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A black hole / a QGP has no hair:

Stable black holes are characterized by

Mass

Charge

Angular Momentum
[From Forbes]

Temperature

Density

[Femto-Novae]
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condition. We used the corresponding µB , µQ, nB and
nQ values at each given simulation point. For the T -
derivative in the entropy density we used the derivatives
of the already fitted functions (4). The naive T derivative
of these fit functions is a directional derivative along con-
stant µB/T and variable µQ and µS defined by Eq. (2).
Using the temperature dependence of µQ one can calcu-
late the partial T -derivative that defines the entropy. The
terms in " and s that are related to the variable µQ/T in
a fixed-µB/T dataset are smaller than the overall error.
Nevertheless, in the numerical analysis none of the terms
were dropped.

Therefore it is possible to obtain all the thermody-
namic quantities at finite chemical potential. In partic-
ular, we start with the entropy density s and baryonic
density nB . These quantities are relevant because, in
the absence of dissipative e↵ects, the medium created in
a heavy ion collision expands without generation of en-
tropy (S) and with a fixed baryon number (NB), so that
S/NB = s/nB is fixed in this case. We calculate the ratio
s/nB for the values of the freeze-out temperatures and
chemical potentials extracted in Ref. [31], which corre-
spond to the various collision energies of the RHIC beam
energy scan. After the initial collision, the system starts
from a point in the (T, µB) plane and follows a trajec-
tory which will bring it to one of the freeze-out points.
We start from the freeze-out points and reconstruct the
isentropic trajectories backwards in the (T, µB) plane.
This is done for the first time from lattice QCD simula-
tions to order µ6

B . Such isentropic trajectories are shown
in Fig. 3. The black points are the freeze-out parame-
ters from Ref. [31]. The last point corresponds to the
preliminary analysis of the new STAR run at 14.5 GeV
[32]. The curves are continued in the hadronic phase by
means of the Hadron Resonance Gas (HRG) model.
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FIG. 3. The QCD phase diagram in the (T, µB) plane with
the isentropic trajectories: the contours with fixed S/NB

value. The green points are the chemical freeze-out parame-
ters extracted in Ref. [31]. The S/NB ratios correspond to the
RHIC energies 200, 62.4, 39, 27, 19.6 and 14.5 GeV. The last
point is based on preliminary STAR data [32]. The freeze-
out parameters are obtained by a combined fit of net-electric
charge and net-proton fluctuations in the HRG model.

We use the continuum extrapolated fit parameters and
the formulas in Eq. (5) to extrapolate the pressure and
the trace anomaly to finite density. In Fig. 4 we plot
these observables for two of the RHIC energies along the
isentropic trajectories of Fig. 3. The e↵ect of the finite
chemical potential is more prominent at high tempera-
ture for the pressure, while the interaction measure is
mildly a↵ected by the change in µB , and mainly at low
temperatures.

FIG. 4. Pressure (upper panel) and interaction measure
(lower panel) as functions of temperature, calculated along
the highest and lowest isentropic trajectories from Fig. 3.

In conclusion, we have presented lattice QCD results
for the Taylor expansion coe�cients of the pressure up to
order (µB/T )6. These results, simulated at the physical
mass and continuum extrapolated, are achieved for the
first time in this paper, using to the method of analyti-
cal continuation of the baryonic density from imaginary
chemical potential and taking its derivatives with respect
to µB . As our results indicate, this approach leads to
a more precise determination of the coe�cients, as com-
pared to their direct simulation at µB = 0. Starting from
the freeze-out parameters of Ref. [31], we have then de-
termined the isentropic trajectories in the (T, µB) plane
up to order (µB/T )6, and calculated the pressure and
interaction measure along these trajectories. The results
presented here allow to reliably extend the calculations
of the thermodynamic quantities up to µB/T ' 2, which
covers most of the Beam Energy Scan program at RHIC.

ACKNOWLEDGEMENTS

C.R. would like to thank Volker Koch, Jacquelyn
Noronha-Hostler, Jorge Noronha and Bjorn Schenke for
fruitful discussions. This project was funded by the DFG
grant SFB/TR55. This material is based upon work sup-
ported by the National Science Foundation through grant
number NSF PHY-1513864 and by the U.S. Department
of Energy, O�ce of Science, O�ce of Nuclear Physics,

Speculated Phase Diagram

Gunther et al. (2016)

Ideal hydrodynamics:

Eliminating  (∂ ⋅ u) → n ·s − s ·n = 0 → s/n = (const.)

𝒮μ = suμ jμ = nuμ

∂μTμν = 0 → ∂μ𝒮μ = 0
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Grand Canonical Descriptions

 : baryon density 
 : baryon chemical pot.

n
μ

 : angular mom. 
 : spin chemical pot.

J
ω

Phase Diagram 
Hydro Trajectories Counterparts?

[EoSs]

de = Tds + μdn + ωμνdJμν

dp = sdT + ndμ + Jμνdωμν

⟨n⟩ =
∂p
∂μ

⟨Jz⟩ =
∂p
∂ωz



September 17, 2024 @ ect*, Trento

Thermal System with Vorticity

6

Ahmed-Cong-Kubiznak-Mann-Visser (2023)

! to be independent of the boundary coordinates, in which case the CFT volume reads

V = ⌦d�2R
d�2 , (1.5)

where R = !L is the variable curvature radius of the manifold where the CFT lives. The

variation of the CFT volume V is then obviously independent of the variation of the central

charge C, which for Einstein gravity is dual to

C =
⌦d�2Ld�2

16⇡GN

, (1.6)

even when Newton’s constantGN is held fixed. Employing the following AdS/CFT dictionary:

E =
M

!
, T =

TH

!
, ⌦̃ =

⌦

!
, �̃ =

�
p
GN

!L
, Q̃ =

QLp
GN

, (1.7)

it is easy to show that the bulk first law (1.2) is dual to [24, 26]:

E = T �S + ⌦̃�J + �̃�Q̃+ µ�C � p�V , (1.8)

accompanied by the following two relations for the chemical potential µ associated to the

central charge and for the pressure p, respectively,

µ =
1

C
(E � TS � ⌦̃J � �̃Q̃) , (1.9)

p =
E

(d� 2)V , (1.10)

known as the Euler relation and the equation of state for CFTs, respectively. This Euler

equation holds for any large-N gauge theory, and di↵ers from the standard one in thermody-

namics in that it does not contain a pV term. In the high-temperature or large-volume regime,

i.e. RT � 1, the µC term becomes equal to �pV, and (1.9) becomes the standard thermo-

dynamic Euler relation [26]. In Ref. [31] we provided an extensive study of the extended

thermodynamics of CFT states dual to charged, nonrotating AdS black holes.

It is the purpose of this paper to explore the implications of this proposal for rotating

thermal CFT states that are dual to uncharged, singly-spinning AdS black holes in the bulk.

In particular, we shall focus on the following three ensembles that feature interesting phase

behavior:
fixed (J,V, C) : F ⌘ E � TS ,

fixed (⌦̃,V, C) : W ⌘ E � TS � ⌦̃J ,

fixed (J,V, µ) : G ⌘ E � TS � µC ,

(1.11)

where F , W , and G are the corresponding free energies of the respective ensembles. These

ensembles are analogous to the three ensembles studied in [31] for thermal CFT states dual

to charged, nonrotating AdS black holes, for which we found interesting phase behaviour.

