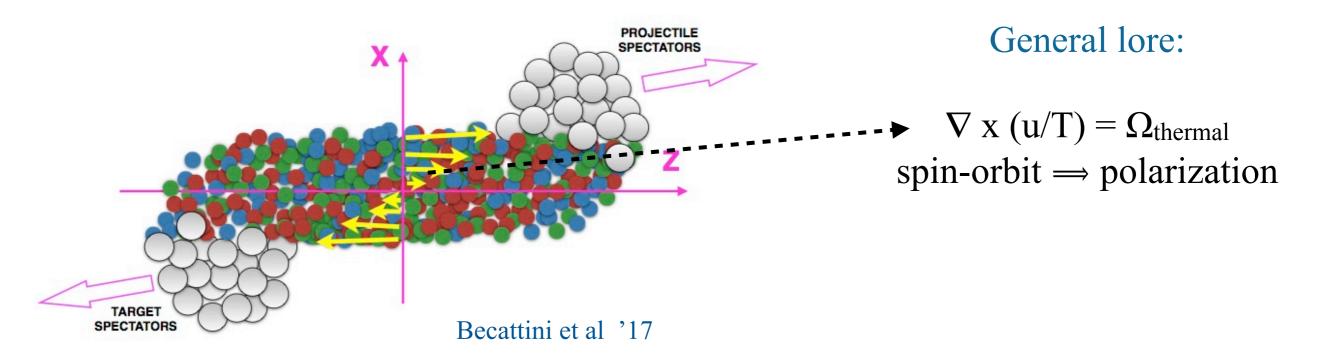
Constitutive relations:

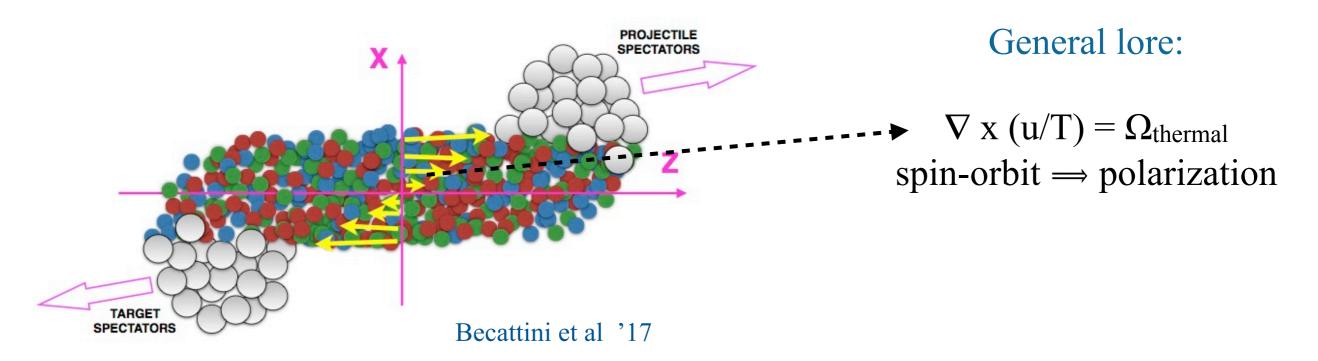
$$\begin{split} T_{i}^{\alpha\beta} &= \epsilon u^{\alpha} u^{\beta} + P \Delta^{\alpha\beta} - 2 \left(\frac{\partial P}{\partial m^{2}} + 4 \frac{\partial P}{\partial M^{2}} \right) u^{\alpha} M^{\beta\gamma} m_{\gamma} \\ S_{i \ \alpha\beta}^{\lambda} &= u^{\lambda} \rho_{\alpha\beta} , \\ \text{susceptibilities} & m \times \tilde{M} \text{ "spin Poynting"} \\ \text{spin density} & \left(M^{ab} \equiv \epsilon^{abcd} u_{c} \tilde{M}_{d} , \tilde{m}^{ab} \equiv \epsilon^{abcd} u_{c} m_{d} \right) \end{split}$$

$$\epsilon = -P + \frac{\partial P}{\partial T}T + \frac{1}{2}\rho_{ab}\mu^{ab},$$

$$\rho_{\alpha\beta} = 8\frac{\partial P}{\partial M^2}M_{\alpha\beta} + \frac{\partial P}{\partial m \cdot \tilde{M}}\left(4\tilde{m}_{\alpha\beta} - u_{\alpha}\tilde{M}_{\beta} + \tilde{M}_{\alpha}u_{\beta}\right) + 2\frac{\partial P}{\partial m^2}\left(u_{\alpha}m_{\beta} - m_{\alpha}u_{\beta}\right)$$

