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Motivation
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In the last few months we were thinking about...

▶ Granted the success of the local-equilibrium (LEQ) assumption, what is the fate of
the spin potential?

▶ Simplifying semi-classical spin hydrodynamics [Weickgenannt et al. (2022)] such that it can be
solved with a minimal number of parameters

▶ Investigating the question of stability in spin hydrodynamics
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Angular momentum, Spin potential, and covariance



▶ A small body is inside a rigidly rotating environment

▶ The body reaches equilibrium with the environment
when the entropy is maximized under the constraint
of conserved charges {QI} [Gavassino and Shokri (2023)]

Φ = S + α⋆
IQ

I ≤ logZ α⋆
I = − ∂SE

∂QI
E

▶ The environment performs work to shift the system
slightly out of equilibrium [Landau and Lifshitz (1980)]

δWmin = δE − TEδS + PEδV −ΩE · δL > 0

(
1

TE
− ∂S

∂E

)
δE +

(
PE

TE
− ∂S

∂V

)
δV −

(
∂S

∂L
+

ΩE

TE

)
· L︸ ︷︷ ︸

vanishes =⇒ Intensive parameters of the body relaxes to the ones of the environment

+ O
(
δ2
)

︸ ︷︷ ︸
Thermo inequalities

> 0
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▶ Angular momentum’s intensive parameter (in
equilibrium):

∂S

∂J
= −ΩE

TE

▶ In equilibrium α⋆
I = −λI

ρ̂ =
1

Z
e−λIQ̂

I
Z = Tr

(
e−λIQ̂

I
)

▶ Covariantly charges are defined as the following
integrals over arbitrary Cauchy hypersurfaces:

QI =

∫
dΣµ J

µI where DµJ
µI = 0

▶ We can then define

Φ =

∫
dΣµ ϕ

µ where ϕµ = Sµ + α⋆
IJ

µI
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▶ Internal symmetries:

DµN
µ = 0 → N =

∫
dΣµN

µ

▶ Conservation of energy-momentum and angular momentum

DµT
µν = 0

▶ Perfect fluid (Jλµν is automatically conserved)

Jλµν = Lλµν + Sλµν Lλµν ≡ 2T λ[νxµ]

Notations and conventions:

ηµν = diag(1,−1,−1,−1) A[µν] ≡ 1
2
(Aµν −Aνµ)
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Energy-Momentum Tensor and Spin Dynamics
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▶ Non-symmetric energy-momentum tensor:

Tµν = T (µν) + T [µν]

▶ Spin dynamics postulate:

T [µν] =
1

2
∇λSλµν

▶ Fluxes of conserved charges with non-symmetric energy-momentum tensor:

J µh = TµνKh
ν − 1

2
SµαβD[βK

h
α]

▶ Kh are the independent Killing vectors D(µKν) = 0

▶ For generators of rotation r = 1, 2, 3 we find total angular momentum:

Jλr = Lλr + Sλr Lλr ≡ T λνKr
ν Sλr ≡ 1

2
SλµνD[νK

r
µ]
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Happy now? Remember this is only in flat spacetime!
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Thermal Killing Vector
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▶ We define the thermal Killing vector by combining {Kh}:

β⋆ = −α⋆
hK

h β⋆µβ
⋆µ > 0

▶ We can separate h = 0

β⋆ = b⋆ − α⋆
mK

m b⋆ =
1

T0

∂

∂t

▶ This relation is the covariant form of the standard relation [De Groot (1980)]

β⋆µ = b⋆µ +ϖ⋆
µνx

ν , (1)
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▶ The phi-vector:

ϕµ = Sµ + ξ⋆Nµ − Tµνβ⋆ν +
1

2
Sµαβϖ⋆

αβ

▶ Stationary point conditions:

uµ

T
= β⋆µ T [µν] = 0

µ

T
= ξ⋆ Ωαβ ≡ ϖ⋆

αβ = −D[αββ]

▶ Spin potential:

Ωαβ = − ∂s

∂Sαβ

∣∣∣∣∣
n,ϵ

Sαβ = uµSµαβ

▶ In LTE

ds =
1

T
dε− ξ dn− Ωαβ dSαβ
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What is semi-classical spin hydrodynamics?
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Three assumptions of semiclassical spin hydro
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▶ Macroscopic quantum corrections → semi-classical expansion in ℏ (We truncate all the
equations up to first order in ℏ) [?]