For the present rotating case, in the first (‘canonical’) ensemble, we shall show that there is

– 3 –

Canonical

Grand Canonical

A notable distinction from the standard first-order transitions seen for AdS black holes

is that the smaller black hole branch has superradiant instabilities. In other words, as tem-

perature decreases the first-order transition is from a large black hole to a small one with

⌦L > 1. This branch is presumably replaced with a branch of stable small black holes with

some kind of scalar hair [46]. We shall not pursue this issue further.

The co-existence phase diagrams for these transitions are plotted in Fig. 2. Each curve

on these diagrams is a line of first-order phase transitions that terminates at a critical point

denoted by open circles. The HE phase lies to the right of the curves while the LE phase

lies to the left of the curves. The two phases become indistinguishable above the critical

points. Notice that the left and right diagrams in Fig. 2 are identical. This is due to the

above mentioned dependence of T and F/C on only the ratio J/C instead of on J and C

independently. As a result, varying 1/C at fixed J has the same “thermodynamic e↵ect”

as varying J at fixed 1/C. In particular, looking at Fig. 1, we see that each curve in the

left diagram is only stretched along the F axis as compared to the corresponding curve on

the right, but the phase transition temperatures are identical. This explains the identical

diagrams in Fig. 2.

We also note that the T -intercepts of the co-existence lines all occur at the same value

of T . This temperature is given by the Hawking–Page transition temperature THP at J = 0

which can be obtained by solving for x in (3.3) i.e., F (x, z = 0) = 0, for which one gets

the solution x = 1 (or rh = L). Substituting this and z = 0 into the expression for the

temperature T then gives the value

THP =
1

⇡R
. (3.5)
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0.05
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0.20

0.25
J

o

o

o

Figure 2: Co-existence diagram in d = 4. Each of the curves displayed here is a line of

first-order phase transitions for di↵erent parameter values. Left: J = 1/2 (blue), J = 1

(yellow), J = 2 (green) for V = 1. Right: 1/C = 1/2 (blue), 1/C = 1 (yellow), 1/C = 2

(green) for V = 1. For each of these parameter values, the line of first-order phase transition

separates the low-entropy (LE) phase, lying to the left of the curve, and the high-entropy

(HE) phase, lying to the right. Each line ends at a critical point, denoted by an open circle,

where the phase transition becomes second order.

– 11 –

Low-Entropy Phase

High-Entropy Phase

For a given J, there are multiple solutions 
and a first-order phase transition occurs.

Also, the “end-point” appears 
that is of second-order.
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– 3 –

Canonical

Grand Canonical

Figure 6: W � T diagram of fixed (⌦̃,V, C) ensemble for V = 1 = C, d = 4 (left), and

d = 6 (right). The curves correspond to ⌦̃ = 1

20

1

R
(blue), ⌦̃ = 5

6

1

R
(yellow), ⌦̃ = 1

R
(green)

and ⌦̃ = 3

2

1

R
(black). For ⌦̃ = 1

R
, the physical part of the figure corresponds to the solid line,

while the dashed part has z > 1. The black lines correspond to superradiant black holes in

the bulk.

0.0 0.5 1.0 1.5 2.0T0

1

2

3

4

5
Ω


DeconfinedConfined

Unstable

Figure 7: Co-existence diagram for ⌦̃ vs. T . The parameters used here are C = 1 = V,
d = 4 (left), and d = 6 (right). For ⌦̃R < 1, a first-order phase transition occurs across the

co-existence line separating the confined and deconfined phase. Contrary to the canonical

ensemble, the coexistence line no longer terminates at a critical point. Rather, an ‘unstable

region’ (subject to superradiant instabilities in the bulk) develops for ⌦̃R � 1.

– 17 –

In the grand canonical case, a first-order 
Hawking-Page transition is seen.

Consistent with  Chen-Zhang-Li-Hou-
Huang (2020)

Figure 10. Deconfinement phase diagram for pure gluon system in the T�! and T�µ plane. Solid
line is first order transition and green point is the CEP. (a) Deconfinement phase diagram in the T�!

plane for µ = 0, 0.1, 0.15GeV. Positions of CEP are located at (!E
, T

E) = (0.67, 0.186), (0.43, 0.231)
respectively. (b) Deconfiement phase diagram in the T � µ plane for ! = 0, 0.5, 0.8GeV. Positions
of CEP are located at (µE

, T
E) = (0.188, 0.256), (0.139, 0.222), (0.068, 0.153) respectively. The unit

of T, µ,! is GeV.

the T � µ plane for di↵erent angular velocities !. When ! = 0, the deconfinement phase

transition is of 1st order phase transition in lower chemical potential and of crossover at

higher chemical potential, and the CEP is located at (µE
, T

E) = (0.188, 0.256)GeV. When

the angular velocity increases, the phase transition line shifts down, and the location of

the CEP shifts to the lower left plane.

The phase diagram of two-flavor system has be shown in Fig.11. We can see that the

angular velocity and chemical potential will suppress the transition temperature and the

phase transition will be always crossover in the whole phase diagram. Since the angular

velocity is normalized, the transition temperature will decrease down to zero at ! ! 1GeV .

In the left panel of Fig.11, we can see that small angular velocity has less influence on tran-

sition temperature while large angular velocity leads to a quick decrease of phase transition

temperature. The right panel of Fig.11 shows that the phase transition temperature has

weak dependence of chemical potential, which is similar to our previous work and PNJL

model of deconfinement transition of light flavor[24, 70, 97]. Besides, rotation will lead to a

anisotropic background which is in parallel with the analysis in anisotropic theories[98, 99].

There it has been found that the presence of anisotropy leads to easier dissociation of the

QQ̄ and that in phase transitions anisotropy acts like a catalyst decreasing the critical

temperature.1

3.3 Heavy-quark potential, Polyakov loop and spatial Wilson loop under ro-

tation

The above phase transition structure is obtained by analyzing the geometric phase tran-

sition, i.e. extracted from the thermodynamic quantities. To get more information of the

1Thanks Dimitrios Giataganas for this commment.

– 14 –
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EoS calculable from the rotating HRG model
Pressure:

3

Let us suppose that the hadron mass spectrum rises
exponentially, i.e.,

⇢(m) = e
m/TH , (9)

where TH is not a physical temperature but just a slope
parameter to characterize the mass spectrum. Then, the
integration weighted with the Boltzmann factor, e�m/T ,
gives us the partition function as

Z =

Z
dm ⇢(m) e�m/T

. (10)

For simplicity we omit the phase space volume (that
would give a polynomial factor) and focus on the ex-
ponential behavior only. In other words the integra-
tion measure of dm is implicitly defined in a consistent
way. Now, it is obvious that the integration diverges for
T > TH , and Hagedorn considered that TH should be the
limiting temperature: any physical systems of hadrons
cannot be heated above TH . This conjecture should be
revised once internal structures of hadrons are taken into
account. The existence of TH should be correctly inter-
preted as a breakdown point of such a simple hadronic
description and the physical systems should be better
characterized by quarks and gluons at T > TH .