Gibbs-Duhem relations

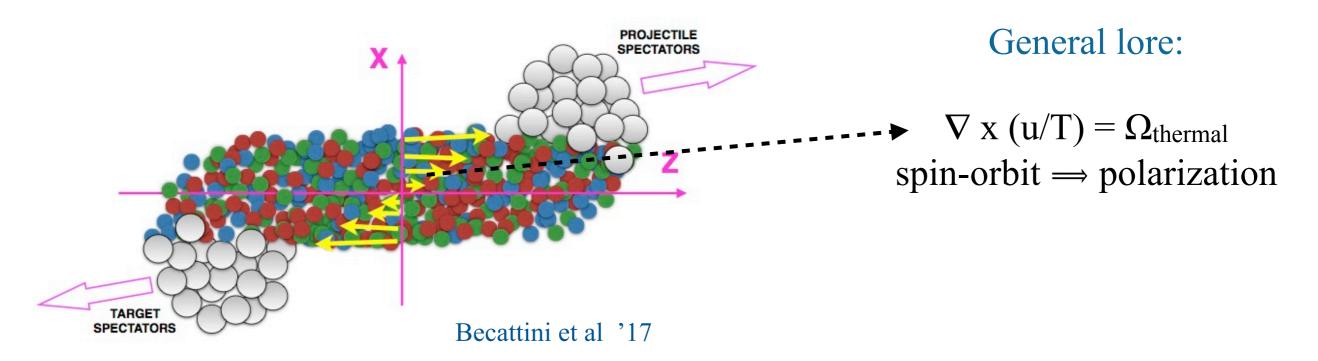




Polarization of hyperon:

$$\Pi_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \frac{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}{\sum \frac{1}{2} \int d\Sigma_{\lambda} p^{\lambda} n_{F}}$$
Boltzmann type freezout surface distribution

Becattini et al. '13; Florkowski et al '19 identified spin potential $\Leftrightarrow \Omega_{\text{thermal}}$

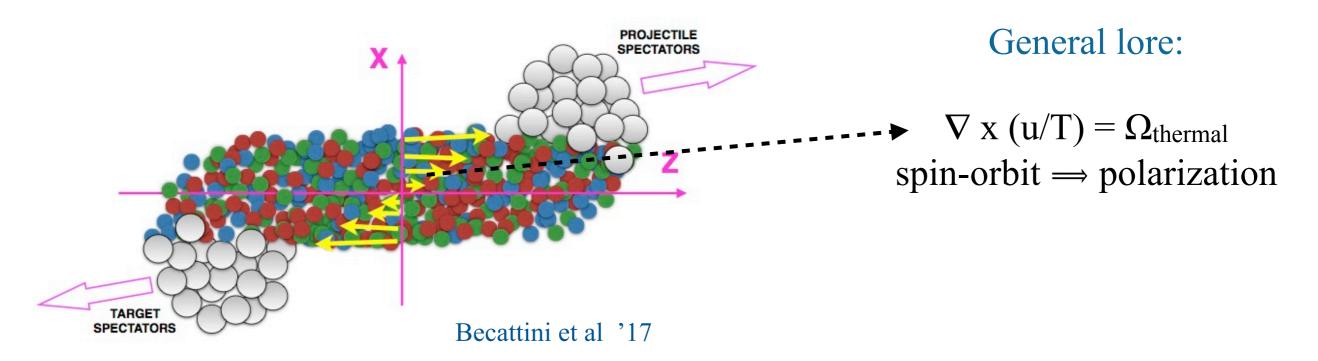


Polarization of hyperon:

$$\Pi_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \frac{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}{\int d\Sigma_{\lambda} p^{\lambda} n_{F} \cdot \cdot \cdot} \quad \text{spin potential}$$
freezout surface $M_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \frac{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}{\int d\Sigma_{\lambda} p^{\lambda} n_{F} \cdot \cdot \cdot} \quad \text{spin potential}$

Becattini et al. '13; Florkowski et al '19 identified spin potential $\Leftrightarrow \Omega_{\text{thermal}}$