▶ Assumption I: spin tensor is small

Sλµν = ℏSλµν ℏDλS
λµν = 2T [νµ]

▶ Assumption II: In global equilibrium

T [νµ]
geq︷︸︸︷
= 0 DλS

λµν
geq︷︸︸︷
= 0 T (µν)

geq︷︸︸︷
= Tµν

(0)

▶ Assumption III:

T (µν) =

O(ℏ0)︷ ︸︸ ︷
T (µν)

standard
+O

(
ℏ2
)

T [µν] = O
(
ℏ2
)
→

No back-reaction︷ ︸︸ ︷
DµT

(µν) = O
(
ℏ2
)
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The symmetric part of the energy-momentum tensor
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T (µν) = Euµuν − P∆µν +Qµuν +Qνuµ + T µν

Semiclassical Landau frame

E = uµuνT
(µν) = ε+O

(
ℏ2
)

P = −1

3
∆αβT

αβ = p+Π+O
(
ℏ2
)

Qµ = ∆µαuβTαβ = O
(
ℏ2
)

T µν = ∆µν
αβT

(αβ) = πµν +O
(
ℏ2
)

MIS-type EOM for dissipative fluxes

τΠΠ̇ + Π = −ζθ + · · · τππ̇
⟨µν⟩ + πµν = 2ησµν + · · ·

Notations:
Ẋ ≡ uµDµX ∆µν

αβ := ∆(µ
α ∆

ν)
β −∆µν∆αβ/3
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Spin-

Polarization

Pre-Hydro

hydro

▶ Nf fluid fields {φA} = {ε, uµ,Π, πµν , · · · }
▶ By solving standard dissipative hydro (DNMR in

our case) we find {φA}
▶ Also Ns spin degrees {ψA} of freedom (spin

potential . . . )

▶ Knowing {φA} we can solve ℏDλS
λµν = 2T [νµ]

and other required equations to find {ψA}
▶ Inserting the results into the formula for Πµ on the

FO surface we find the polarization

M. S. et al. I-Spin-hydro 17.09.2024 16



Ideal-spin hydrodynamics
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▶ 24 components of Sλµν and 6 equations → further equations are needed (e.g.,
from the method of moments)

▶ In ideal-spin approximation d.o.f in Sλµν are only the 6 ones in Ωµν

Sλµν = AuλΩµν+BuλuαΩ
α[µuν]+CuλΩα[µ∆ν]

α+DuαΩ
α[µ∆ν]λ+E∆λ

αΩ
α[µuν]

▶ Constraint from Assumption III: B − C −D + T ∂E
∂T = 0

* {A,B,C,D,E} are functions of ε or, equivalently, T

* In quantum kinetic theory

A =
ℏT 2

4m2

∂

∂T
(ε− 3P ) B =

ℏT 2

4m2

∂ε

∂T
C = D = E = − ℏT 2

4m2

∂P

∂T
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Ideal-spin hydrodynamics
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▶ The antisymmetric part of energy-momentum tensor

T [µν] = −ℏ2Γ(κ)u[µ
(
κν] +ϖν]αuα

)
+

1

2
ℏ2Γ(ω)ϵµνρσuρ (ωσ + βΩσ)

+ ℏ2Γ(a)u[µ
(
βaν] +∇ν]β

)
▶ Why“ideal”: spin contributions to entropy production is of higher order in ℏ

ds =
1

T
dε− ξ dn+O

(
ℏ2
)

* {Γ(κ),Γ(ω),Γ(a)} are functions of ε or, equivalently, T

* Notations

Ωµ = − 1
2
ϵµναβuνDαuβ κµ = −Ωµνuν ωµ = 1

2
ϵµναβuνΩαβ aµ = uαDαuµ
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Hang in there, we are almost at the fun part!
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The poor man’s toolbox
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We need a solution of hydrodynamics to feed into the spin equations
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The poor man’s toolbox
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We need a solution of hydrodynamics to feed into the spin equations

In a poor man’s toolbox:
▶ Damping of spin waves in a hydrostatics background [D. Wagner, M.S, and D. H.