In the HRG model, the hadron mass spectrum is taken
from the experimental data, and interestingly, ⇢(m)
shows exponential growth up to m ⇠ 3 GeV. There-
fore, the above picture of deconfinement makes approx-
imate sense, and we can see blowup behavior of ther-
modynamic quantities such as the pressure, the internal
energy, the entropy density, and so on at a certain tem-
perature (T ⇠ TH), though they do not diverge strictly.
Therefore, we can physically identify the deconfinement
crossover point from the blowup behavior of thermody-
namic quantities in the HRG model. We will explain our
working criterion for deconfinement in later discussions.

IV. ROTATING HADRON RESONANCE GAS
MODEL

The HRG model has been well established and for
our purpose to investigate rotating systems we need to
rewrite the formulas in terms of the cylindrical coordi-
nates, (kr, `, kz). The pressure in the HRG model has
contributions from both mesons (m) and baryons (b) up
to an ultraviolet mass scale, ⇤:

p(T, µ,!;⇤) =
X

m;Mi⇤

pm +
X

b;Mb⇤

pb , (11)

The mesonic and the baryonic pressures are given by

pm = p
�
i=m

, pb = p
+
i=b

, (12)

where the generalized pressure functions are

p
±
i
= ± T

8⇡2

1X

`=�1

Z
dk

2
r

Z
dkz

`+2SiX

⌫=`

J
2
⌫
(krr)

⇥ log {1± exp[�("`,i � µi)/T ]} . (13)

The energy spectrum is "`,i =
p

k2
r
+ k2

z
+m

2
i
�(`+Si)!

with Si and mi being the spin and the mass of the parti-
cle i. We note that the radial integration is with respect
to k

2
r
in the above form; that is, dk

2
r
= 2krdkr. The

above expression needs some more explanations. The ro-
tation e↵ect shifts the energy dispersion relation by the
cranking term, i.e., �J ·!, which varies as (`+si)! from
si = �Si to si = +Si. We reorganize the sum over si and
` so that the energy shift can be the same, �(` + Si)!,
to simplify the expression. Then, the spin sum is trans-
lated to the sum with respect to ⌫ with the square of
the Bessel function J

2
⌫
(krr) as in Eq. (13). The Bessel

function arises from the weight in the Bessel-Fourier ex-
pansion. The simplest nontrivial example is the spin-1/2
calculation (see Ref. [17, 32] for more details). After the
appropriate redefinition of ` in such a way that the total
angular momentum is j = `+ 1/2, one particle solutions
of the Dirac equation read:

u+ =
e
�i"t+ikzz

p
"+m

0

BB@

("+m)J`(krr)ei`'

0
kzJ`(krr)ei`'

ikrJ`+1(krr)ei(`+1)'

1

CCA . (14)

The other solution, u�, can be expressed similarly (the
explicit expression is found in Ref. [17]). From these
solutions the fermionic propagator can be constructed
and its trace involves J2

`
(krr)+J

2
`+1(krr), that is nothing

but the sum we see in Eq. (13) for Si = 1/2.
It is important to note that the integrations and the

sum in Eq. (13) are convergent. We can understand that
from the ! ! 0 limit to recover the standard expression
in the HRG model:

p
±
i
! ±giT

2⇡2

Z 1

0
k
2
dk log

(
1± exp

"
�
p
k2+m

2
i
�µi

T

#)
,

(15)
where gi = 2Si + 1 is the spin degeneracy factor and
this expression is certainly convergent. The dispersion
relation involves an exponentially growing factor, e`!/T ,
but J

2
⌫�`

(krr) has stronger expnential suppression and
Eq. (13) is finite.
There is, however, one subtlety in Eq. (13). As dis-

cussed in Sec. II, we can avoid unphysical condensates
from the causality bound, but it is time consuming to
take the discrete sum of kr. Here, instead, we shall em-
ploy an approximate and minimal prescription to evade
unphysical condensates. As long as ! is not significantly
larger than ⇤QCD, the discretization in high momentum
regions is expected to be a minor e↵ect, and the leading
discretization e↵ect in the low momentum regions is the
mass gap. We can thus introduce an infrared cuto↵ for
the kr integration, ⇤IR

`
, defined by

⇤IR
`

= ⇠`,1! , (16)

where, as we already noted, an obvious zero at ⇠ = 0 is
excluded. The kr integration in Eq. (13) is then replaced
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and its trace involves J2

`
(krr)+J

2
`+1(krr), that is nothing

but the sum we see in Eq. (13) for Si = 1/2.
It is important to note that the integrations and the

sum in Eq. (13) are convergent. We can understand that
from the ! ! 0 limit to recover the standard expression
in the HRG model:
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where gi = 2Si + 1 is the spin degeneracy factor and
this expression is certainly convergent. The dispersion
relation involves an exponentially growing factor, e`!/T ,
but J

2
⌫�`

(krr) has stronger expnential suppression and
Eq. (13) is finite.
There is, however, one subtlety in Eq. (13). As dis-

cussed in Sec. II, we can avoid unphysical condensates
from the causality bound, but it is time consuming to
take the discrete sum of kr. Here, instead, we shall em-
ploy an approximate and minimal prescription to evade
unphysical condensates. As long as ! is not significantly
larger than ⇤QCD, the discretization in high momentum
regions is expected to be a minor e↵ect, and the leading
discretization e↵ect in the low momentum regions is the
mass gap. We can thus introduce an infrared cuto↵ for
the kr integration, ⇤IR

`
, defined by

⇤IR
`

= ⇠`,1! , (16)

where, as we already noted, an obvious zero at ⇠ = 0 is
excluded. The kr integration in Eq. (13) is then replaced3

Let us suppose that the hadron mass spectrum rises
exponentially, i.e.,

⇢(m) = e
m/TH , (9)

where TH is not a physical temperature but just a slope
parameter to characterize the mass spectrum. Then, the
integration weighted with the Boltzmann factor, e�m/T ,
gives us the partition function as

Z =

Z
dm ⇢(m) e�m/T

. (10)

For simplicity we omit the phase space volume (that
would give a polynomial factor) and focus on the ex-
ponential behavior only. In other words the integra-
tion measure of dm is implicitly defined in a consistent
way. Now, it is obvious that the integration diverges for
T > TH , and Hagedorn considered that TH should be the
limiting temperature: any physical systems of hadrons
cannot be heated above TH . This conjecture should be
revised once internal structures of hadrons are taken into
account. The existence of TH should be correctly inter-
preted as a breakdown point of such a simple hadronic
description and the physical systems should be better
characterized by quarks and gluons at T > TH .

In the HRG model, the hadron mass spectrum is taken
from the experimental data, and interestingly, ⇢(m)
shows exponential growth up to m ⇠ 3 GeV. There-
fore, the above picture of deconfinement makes approx-
imate sense, and we can see blowup behavior of ther-
modynamic quantities such as the pressure, the internal
energy, the entropy density, and so on at a certain tem-
perature (T ⇠ TH), though they do not diverge strictly.
Therefore, we can physically identify the deconfinement
crossover point from the blowup behavior of thermody-
namic quantities in the HRG model. We will explain our
working criterion for deconfinement in later discussions.