Spin hydrodynamics \implies spin potential



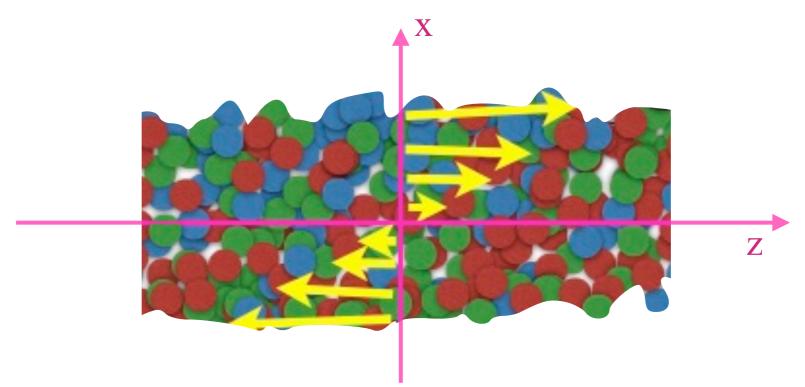
Polarization of hyperon:

$$\Pi_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \frac{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}{\int d\Sigma_{\lambda} p^{\lambda} n_{F} \cdot \cdot \cdot} \quad \text{spin potential}$$
freezout surface $M_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \frac{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}{\int d\Sigma_{\lambda} p^{\lambda} n_{F} \cdot \cdot \cdot} \quad \text{spin potential}$

Becattini et al. '13; Florkowski et al '19 identified spin potential $\Leftrightarrow \Omega_{\text{thermal}}$

Spin hydrodynamics \implies spin potential $\implies \Omega_{\text{thermal}}$ in equilibrium

Bjorken flow with spin current



Nearly flat rapidity distribution \Rightarrow u, T, μ independent of η Full symmetry of Bjorken flow: SO(1,1) x ISO(2) x Z₂

$$u^{\tau} = 1, \qquad T = T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{1}{3}} - \frac{\eta_0}{2\epsilon_0 \tau},$$

No global spin polarization \Rightarrow break symmetry by initial conditions

 $\delta u^{\eta}(\tau_0) \propto b \, q_x$

Comparison to data

Hydrodynamic solution, for small "kinematic viscosity"/time

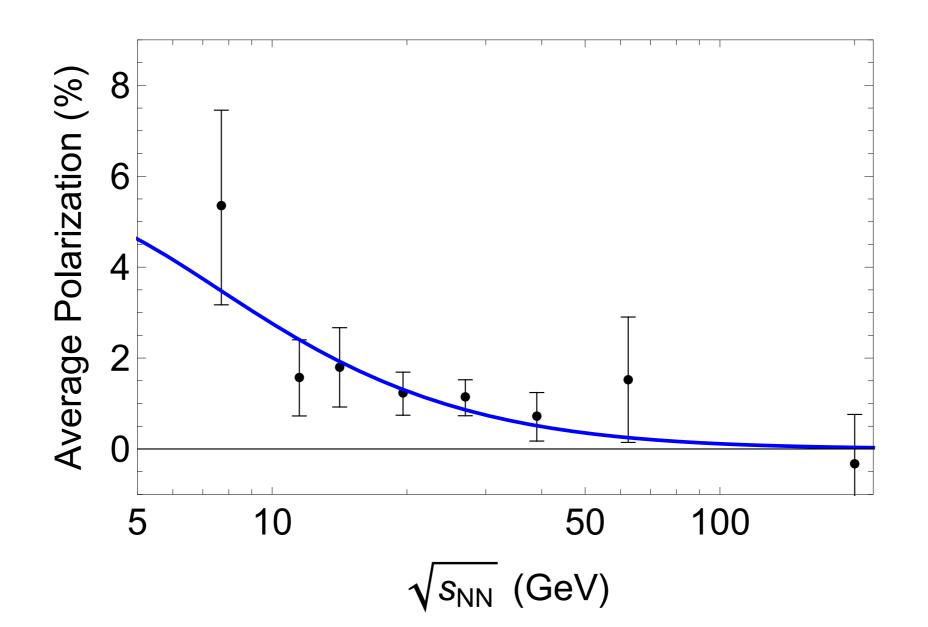
)

$$\frac{3\eta_0}{4\epsilon_0}\frac{1}{T\tau} \ll 1$$

Floerschinger, Wiedemann '11

$$\delta m^{x}(\tau) \propto \tau^{-\frac{8}{3}} e^{-\frac{9q^{2}\eta_{0}\tau_{0}}{16T_{0}\epsilon_{0}} \left(\frac{\tau}{\tau_{0}}\right)^{\frac{4}{3}}}$$

$$\delta M^{x\eta}(\tau) \propto q^2 \, \tau^{-\frac{5}{3}} e^{-\frac{9q^2\eta_0\tau_0}{16T_0\epsilon_0} \left(\frac{\tau}{\tau_0}\right)^{\frac{4}{3}}}$$