Rischke arXiv:2405.00533] (Similar works: [Ambrus et al. (2022)] and [Singh et al. (2023)])

▶ Linear spin hydro [J. Sammet, M.S., D. Wagner, and D. H. Rischke, in preparation] (Similar
works: [Ren et al. (2024)] and [Daher et al. (2024)])

▶ Bjorken spin hydro [A. Chiarini, M.S., D. Wagner, and D. H. Rischke work in progress] [(Kind
of) similar work: [Singh et al. (2021)]]

▶ Rigidly rotating fluid [A. Chiarini, M.S., D. Wagner, A. Dash, and D. H. Rischke work in
progress]

M. S. et al. I-Spin-hydro 17.09.2024 21



What can we possibly learn from each one?
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Different contributions can be investigated in these three simple setups

τκκ̇
⟨µ⟩ =

Bjorken︷ ︸︸ ︷
F (θ, β̇)κµ + (· · · )

Rigid rot.︷︸︸︷
ωµν +

Bjorken︷︸︸︷
σµν

κν

+

Linear and Rigid rot.︷ ︸︸ ︷
ϵµαβσωσGαβ +(· · · )

Linear and Rigid rot.︷ ︸︸ ︷
uµT

[µν]

Equations for both κ and ω are relaxation-type equations

τκ = −A−B − C

ℏΓ(κ)
τω = − E

ℏΓ(κ)

In quantum kinetic theory

τκ =
T

2m2Γ(κ)
(ε+ P ) τω =

T

4m2Γ(ω)
(ε+ P )

(
1− 1

v2s

)
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Linear regime



Linearized ideal-spin hydrodynamics
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Main idea: linearized equations of hydrodynamics in a homogeneous equilibrium configuration
have linear wave solutions

▶ Independent degrees of freedom in T (µν) are φ ∈ {β = 1/T, uµ, · · · } and in Sλµν are
ψ ∈ {κµ, ωµ, · · · }

▶ For each X ∈ {ϕ, ψ}: X0 → X0 + δX (X0 is constant in a homogeneous equilibrium
configuration)

▶ Fourier transform

δX(x) =

∫
d4k

(2π)4
eik·x/ℏδX(k)
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Linearized ideal-spin hydrodynamics
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▶ Insert δX into the EOM (in Fourier space)

ikµδT
(µν) = 0 ikλδS

λµν = δT [νµ] and EOM for dissipative fluxes

▶ EOM to the matrix form M δX⃗ = 0

▶ This equation has solutions iif det(M) = 0

▶ =⇒ dispersion relations for eigenfrequencies ω = ω(k) (if kµ = (ω,k))

▶ Performing this procedure for the example of ideal-spin hydrodynamics and DNMR (or
MIS) theory with shear viscosity alone → spin and fluid waves are decoupled!

ω2 − iℏaω − v2sk
2 − ℏ2b = 0 a =

τκ + τω
τκτω

b =
1

τκτω
v2s =

Γ(κ)τκ

4Γ(ω)τω
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Where did all fluid’s contributions go?
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▶ Let’s assume a fluid with Nf degrees of freedom: φA where A = 1 · · ·Nf (all possible
dissipative contributions, multiple charges etc)

▶ Such that all these equations in the linear order are written as

MAB
f δφB = O

(
ℏ2
)

▶ And Sλµν with Ns degrees of freedom: ψA where A = 1 · · ·Ns (ideal and dissipative)

▶ The Ns equations in linear order take the form

MAB
s δψB +MAB

fs δφB︸ ︷︷ ︸
source terms

= 0
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Where did all fluid’s contributions go?
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▶ All equations can be collectively written as(
Mf O

(
ℏ2
)

Mfs Ms

)(
δφ
δψ

)
= 0 .