IV. ROTATING HADRON RESONANCE GAS
MODEL

The HRG model has been well established and for
our purpose to investigate rotating systems we need to
rewrite the formulas in terms of the cylindrical coordi-
nates, (kr, `, kz). The pressure in the HRG model has
contributions from both mesons (m) and baryons (b) up
to an ultraviolet mass scale, ⇤:
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with Si and mi being the spin and the mass of the parti-
cle i. We note that the radial integration is with respect
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above expression needs some more explanations. The ro-
tation e↵ect shifts the energy dispersion relation by the
cranking term, i.e., �J ·!, which varies as (`+si)! from
si = �Si to si = +Si. We reorganize the sum over si and
` so that the energy shift can be the same, �(` + Si)!,
to simplify the expression. Then, the spin sum is trans-
lated to the sum with respect to ⌫ with the square of
the Bessel function J
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(krr) as in Eq. (13). The Bessel

function arises from the weight in the Bessel-Fourier ex-
pansion. The simplest nontrivial example is the spin-1/2
calculation (see Ref. [17, 32] for more details). After the
appropriate redefinition of ` in such a way that the total
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of the Dirac equation read:
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where gi = 2Si + 1 is the spin degeneracy factor and
this expression is certainly convergent. The dispersion
relation involves an exponentially growing factor, e`!/T ,
but J
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Eq. (13) is finite.
There is, however, one subtlety in Eq. (13). As dis-

cussed in Sec. II, we can avoid unphysical condensates
from the causality bound, but it is time consuming to
take the discrete sum of kr. Here, instead, we shall em-
ploy an approximate and minimal prescription to evade
unphysical condensates. As long as ! is not significantly
larger than ⇤QCD, the discretization in high momentum
regions is expected to be a minor e↵ect, and the leading
discretization e↵ect in the low momentum regions is the
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where gi = 2Si + 1 is the spin degeneracy factor and
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but J
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Eq. (13) is finite.
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cussed in Sec. II, we can avoid unphysical condensates
from the causality bound, but it is time consuming to
take the discrete sum of kr. Here, instead, we shall em-
ploy an approximate and minimal prescription to evade
unphysical condensates. As long as ! is not significantly
larger than ⇤QCD, the discretization in high momentum
regions is expected to be a minor e↵ect, and the leading
discretization e↵ect in the low momentum regions is the
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We will elucidate technical procedures in more details in
Sec. VI.

V. RADIAL DEPENDENCE

We note that our main formula (13) depends on the
radial coordinate r through J

2
⌫
(krr). There are twofold

intuitive origins for this r dependence. One is possible r

dependence from the boundary e↵ect at R ⇠ 1/!. The
boundary e↵ect exists even for nonrotating matter. We
are interested in not surface singularities (as discussed
in Ref. [32] for example) but bulk properties, and so we
can take as small r as possible for numerical implementa-
tion. Another origin is that the centrifugal force should
be supported by the r dependent part of the pressure.

Let us consider the r dependence from the latter ori-
gin. From the analogy to the relation between the baryon
number density and the pressure: n = @p/@µ, we can ex-
press the angular momentum density as

hji(r) = @p(r)

@!
. (18)

When ! is small in the linear regime, the angular mo-
mentum is related to the moment of inertia in the in-
finitesimal volume dV as

hji(r) dV ' dI(r)! . (19)

For homogeneous matter with mass density ⇢, we can
easily find the moment of inertia as dI(r) = ⇢r

2
dV . If

the baryon chemical potential is vanishing, ⇢ should be
characterized by the temperature T , i.e., ⇢ = �T

4. We
can roughly approximate � from the enthalpy density;
namely, � = 2⌫⇡2

/45 with the thermal degrees of free-
dom ⌫. Then, we can approximate:

p(r) = p(0) +�p(r) , �p(r) ' �

2
T

4
r
2
!
2
. (20)

Because � may di↵er for confined hadronic matter and
deconfined matter of quarks and gluons, the deconfine-
ment point could be in principle dependent on r. In-
deed in the cyllinder with a boundary, the possibility of
spatially separated regions of confinement and deconfine-
ment was pointed out [23].

In the present work, to avoid ambiguous interpretation,
we shall take r! ⌧ 1 so that we can safely neglect the
r dependence: we fix r = 0.01 GeV�1 throughout this
work. If we take the strict limit of r ! 0 in the integrand
in Eq. (13) (assuming that the infinite sum over ` and the
integration with respect to kr are harmless), all the terms
involving J

2
⌫ 6=0(0) = 0 should vanish. Then, only terms

with ⌫ = 0 survive, which are allowed for ` = �2Si to

` = 0, corresponding to the energy shifts from �Si! to
+Si!. Since we redefined ` to simplify Eq. (13), it is a
bit nontrivial to see, but the surviving terms are di↵erent
spin states with zero orbital angular momentum. This is
very natural: at r = 0 the orbital angular momentum is
identically zero and the rotation couples to the spin only.

VI. NUMERICAL RESULTS

In our HRG model treatment we have adopted the par-
ticle data group list of particles contained in the package
of THERMUS-V3.0 [33] and incorporated the data into
our own numerical codes. To reduce the numerical cost,
we impose an ultraviolet mass cuto↵ as ⇤ = 1.5 GeV in
Eq. (13). This also limits the high spin states. With our
choice of ⇤ = 1.5 GeV the largest spin states contribut-
ing to the pressure are f2(1270), a2(1320), K⇤

2 (1430), and
f2(1430) with S = 2. The e↵ect of ⇤ on the chemical
freezeout curve has been examined in Ref. [34], and they
have found that the changes of the chemical freezeout
curve are as small as around 10 MeV.

We quantitatively study the e↵ect of ⇤. In Fig. 1 we
plot the thermodynamic quantities with and without the
cuto↵ from Eq. (15) in the standard non-rotating HRG
model. The left panel shows the pressure p, the mid-
dle shows the energy density ", and the right shows the
entropy density s as functions of T . To check the va-
lidity of our simplification with ⇤, we shall compare the
critical temperature Tc read out from a thermodynamic
criterion.

The critical temperature without ⇤ is known from the
lattice-QCD simulation as Tc = 154 MeV [35]. We can
find the corresponding critical p/T 4, "/T 4, and s/T

3 at
Tc from the crossing points of the orange dashed curves
and the dotted vertical lines. Then, we can estimate
the ⇤ modified Tc from the crossing points of the blue
solid curves and the dotted horizontal lines in Fig. 1.
The shifts in Tc read out from p/T

4, "/T 4, and s/T
3 are

3.0 MeV, 5.6 MeV, and 5.2 MeV, respectively. This is
the numerical confirmation that the ⇤ e↵ects on Tc are
less than 10 MeV. In conclusion, our simplification by
⇤ = 1.5 GeV is qualitatively harmless for the study of the
phase boundary around Tc and also at the quantitative
level the possible error is ⇠ 5 MeV. We assume that the
⇤ e↵ects are negligible for finite ! as well.