Bayes' theorem

$$P(A|B) = P(B|A) \frac{P(A)}{P(B)} \cdots Probability \text{ of } A$$

Probability that A happens if B happened

Likelihood of A given B

•

Probability of B

Anomalous transport

Chiral magnetic and vortical effects:

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3 q_{f} (e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

$$\vec{J}_{f} = \frac{1}{2\pi^{2}} \mu_{5} \left[3$$

Anomalous transport

Chiral magnetic and vortical effects:

$$\vec{J_f} = \frac{1}{2\pi^2} \mu_5 \left[3 q_f(e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

Not yet discovered in heavy ion collisions Isobar run, STAR collab. 2021

Anomalous transport

Chiral magnetic and vortical effects:

$$\vec{J}_f = \frac{1}{2\pi^2} \mu_5 \left[3 q_f(e\vec{B}) + 2(\mu \vec{\omega}) \right]$$

Not yet discovered in heavy ion collisions Isobar run, STAR collab. 2021

get B and ω by different means

Hydrodynamics in action formalism

Jensen et al '12; Banerjee et al '12

Hydrodynamics in action formalism

Jensen et al '12; Banerjee et al '12

• Example: charged fluid in presence of external sources

 $g_{\mu\nu}(x) \qquad A_{\mu}(x)$

• Most general scalar $S_{hydro} = \int d^4x \sqrt{g} W[g, A]$

- Diffeomorphism and gauge invariance: hydro equations $\partial_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\mu} \qquad \partial_{\mu}J^{\mu} = 0$
- Thermal equilibrium: timelike Killing vector ξ $|\xi| = 1/T$ $\xi/|\xi| = u$ $u \cdot A = \mu_E$
- Expand W in T, u, μ_E and derivatives: constitutive relations

Hydrodynamics in action formalism

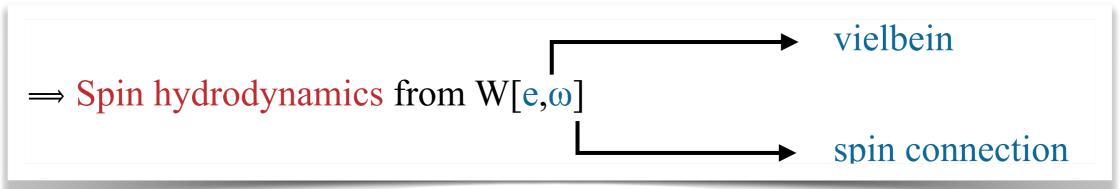
Jensen et al '12; Banerjee et al '12

• Example: charged fluid in presence of external sources

 $g_{\mu\nu}(x) \qquad A_{\mu}(x)$

• Most general scalar $S_{hydro} = \int d^4x \sqrt{g} W[g, A]$

- Diffeomorphism and gauge invariance: hydro equations $\partial_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\mu} \qquad \partial_{\mu}J^{\mu} = 0$
- Thermal equilibrium: timelike Killing vector ξ $|\xi| = 1/T$ $\xi/|\xi| = u$ $u \cdot A = \mu_E$
- Expand W in T, u, μ_E and derivatives: constitutive relations