▶ But ∣∣∣∣∣ Mf 0
Mfs Ms

∣∣∣∣∣ =
∣∣∣∣∣ Mf 0

0 Ms

∣∣∣∣∣ = det(Mf) det(Ms)

In the absence of back-reaction from the spin to the fluid, the linear characteristic equation
that determines the spin modes is decoupled from the fluid modes.
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▶ This means that our theory is in some sense incomplete and stability criteria cannot be
extracted

▶ The situation is not better with information current method:

ϕµ = Sµ + ξ⋆Nµ − T (µν)β⋆ν +O
(
ℏ2
)

▶ There can be spin-induced contributions to Qµ and πµν and P (e.g., in [Florkowski and Hontarenko

(2024)])

▶ For example, in equilibrium

Qµ ∼ 1

2
TS⟨µ⟩αβϖ⋆

αβ

▶ However, we can still learn about the fate of spin potential
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Timescales in spin hydrodynamics
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0.01 0.1 1 10 100

1

10

100

1,000

m/T

τω/τπ
τκ/τπ

Relaxation times simiar/larger than typical dissipative timescale τπ for small/large m/T [Wagner et al. (2024)]
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Timescales in spin hydrodynamics
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▶ At late times and small k the timescale td in damping factor exp
(
−t/td

)
is determined by

τω

▶ Spin degrees of freedom relax quite fast in high-energy collisions

▶ . . . while these timescales for low-energy collisions might be even larger than the lifetime
of the fireball

▶ A possible explanation of why the results of [Becattini et al. (2021)] are consistent with data
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Bjorken flow



Conformal Bjorken flow
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A theorist’s favorite solution which unfortunatley does not have thermal vorticity.
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Conformal Bjorken flow
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▶ There is a clever parameterization found by Heller and Spalinski (2015):

w = Tτ f(w) = 1 +
τ

T

dT

dτ
A = 18

(
f(w)− 2

3

)
▶ Slow-roll approximation captures the MIS attractor at early and late times

f(w) =
2

3
− w

8Cτπ
+

√
64CηCτπ + 9w2

24Cτπ
Cτπ = Tτπ Cη =

η

s
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A quick solution
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▶ Using the slow-roll approximation we find at late times

x⊥ ∝ exp

(
−Cτx

C2
τπ

w

)
wCτx/ρx x∥ ∝ exp

(
−Cτx

C2
τπ

w

)
▶ Numerical inspection with the assumption of a very small initial value of x ∈ {κ, ω}

shows that:

τπ has a much more important effect than τω and τκ
A large value of ρκ (ρω) can amplify a very small initial spin potential to a very large one
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Final words



▶ Numerically solving spin EOM on top of an uncharged fluid in global equilibrium with a
non-vanishing thermal vorticity

▶ . . . to understand better the equilibration timescale of spin degrees of freedom [A.
Chiarini, M.S., D. Wagner, A. Dash, and D. H. Rischke, work in progress]s

▶ Mitica - Flexible Hadron Polarization Analysis Code [N. Saß, M.S, A. Palermo, David
Wagner, H. Elfner, and Dirk H. Rischke, work in progress]: specialized code designed to
implement and compare various hadron polarization formulas, including a novel approach
based on quantum kinetic theory. This code builds upon and extensively adapts
algorithms from existing particlization frameworks, maintaining the use of OpenMP for
optimized performance and faster execution.
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Backup



Local Λ polarization
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Solving standard dissipative hydrodynamics and feeding the results into polarization for-
mula of [?] on the freezeout surface: preliminary results signal that the standard shear
tensor contributes in the right direction [N. Saß, M.S, A. Palermo, David Wagner, H.
Elfner, and Dirk H. Rischke, work in progress]

S
µ
(p)NS =

∫
dΣ · p

f0p

2N

{
−

ℏ
2m

Ω̃
µν

pν +

(
g
µ
ν −

uµp⟨ν⟩

Ep

)