Now let us discuss the deconfinement phase boundaries
at finite µ and !. For this purpose we should make the
thermodynamic quantities not only with T (as in Fig. 1)
but with some proper combination of T , µ, and !. We
employ the normalization given by the Stefan-Boltzmann
limit of a rotating quark-gluon gas:

pSB ⌘ (N2
c � 1) pg +NcNf (pq + pq̄) , (21)

where the number of colors and flavors are Nc = 3, Nf =

Fujimoto-Fukushima-Hidaka (2021)

6

FIG. 3. �p as a function of r for three di↵erent values of !.

For di↵erent ! the results are slightly changed, but of
the same order. This value of ⌫ is comparable to the
thermal degrees of freedom of light mesons, i.e., pions
and Kaons. We have a full expression of Eq. (13) and
we do not have to rely on an Ansatz like Eq. (20). In
this sense the above mentioned estimate of ⌫ should be
understood as a consistency check. It would be a very
intriguing question to see the spatial distribution of the
angular momentum density, hji(r), as well as the moment
of inertia, dI(r), directly from Eq. (13). We will report a
thorough analysis in a separate publication and stop our

discussions at the level of the consistency check in this
paper.

VIII. SUMMARY

In this work, we have studied the e↵ect of rotation
on the deconfinement transition from hadronic to quark
matter. We have devised the hadron resonance gas
(HRG) model in rotating frame and we have set the
working criterion for deconfinement in the view of the
Hagedorn picture, which is expressed as in Eq. (24). The
upshot is that rotation lowers the deconfinement transi-
tion temperature, similar to the e↵ect of baryon chemical
potential; we have drawn the phase diagram of rotating
hadronic matter in Fig. 2. Here we make the final re-
mark that our HRG model under rotation bears a radial
coordinate r dependence. We have identified this r de-
pendence as a compensation for the centrifugal force, and
have confirmed this behavior by numerical calculation.
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FIG. 3: The phase diagram on T -! plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite di↵erent from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate

�✏↵�3✏ij = �2Gd

D
i ↵

i C�
5 �

j

E
the grand potential in

this case is given by:
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In the above the mean-field quasiparticle dispersion ✏±n
and ✏�±

n is given by ✏±n = (
p
k2z + k2t +m2±µ)�(n+ 1

2 )!

and ✏�±
n = [(

p
k2z + k2t +m2 ± µ)2 +�2]

1
2 � (n+ 1

2 )!.
The mean-field diquark condensate � at given values of
temperature T , chemical potential µ and rotation !, can
then be determined from the self-consistency equation
through variation of the order parameter: �⌦

��(r) = 0 and
�2⌦

��(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the � (at radius r = 0.1GeV�1) as a function of

! for several values of T and fixed µ = 400MeV. One can
see that with increasing !, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression e↵ect
on the scalar diquark pairing.
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FIG. 4: The mean-field diquark condensate � (at radius r =

0.1GeV
�1

) as a function of ! for several values of T and fixed

value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression e↵ect on the
fermion pairing state with zero angular momentum. This
e↵ect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while di↵erent in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T � ! parameter space.
The rotational e↵ects on pairing phase transitions may

bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T �! plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may a↵ect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression e↵ect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation e↵ects, it is worth commenting that

Jiang-Liao (2017)

What are the hydro trajectories? 
We need the Spin Hydrodynamics. 
Power counting??

𝒮μ = suμ jμ = nuμ

Jλμν ?= Sμνuλ
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Technical Introduction

[Disclaimer]

Instead of an incomplete review, 
the general review is completely 
omitted… sorry!
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Very powerful strategy — Good example from Son-Surowka (2009) 

(The notation is slightly changed here)

Entropy
Ideal Hydrodynamics ~ 𝒪(∂0)

is easily concluded (ideal).

𝒮μ
(0) = suμ = β(e + p)uμ − nαuμ

Entropy Current

s = β(e + p) − nα

= β(uνΘμν
(0) + puμ − μjμ

(0))

(α = βμ)

∂μ𝒮μ
(0) = 0

→ Generalized later!
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Anomalous Hydrodynamics ~ 𝒪(∂)

How can we make this non-negative?

𝒮μ = β(uνΘμν + puμ − μjμ) ∂μ jμ = CanomE ⋅ B

∂μ𝒮μ = Θμν
(1)∂μ(βuν) + jμ

(1)(−∂μα + βEμ) − CanomαE ⋅ B

Θμν
(1) = 2h(μuν) + πμν u ⋅ h = (u ⋅ π)μ = 0

Heat Flow Shear Tensor
(Here, we do not care about the frame choice.)
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Θμν
(1) = 2h(μuν) + πμν u ⋅ h = (u ⋅ π)μ = 0

Δμν = gμν − uμuν

πμν∂μ(βuν) = βπμν[∂<μuν> +
1
3

Δμν(∂ ⋅ u)]

2h(μuν)∂μ(βuν) − jμ
(1)∂μα = (hμ − ℋjμ

(1))(Δμν∂νβ + β ·uμ)

βuν∂νuμ
n

e + p
Δμν∂να = Δμν∂νβ + β ·uμ

ℋ−1

A<μν> = Δ(μαΔβν)Aαβ −
1
3

ΔμνΔαβAαβ
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∂μ𝒮μ = Θμν
(1)∂μ(βuν) + jμ

(1)(−∂μα + βEμ) − CanomαE ⋅ B

= (hμ − ℋjμ
(1))(Δμν∂νβ + β ·uμ)

+βπμν[∂<μuν> +
1
3

Δμν(∂ ⋅ u)] − CanomE ⋅ B

hμ − ℋjμ
(1) = σΔμν(∂νβ + β ·uν)

πμν = 2η∂<μuν> Π = − ζ(∂ ⋅ u)

Sum of squared 
quantities ≥ 0
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∂μ𝒮μ = Θμν
(1)∂μ(βuν) + jμ

(1)(−∂μα + βEμ) − CanomαE ⋅ B

= (hμ − ℋjμ
(1))(Δμν∂νβ + β ·uμ)

+βπμν[∂<μuν> +
1
3

Δμν(∂ ⋅ u)] − CanomE ⋅ B

The last unwanted term is “renormalized” in the currents.

δjμ
(1) = ξVωμ + ξBBμ δ𝒮μ = − αδjμ

(1) + DVωμ + DBBμ

ξV = Canom(μ2 −
2
3

μ3

ℋ ) ξB = Canom(μ −
1
2

μ2

ℋ )
Son-Surowka (2009) 
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Spin Hydro Introduction
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Noether current from rotational symmetry

Orbital Spin

Anti-symmetric part of the energy-momentum tensor 
is the source of the spin (from the orbital part).