Spin effective action

Consider quantum field in a nontrivial Lorentz representation

$$e^{iW[e,\omega]} = \int D\Psi e^{iI[e,\omega,\Psi]}$$

Variations define the energy-momentum and spin current

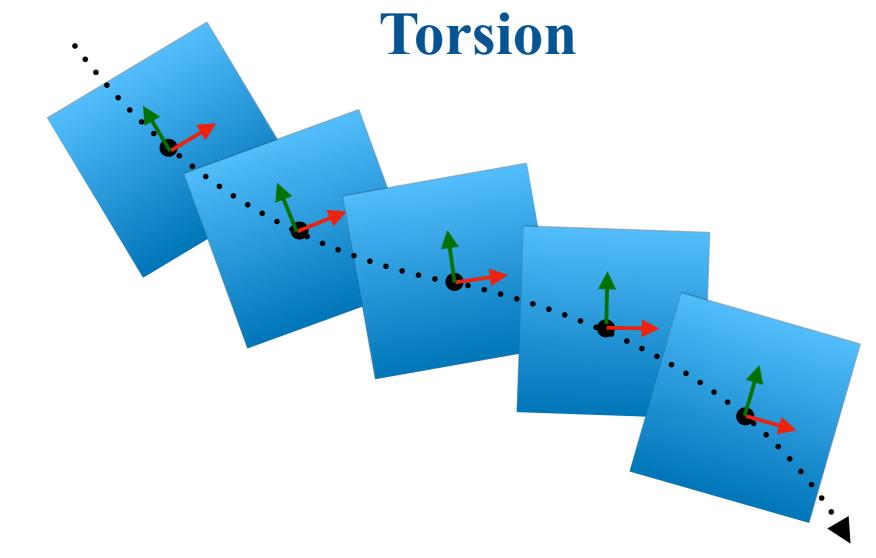
$$T^{\mu\nu} = \frac{\delta W}{\delta e^a_{\mu}} e^{\nu}_a, \qquad S^{\lambda}_{ab} = \frac{\delta W}{\delta \omega^{ab}_{\lambda}}$$

Metric and spin connection are independent in presence of torsion:

$$de^a + \omega^a_b e^b = T^a$$

Belinfante-Rosenberg ambiguity is torsion $\Phi^{\lambda\mu\nu} \Leftrightarrow T^a_{\mu\nu}$

 \Rightarrow Keep T^a as external source, $T^a \rightarrow 0$ at the end.



$$T^{\alpha}_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu} - \Gamma^{\alpha}_{\nu\mu}$$

Asymmetric affine connection

$$T^a = de^a + \omega^a_b \wedge e^b$$

Covariant derivative of vierbein

Spin effective action

Consider quantum field in a nontrivial Lorentz representation

$$e^{iW[e,\omega]} = \int D\Psi e^{iI[e,\omega,\Psi]}$$

Variations define the energy-momentum and spin current

$$T^{\mu\nu} = \frac{\delta W}{\delta e^a_{\mu}} e^{\nu}_a, \qquad S^{\lambda}_{ab} = \frac{\delta W}{\delta \omega^{ab}_{\lambda}}$$

Spin effective action

Consider quantum field in a nontrivial Lorentz representation

$$e^{iW[e,\omega]} = \int D\Psi e^{iI[e,\omega,\Psi]}$$

Variations define the energy-momentum and spin current

$$T^{\mu\nu} = \frac{\delta W}{\delta e^a_{\mu}} e^{\nu}_a, \qquad S^{\lambda}_{ab} = \frac{\delta W}{\delta \omega^{ab}_{\lambda}}$$

Metric and spin connection are dependent:

$$de^a + \omega^a_b e^b = 0$$

$$\frac{\delta W}{\delta e}\Big|_{constraint} \quad \Rightarrow \quad T^{'\mu\nu} = T^{\mu\nu} + \frac{1}{2}\partial_{\lambda}\left(S^{\lambda\mu\nu} - S^{\mu\lambda\nu} - S^{\nu\lambda\mu}\right)$$

Hydrodynamic equations

Require invariance of $W[e,\omega]$ under

1. Diffeomorphisms

$$\delta_{\xi} e^a = \mathcal{L}_{\xi} e^a , \qquad \qquad \delta_{\xi} \omega^{ab} = \mathcal{L}_{\xi} \omega^{ab}$$

2. Local Lorentz transformations

$$\delta_{\lambda}e^{a} = -\lambda^{a}{}_{b}e^{b}, \qquad \qquad \delta_{\lambda}\omega^{ab} = D\lambda^{ab}$$

Hydrodynamic equations

Require invariance of $W[e,\omega]$ under

1. Diffeomorphisms

$$\delta_{\xi} e^a = \mathcal{L}_{\xi} e^a , \qquad \qquad \delta_{\xi} \omega^{ab} = \mathcal{L}_{\xi} \omega^{ab}$$

2. Local Lorentz transformations

$$\delta_{\lambda}e^{a} = -\lambda^{a}{}_{b}e^{b}, \qquad \qquad \delta_{\lambda}\omega^{ab} = D\lambda^{ab}$$