×
[
eχp

(
Ω̃

νρ − ϖ̃
νρ
)
uρ − χqdβ0σ

⟨α
ρ ϵ

β⟩νσρ
uσp⟨αpβ⟩

]}

M. S. et al. I-Spin-hydro 17.09.2024 35



Using QI
tot as constants of motion, we expand the entropy of the environment:

SE(Q
I
tot −QI) = SE(Q

I
tot) + α⋆

IQ
I + · · · (2)

Where:

α⋆
I = −∂SE(Q

J
tot)

∂QI
E

(3)

The total entropy up to first order in QI is:

Stot ≈ SE(Q
I
tot) + Φ (4)

Where:
Φ = S + α⋆

IQ
I (5)

Φ must be non-decreasing in time as Stot is non-decreasing.
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Generalization to Larger Systems
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▶ Even if the body’s charges are not smaller than the environment’s, the equilibrium
conditions still hold.

▶ Perturbing the body: ρ̂′ = ρ̂+ δρ̂

▶ Using Bogoliubov inequality:

S[ρ̂′] + α⋆
I Tr

(
ρ̂′Q̂I

)
< lnZ (6)

▶ Hence, Φ ≤ lnZ, maximized in equilibrium.
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Physical Meaning of Φ
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For a small body with volume V , energy E, and entropy S:

−TEΦ = E − TES (7)

▶ The environment performs work to shift the system slightly out of equilibrium.

δWmin = δE − TEδS + PEδV −ΩE · δL > 0 . (8)

▶ The minimum work required:

δWmin = PEδV − TEδΦ (9)
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Thermodynamic Stability
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Expanding δE in terms of δV and δS:

▶ First-order derivatives cancel: δΦ = 0 at first order.

▶ Second-order terms yield standard thermodynamic inequalities:

Cv > 0 ,
∂P

∂V

∣∣∣
T
< 0 , Cp > 0 (10)

This is the essence of the Gibbs stability criterion.
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Conformal Bjorken flow
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▶ Let’s assume conformal symmetry: ε = 3P ∼ T 4 τπ = Cτπ/T η = Cη
ε+P
T

▶ Reasons to love Bjorken flow (as a theorist):
1. A coordinate system (Milne) in which uµ = (1,0):

ds2 = dτ2 − dx2 − dy2 − τ2 dηs
2 τ2 = t2 − z2 tanh ηs =

z

t

2. All quantities are functions of τ only =⇒ EOM become ODEs
3. Energy-momentum tensor is diagonal Tµ

ν = diag(ε, P⊥, P⊥, P∥)

▶ The pressure anisotropy is due to the shear-stress tensor (which has one degree of
freedom)

A ≡
P∥ − P⊥

PEQ

▶ There is a clever parameterization found by Heller and Spalinski (2015):

w = Tτ f(w) = 1 +
τ

T

dT

dτ
A = 18

(
f(w)− 2

3

)
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Bjorken ideal-spin conformal hydrodynamics
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▶ The coefficients from conformal symmetry

{A,B,C,D,E} → {A,B,C,D,E}T 3 {Γ(κ),Γ(ω)} → {Γ(κ),Γ(ω)}T 4

▶ Constraint becomes algebraic

3E +B − C −D = 0

▶ Using rotational symmetry

κµ =

(
0, κ⊥(τ), 0,

κ∥(τ)

τ

)
ωµ =

(
0, ω⊥(τ), 0,

ω∥(τ)

τ

)
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Spin equations of motion
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▶ The same equations are found for x ∈ {ω, κ}:

Cτx

(
w

d

dw
+

A
6

)
x⊥ + (w − ρx)x⊥ = 0

Cτx

(
w

d

dw
+

A
6

)
x∥ + wx∥ = 0

▶ The timescales are redefined as Cτx = Tτx

▶ Couplings to the shear tensor: Tρκ = D/(ℏΓκ) and Tρω = E/(ℏΓω)
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