Spin Hydrodynamics (Hattori-Hongo-Huang-Matsuo-Taya 2019)

∂λΣλμν = − 2Θ[μν]

Jλμν = xμTλν − xνTλν + Σλμν

∂μTμν = ∂λJλμν = 0
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Spin Hydrodynamics (Hattori-Hongo-Huang-Matsuo-Taya 2019)

Induced by the 
spin potential

𝒮μ = β(uνΘμν + puμ − μjμ − ωρσSρσuμ)

Σλμν = uλSμν + Σλμν
(1)

Θμν = Θ(μν) + 2q[μuν] + ϕμν
u ⋅ q = (u ⋅ ϕ)μ = 0

∂μ𝒮μ = ⋯(2q[μuν] + ϕμν)∂μ(βuν) − ∂μ(uμSρσ)βωρσ

Anti-symmetric part
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Spin Hydrodynamics (Hattori-Hongo-Huang-Matsuo-Taya 2019)

∂μ𝒮μ = ⋯ + (2q[μuν] + ϕμν)∂μ(βuν) − ∂μ(uμSρσ)βωρσ

2Θ[ρσ]= ⋯ + qμ(∂μβ − β ·uμ + 4βωμνuν)
+βϕμν(2ωμν + ∂μuν)

qμ = λΔμν(∂νβ − β ·uν + 4βωνρuρ)

ϕμν = γΔμρΔνσ(2ωρσ + ∂[ρuσ])

Same conclusion 
in the Belinfante 
symmetric form 
Fukushima-Pu (2020)
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Spin Hydro Revisited
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Σλμν = uλSμν + Σλμν
(1)

qμ = −
1
2

uν∂λΣλμν

∂λΣλμν = − 2Θ[μν]

Θμν = Θ(μν) + 2q[μuν] + ϕμν

This current is already 
solved in terms of spin!?

In the whole formulation, the d.o.f. are redundant.
Hongo-Huang-Kaminski-Stephanov-Yee (2021)
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3 rotations + 3 boosts

Lorentz group has no hermitian representation 
with finite dimensions.

Should we really keep 6 generators?  — No!

Hermitian non-Hermitian

Fully anti-symmetrized  should correspond 
to the physical observables, i.e., 

Σλμν

Σ00i = 0

Σλμν = uλSμν + uμSνλ + uνSλμ + Σλμν
(1)
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Shuo Fang-KF-SP-Dong-Lin Wang (soon!)
Can we really construct the hydro?  — Yes!

Differences:
 is already solved asqμ

Some extra terms from

−∂μ(uμSρσ)βωρσ ≠ 2Θ[ρσ]βωρσ

Simplification
(u ⋅ S)μ = 0
(u ⋅ ω)μ = 0

(Discussions did not converge yet.)

qμ = −
1
2

uν∂λΣλμν =
1
2

(Sμν ·uν + Δμ
ν∂λSνλ)
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2

gµ⌫ = diag+,�,�,� and Levi-Civita tensor ✏0123 = +1.
For a given tensor Aµ⌫ , we will also use the following no-
tations A

(µ⌫) = (Aµ⌫ + A
⌫µ)/2, A[µ⌫] = (Aµ⌫ � A

⌫µ)/2
and A

<µ⌫> = (�↵(µ�⌫)�
A↵� � 1

3�
µ⌫(�↵�

A↵�) with
�µ⌫ = g

µ⌫ � u
µ
u
⌫ and u

µ being the fluid velocity.

Spin tensor and spin density: The rotational symme-
try for a spin-1/2 particle gives the conservation law for
the expectation value of the total canonical AM operator,

J
�µ⌫ = L

�µ⌫ + ⌃�µ⌫
, (1)

where the canonical orbital AM is L�µ⌫ = x
µ⇥�⌫�x

⌫⇥�µ

with ⇥µ⌫ the canonical energy-momentum tensor and the
rank-3 canonical spin tensor is ⌃�µ⌫ .

The physical meaning of ⌃�µ⌫ can be understood in
the rest frame of the particles where the components,
✏
ijk⌃0ij , are identified as the conventional spin vector
defined in quantum mechanics. We note that Lorentz
group has no Hermitian representation unless the di-
mension of the representation is infinite, that is the
case for the orbital AM, and the spin boost, ⌃00i, is
not a physical observable. To eliminate non-zero ⌃00i

component, a favorable strategy is to adopt an anti-
symmetrized form of the Dirac Lagrangian leading to a
Hermitian spin tensor, ⌃�µ⌫ = i

8  ̄{�
�
, [�µ, �⌫ ]} . In-

terestingly, this form is totally anti-symmetric with re-
spect to �, µ, ⌫ which is immediately confirmed from
{��, [�µ, �⌫ ]} = {[��, �µ], �⌫} = {�µ, [�⌫ , ��]}. In this
work, we consider this totally anti-symmetric ⌃�µ⌫ to
construct the spin hydrodynamics.

We comment that in [3, 18] another spin tensor ⌃0�µ⌫

was introduced. Although original ⌃�µ⌫ and ⌃0�µ⌫ are
equivalent through the equations of motion, neither ⌃0�µ⌫

nor total AM in this particular scenario possess Her-
mitian properties. Furthermore, recent research has re-
vealed that constructing a framework of consistent and
stable spin hydrodynamics using ⌃0�µ⌫ poses challenges
(see, e.g., Ref. [19] and references therein).

Entropy principle: For notational brevity, henceforth,
we shall refer to ⌃�µ⌫ and J

�µ⌫ as the spin tensor and
the total AM expectation values in spin hydrodynamics
rather than operators.

The main conservation equations for spin hydro-
dynamics are written for the energy-momentum ⇥µ⌫ ,
charge current jµ, and total AM J

�µ⌫ as

@µ⇥
µ⌫ = 0 , @µj

µ = 0 , @�J
�µ⌫ = 0 . (2)

The constitutive equations for ⇥µ⌫ and j
µ are given by

the following tensor decomposition,

⇥µ⌫ = ⇥(µ⌫) + 2q[µu⌫] + �
µ⌫

, j
µ = nu

µ + ⌫
µ
, (3)

where ⇥(µ⌫) = (e+p)uµ
u
⌫ �pg

µ⌫ +2h(µ
u
⌫)+⇡µ⌫ stands

for the symmetric part of ⇥µ⌫ . The tensor decomposition
of ⇥(µ⌫) and j

µ with the heat flow h
µ, the viscous tensor

⇡
µ⌫ , the velocity of fluid cells uµ, and the particle di↵u-

sion current ⌫µ is the standard one in relativistic hydro-
dynamics. We note that u·q = (u·�)µ = u·h = (u·⇡)µ =
0, so that the tensor decomposition is unique. Here, e, n,
and p are thermodynamic quantities of the energy den-
sity, the particle number density, and the pressure. The
total AM conversation becomes

@�⌃
�µ⌫ = �2⇥[µ⌫] = �2(2q[µu⌫] + �

µ⌫) , (4)

which indicates that q
[µ
u
⌫] and �

µ⌫ serve as the spin
source terms. We shall introduce the anti-symmetric ten-
sor of the local spin density as S

µ⌫ = u�⌃�µ⌫ . Because
S
µ⌫ has only 3 independent components corresponding

to spatial degrees of freedom in the local rest frame, it is
natural to introduce the spin vector as

s
µ =

1

2
"
µ⌫⇢�

u⌫S⇢� , S
µ⌫ = "

µ⌫�⇢
u�s⇢ , (5)

which satisfies u · q = 0. We note that "0123 = +1 and
"0123 = �1 in our convention.
Now, we can decompose ⌃�µ⌫ as ⌃�µ⌫ = u

�
S
µ⌫ +

u
µ
S
⌫� + u

⌫
S
�µ + ⌃�µ⌫

(1) , where the last term ⌃�µ⌫
(1) is a

totally anti-symmetric tensor of higher derivative order
satisfying u�⌃

�µ⌫
(1) = 0. It is a straightforward exercise to

find the following relation,

q
µ = �1

2
u⌫@�⌃

�µ⌫ =
1

2

�
S
µ⌫
Du⌫ +�µ

⌫@�S
⌫�
�
, (6)

using u⌫@�u
⌫ = 0 and uµ@�S

µ⌫ = �S
µ⌫
@�uµ.