Relativistic hydrodynamics with spin current

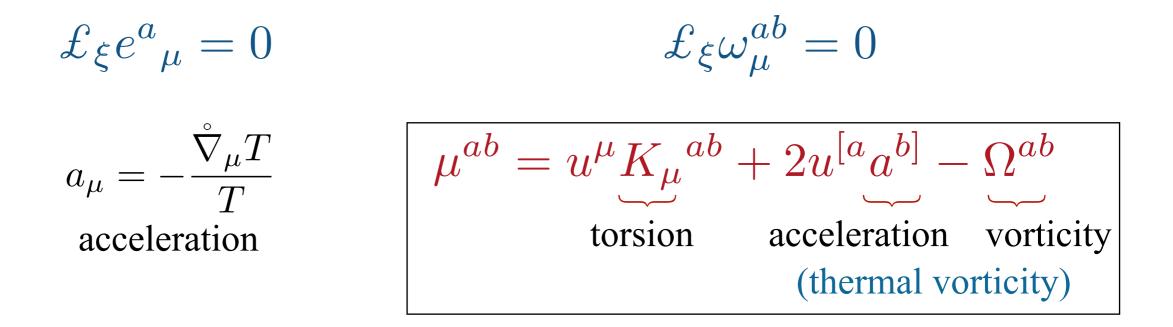
$$\overset{\circ}{\nabla}_{\mu}T^{\mu\nu} = \frac{1}{2}R^{\rho\sigma\nu\lambda}S_{\rho\lambda\sigma} - T_{\rho\sigma}K^{\nu ab}e^{\rho}{}_{a}e^{\sigma}{}_{b}$$
$$\overset{\circ}{\nabla}_{\lambda}S^{\lambda}{}_{\mu\nu} = 2T_{[\mu\nu]} - 2S^{\lambda}{}_{\rho[\mu}e_{\nu]}{}^{a}e_{\rho}{}^{b}K_{\lambda ab},$$

analogous to EM work $F^{\mu\nu}J_{\mu}$ antisymm. stress generates S

Thermal equilibrium in presence of time-independent sources

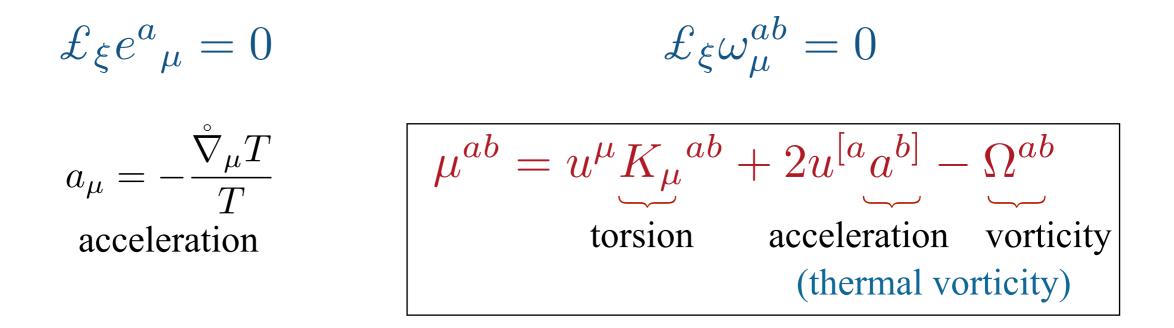
Thermal equilibrium in presence of time-independent sources

Thermal equilibrium in presence of time-independent sources



- Spin potential \Rightarrow thermal vorticity at equilibrium
- Torsion and thermal vorticity \Rightarrow spin density
- μ^{ab} are independent variables out of equilibrium

Thermal equilibrium in presence of time-independent sources



- Spin potential \Rightarrow thermal vorticity at equilibrium
- Torsion and thermal vorticity \Rightarrow spin density
- μ^{ab} are independent variables out of equilibrium

 \Rightarrow To be determined by hydrodynamic equations + constitutive relations

Summary and outlook

- Bayesian analysis + hydro ⇒ transport coefficients of QGP
 Collisions with different nuclei e.g. Oxygen Nijs, van der Schee '21
 Extension to include magnetic fields and rotation
- Magneto-hydrodynamics and a perturbative scheme

Full magnetohydro needed to explain data \Rightarrow CME, CVE

- Systematic study of spin transport in relativistic hydrodynamics
 Realistic hydro simulations, resolve open puzzles: sign in longitudinal polarization
 Becattini and Karpenko '16; Bhadury et al '21
- Holographic description of magnetic QGP and the spin flow

First order hydrostatics

In this talk: Conformal and parity invariant fluid

Weyl invariance: $\delta S = 0$, $e^a{}_\mu \rightarrow e^\phi e^a{}_\mu$

 \Rightarrow Conformal Ward identity of spin fluid: $T^{\mu}{}_{\mu} = \mathring{\nabla}_{\mu} S_{\lambda}{}^{\lambda\mu}$

 $\epsilon = \epsilon_0 T^4 + 3\rho_0 M^2 T^2 + \cdots, \quad P = \frac{1}{3}\epsilon_0 T^4 + \rho_0 M^2 T^2 + \cdots, \quad \rho_{ab} = 8\rho_0 T^2 M_{ab} + \cdots$

First order hydrostatics

In this talk: Conformal and parity invariant fluid

Weyl invariance: $\delta S = 0$, $e^a{}_\mu \rightarrow e^\phi e^a{}_\mu$

 \Rightarrow Conformal Ward identity of spin fluid: $T^{\mu}{}_{\mu} = \mathring{\nabla}_{\mu} S_{\lambda}{}^{\lambda\mu}$

 $\epsilon = \epsilon_0 T^4 + 3\rho_0 M^2 T^2 + \cdots, \quad P = \frac{1}{3}\epsilon_0 T^4 + \rho_0 M^2 T^2 + \cdots, \quad \rho_{ab} = 8\rho_0 T^2 M_{ab} + \cdots$

Most general correction to ideal fluid:

$$W_{h} = \int d^{4}x |e| \left(\chi^{(1)}T^{3}\kappa + 2\chi_{1}^{(2)}T^{2}\kappa_{A}^{\mu\nu}M_{\mu\nu} + 2\chi_{2}^{(2)}T^{2}K^{\mu\nu}M_{\mu\nu} \right)$$

linear in torsion

 $\Rightarrow S_{ab}^{\lambda} = u^{\lambda} \rho_{ab} + 2T^{3} \chi^{(1)} \Delta^{\lambda}{}_{[a} u_{b]} - 4T^{2} \chi^{(2)}_{1} M^{\lambda}{}_{[a} u_{b]} + 4T^{2} \chi^{(2)}_{2} u^{\lambda} M_{ab}$

First order hydrostatics

In this talk: Conformal and parity invariant fluid

Weyl invariance: $\delta S = 0$, $e^a{}_\mu \rightarrow e^\phi e^a{}_\mu$

 \Rightarrow Conformal Ward identity of spin fluid: $T^{\mu}{}_{\mu} = \mathring{\nabla}_{\mu} S_{\lambda}{}^{\lambda\mu}$

 $\epsilon = \epsilon_0 T^4 + 3\rho_0 M^2 T^2 + \cdots, \quad P = \frac{1}{3}\epsilon_0 T^4 + \rho_0 M^2 T^2 + \cdots, \quad \rho_{ab} = 8\rho_0 T^2 M_{ab} + \cdots$

Most general correction to ideal fluid:

$$W_{h} = \int d^{4}x |e| \left(\chi^{(1)}T^{3}\kappa + 2\chi_{1}^{(2)}T^{2}\kappa_{A}^{\mu\nu}M_{\mu\nu} + 2\chi_{2}^{(2)}T^{2}K^{\mu\nu}M_{\mu\nu} \right)$$

linear in torsion

$$\Rightarrow S_{ab}^{\lambda} = u^{\lambda} \rho_{ab} + 2T^{3} \chi^{(1)} \Delta^{\lambda}{}_{[a} u_{b]} - 4T^{2} \chi_{1}^{(2)} M^{\lambda}{}_{[a} u_{b]} + 4T^{2} \chi_{2}^{(2)} u^{\lambda} M_{ab}$$

universal "unsourced" component

Non-equilibrium corrections

All conformal and parity invariant contributions that vanish at equilibrium:

$$\delta S^{\lambda}{}_{ab} = 2\sigma_1 \sigma^{\lambda}{}_{[a}u_{b]} + 2\sigma_2 \hat{M}^{\lambda}{}_{[a}u_{b]} + 2\sigma_3 \Delta^{\lambda}{}_{[a}\hat{m}_{b]} + 2\sigma_4 u^{\lambda} u_{[a}\hat{m}_{b]} + 2\sigma_5 u^{\lambda} \hat{M}_{ab}$$

shear induced
spin current
$$\hat{M} = M + \Omega \qquad \hat{m} = m - a$$

Non-equilibrium corrections

All conformal and parity invariant contributions that vanish at equilibrium:

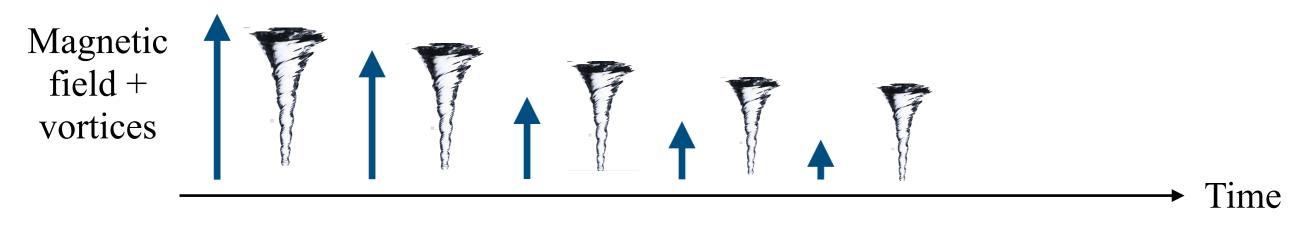
$$\delta S^{\lambda}{}_{ab} = 2\sigma_1 \sigma^{\lambda}{}_{[a}u_{b]} + 2\sigma_2 \hat{M}^{\lambda}{}_{[a}u_{b]} + 2\sigma_3 \Delta^{\lambda}{}_{[a}\hat{m}_{b]} + 2\sigma_4 u^{\lambda} u_{[a}\hat{m}_{b]} + 2\sigma_5 u^{\lambda} \hat{M}_{ab}$$

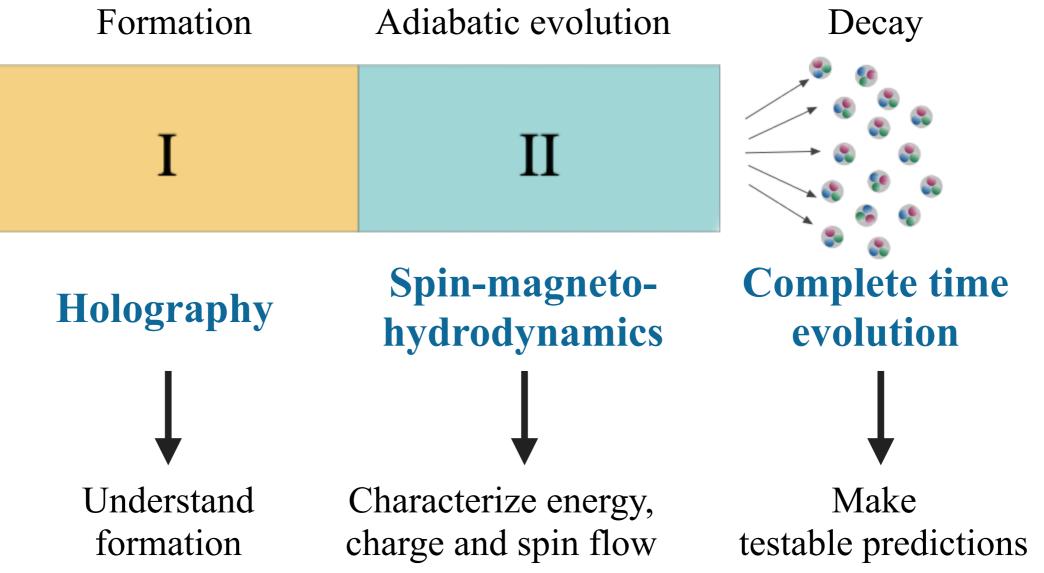
shear induced
spin current
$$\hat{M} = M + \Omega \qquad \hat{m} = m - a$$

Constraints on transport coefficients:

 $\overset{\circ}{\nabla}_{\mu}J^{\mu}_{S}\geq 0$

+ Onsager relations, CPT etc.





"Hydro-holographic" theory of strongly interacting plasmas