To include the spin in hydrodynamics, we introduce
the spin chemical potential !µ⌫ and modify the thermo-
dynamic relations as follows:

e+ p = �
�1

s+ µn+ !µ⌫S
µ⌫

, (7)

where � is the inverse of temperature and s is the entropy
density. The Gibbs relations read de = �

�1
ds + µdn +

!µ⌫dS
µ⌫ and dp = sd�

�1+ndµ+S
µ⌫
d!µ⌫ . In this work,

we assume that the spin e↵ects are significant and follow
the power counting scheme in our previous work [3], i.e,
S
µ⌫ ⇠ O(1), !µ⌫ ⇠ O(~) ⇠ O(@), and ⌃�µ⌫

(1) ⇠ O(@).
We are ready to consider the entropy production.

As usual [3], the generalized entropy current is Sµ =
�(u⌫⇥µ⌫ + pu

µ � µj
µ � !⇢�S

⇢�
u
µ) +O(@2). The diver-

gence of the entropy current simplifies as

@µSµ =
⇥
2h(µ

u
⌫) + ⇡

µ⌫ + 2q[µu⌫] + �
µ⌫
⇤
@µ(�u⌫)

� ⌫
µ
@µ(�µ)� @µ(u

µ
S
⇢�)�!⇢�

= (hµ �H⌫µ)(@µ� + �Duµ) + �⇡
µ⌫
@µu⌫

+ q
µ(@µ� � �Duµ) + 2�!µ⌫S

�µ
@�u

⌫

+ ��
µ⌫(2!µ⌫ + @µu⌫) +O(@3) , (8)

where H = (e+ p)/n is the enthalpy per particle and we
used (u · !)µ = 0, which is a natural requisite since our
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try for a spin-1/2 particle gives the conservation law for
the expectation value of the total canonical AM operator,
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The physical meaning of ⌃�µ⌫ can be understood in
the rest frame of the particles where the components,
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ijk⌃0ij , are identified as the conventional spin vector
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case for the orbital AM, and the spin boost, ⌃00i, is
not a physical observable. To eliminate non-zero ⌃00i
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spect to �, µ, ⌫ which is immediately confirmed from
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was introduced. Although original ⌃�µ⌫ and ⌃0�µ⌫ are
equivalent through the equations of motion, neither ⌃0�µ⌫

nor total AM in this particular scenario possess Her-
mitian properties. Furthermore, recent research has re-
vealed that constructing a framework of consistent and
stable spin hydrodynamics using ⌃0�µ⌫ poses challenges
(see, e.g., Ref. [19] and references therein).

Entropy principle: For notational brevity, henceforth,
we shall refer to ⌃�µ⌫ and J

�µ⌫ as the spin tensor and
the total AM expectation values in spin hydrodynamics
rather than operators.

The main conservation equations for spin hydro-
dynamics are written for the energy-momentum ⇥µ⌫ ,
charge current jµ, and total AM J

�µ⌫ as

@µ⇥
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, (3)

where ⇥(µ⌫) = (e+p)uµ
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for the symmetric part of ⇥µ⌫ . The tensor decomposition
of ⇥(µ⌫) and j

µ with the heat flow h
µ, the viscous tensor
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µ⌫ , the velocity of fluid cells uµ, and the particle di↵u-

sion current ⌫µ is the standard one in relativistic hydro-
dynamics. We note that u·q = (u·�)µ = u·h = (u·⇡)µ =
0, so that the tensor decomposition is unique. Here, e, n,
and p are thermodynamic quantities of the energy den-
sity, the particle number density, and the pressure. The
total AM conversation becomes
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�µ⌫ = �2⇥[µ⌫] = �2(2q[µu⌫] + �

µ⌫) , (4)

which indicates that q
[µ
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µ⌫ serve as the spin
source terms. We shall introduce the anti-symmetric ten-
sor of the local spin density as S

µ⌫ = u�⌃�µ⌫ . Because
S
µ⌫ has only 3 independent components corresponding

to spatial degrees of freedom in the local rest frame, it is
natural to introduce the spin vector as
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µ =
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u⌫S⇢� , S
µ⌫ = "
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which satisfies u · q = 0. We note that "0123 = +1 and
"0123 = �1 in our convention.
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S
µ⌫ +

u
µ
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⌫
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(1) , where the last term ⌃�µ⌫
(1) is a

totally anti-symmetric tensor of higher derivative order
satisfying u�⌃

�µ⌫
(1) = 0. It is a straightforward exercise to

find the following relation,

q
µ = �1

2
u⌫@�⌃

�µ⌫ =
1

2

�
S
µ⌫
Du⌫ +�µ

⌫@�S
⌫�
�
, (6)

using u⌫@�u
⌫ = 0 and uµ@�S

µ⌫ = �S
µ⌫
@�uµ.

To include the spin in hydrodynamics, we introduce
the spin chemical potential !µ⌫ and modify the thermo-
dynamic relations as follows:

e+ p = �
�1

s+ µn+ !µ⌫S
µ⌫

, (7)

where � is the inverse of temperature and s is the entropy
density. The Gibbs relations read de = �

�1
ds + µdn +

!µ⌫dS
µ⌫ and dp = sd�

�1+ndµ+S
µ⌫
d!µ⌫ . In this work,

we assume that the spin e↵ects are significant and follow
the power counting scheme in our previous work [3], i.e,
S
µ⌫ ⇠ O(1), !µ⌫ ⇠ O(~) ⇠ O(@), and ⌃�µ⌫

(1) ⇠ O(@).
We are ready to consider the entropy production.

As usual [3], the generalized entropy current is Sµ =
�(u⌫⇥µ⌫ + pu

µ � µj
µ � !⇢�S

⇢�
u
µ) +O(@2). The diver-

gence of the entropy current simplifies as

@µSµ =
⇥
2h(µ

u
⌫) + ⇡

µ⌫ + 2q[µu⌫] + �
µ⌫
⇤
@µ(�u⌫)

� ⌫
µ
@µ(�µ)� @µ(u

µ
S
⇢�)�!⇢�

= (hµ �H⌫µ)(@µ� + �u̇µ) + �⇡
µ⌫
@µu⌫

+ q
µ(@µ� � �u̇µ) + 2�!µ⌫S

�µ
@�u

⌫

+ ��
µ⌫(2!µ⌫ + @µu⌫) +O(@3) (8)

where H = (e+ p)/n is the enthalpy per particle and we
used (u · !)µ = 0, which is a natural requisite since our

Unchanged

This is easily “renormalized”.
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3

new S
µ⌫ satisfies (u ·S)µ = 0. In the above, the first line

contains h
µ, ⌫

µ, and ⇡
µ⌫ , the conventional dissipative

terms in relativistic hydrodynamics. The last line with
�
µ⌫ have been previously documented in Refs. [3, 11].

The important di↵erence from Refs. [3, 11] lies in the
second line with q

µ and !µ⌫ .
In the previous studies [3, 11], qµ was treated as an

unknown fixed from the second law of thermodynamics,
i.e., @µSµ � 0. In the present strategy, q

µ is already
given in Eq. (6). Besides, there was no such a term of
2�!µ⌫S

�µ
@�u

⌫ because @µ(uµ
S
⇢�) was previously noth-

ing but @µ⌃µ⇢� which is immediately translated to terms
involving q

µ and �
µ⌫ in Eq. (4). Now, because of our al-

tered definition of ⌃�µ⌫ , an additional term remains. At
a glance, it seems impossible to guarantee @µSµ � 0. We
will, however, demonstrate below that these unwanted
terms with q

µ and !µ⌫ in the second line can be absorbed
by renormalization of others.

Now, let us start with the latter term with !µ⌫ . Be-
cause of (u · !)µ = 0, we can insert �µ⌫ , and then we
shall consider the following quantity:

�S
�⇢
@�u

��µ
⇢�

⌫
�(2!µ⌫ + @µu⌫) . (9)

The second term in the parentheses is vanishing due
to (u · S)µ = 0 and the anti-symmetric nature of Sµ⌫ .
Therefore, using @µu⌫ = @(µu⌫) + @[µu⌫], we can put this
together with the terms with ⇡

µ⌫ and �
µ⌫ in Eq. (8),

namely:
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Now, let us turn to the term with q
µ in Eq. (8). With

Eq. (6), we can spell them out, and we focus on the term
involving @µ�, for the terms with uµ and its derivatives
appear in various places. Then, it is straightforward to
see:
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The first term gives a renormalization of the heat flow.
In the parentheses in the second line, the first term is
vanishing because of the anti-symmetric nature of Sµ⌫ .
Now, the only unwanted term is ���µ

⌫ (@�S
⌫�)Duµ =

��(@�S⌫�)Du⌫ . In the same way as other terms, we can
manipulate it as

To guarantee the second law of thermodynamics, i.e.
@µSµ � 0, all terms in Eq. (??) should be written in a
cast of squared form, then one can get the constitutive

equations, e.g. ⇡
µ⌫ = 2⌘@<µ

u
⌫> with ⌘ > 0 being shear

viscosity. Here, we notice three important things before
doing that. First, we emphasize that the spin tensor ⌃�µ⌫

at the O(1) can only has 3 independent components. Ac-
cording to Eq. (4), total degree of freedom for qµ and �

µ⌫

is, therefore, also 3, i.e. we have to express qµ or �µ⌫ by
other terms. If we keep the q

µ, then q
µ = � 1

2u⌫@�⌃�µ⌫

from Eq. (4) in the rest frame becomes q
i ⇠ @j⌃ji0,

which does not contain the time derivatives and cannot
be used for time evolution. Therefore, we have to keep
�
µ⌫ . Second, to get the squared form, we need to write

all terms in terms of independent basis. For convenience,
we choose the basis at the O(@1) as,

@ · u , �µ⌫
@⌫� +Duµ , @<µu⌫> , @�S

µ⌫
. (12)

The other terms can be written as the combination of the
above terms by using the equations of motion. Note that,
we take �µ⌫

@⌫�+Duµ as a basis instead of each of them.
It helps us to reproduce the well-known Killing condi-
tions in spin hydrodynamics [Refs. Becattini]. Third,
the ambiguity of definition for entropy flow Sµ allows us
to introduce a total derivative term to the both sides of
Eq. (??) (also see our previous work [20]). Considering
these three aspects, we rewrite the terms proportional to
q
µ in Eq. (??) as,
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where we introduce a function b to get the general ex-
pression. Later on, we determine the value of b. After
some calculation, Eq. (??) becomes,
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µ⌫ also contains the further corrections from
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Vanishing

3

new S
µ⌫ satisfies (u ·S)µ = 0. In the above, the first line

contains h
µ, ⌫

µ, and ⇡
µ⌫ , the conventional dissipative

terms in relativistic hydrodynamics. The last line with
�
µ⌫ have been previously documented in Refs. [3, 11].

The important di↵erence from Refs. [3, 11] lies in the
second line with q

µ and !µ⌫ .
In the previous studies [3, 11], qµ was treated as an

unknown fixed from the second law of thermodynamics,
i.e., @µSµ � 0. In the present strategy, q

µ is already
given in Eq. (6). Besides, there was no such a term of
2�!µ⌫S

�µ
@�u

⌫ because @µ(uµ
S
⇢�) was previously noth-

ing but @µ⌃µ⇢� which is immediately translated to terms
involving q

µ and �
µ⌫ in Eq. (4). Now, because of our al-

tered definition of ⌃�µ⌫ , an additional term remains. At
a glance, it seems impossible to guarantee @µSµ � 0. We
will, however, demonstrate below that these unwanted
terms with q

µ and !µ⌫ in the second line can be absorbed
by renormalization of others.

Now, let us start with the latter term with !µ⌫ . Be-
cause of (u · !)µ = 0, we can insert �µ⌫ , and then we
shall consider the following quantity:

�S
�⇢
@�u

��µ
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⌫
�(2!µ⌫ + @µu⌫) . (9)

The second term in the parentheses is vanishing due
to (u · S)µ = 0 and the anti-symmetric nature of Sµ⌫ .
Therefore, using @µu⌫ = @(µu⌫) + @[µu⌫], we can put this
together with the terms with ⇡

µ⌫ and �
µ⌫ in Eq. (8),

namely:
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�(2!µ⌫ + @[µu⌫]) .

(10)

Now, let us turn to the term with q
µ in Eq. (8). With

Eq. (6), we can spell them out, and we focus on the term
involving @µ�, for the terms with uµ and its derivatives
appear in various places. Then, it is straightforward to
see:
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Du⌫ +�µ
⌫@�S

⌫�)(@µ� � �Duµ)

= �1

2
(Sµ⌫

Du⌫ +�µ
⌫@�S

⌫�)(@µ� + �Duµ)

+ (Sµ⌫
Du⌫ +�µ

⌫@�S
⌫�)@µ�

= �1

2
(�µ

⌫@�S
⌫� + �

�1
S
µ⌫
@⌫�)(@µ� + �Duµ)

+�µ
⌫@�S

⌫�
@µ� . (11)

The first term gives a renormalization of the heat flow.
In the parentheses in the second line, the first term is
vanishing because of the anti-symmetric nature of Sµ⌫ .
Now, the only unwanted term is ���µ

⌫ (@�S
⌫�)Duµ =

��(@�S⌫�)Du⌫ . In the same way as other terms, we can
manipulate it as

To guarantee the second law of thermodynamics, i.e.
@µSµ � 0, all terms in Eq. (??) should be written in a
cast of squared form, then one can get the constitutive

equations, e.g. ⇡
µ⌫ = 2⌘@<µ

u
⌫> with ⌘ > 0 being shear

viscosity. Here, we notice three important things before
doing that. First, we emphasize that the spin tensor ⌃�µ⌫

at the O(1) can only has 3 independent components. Ac-
cording to Eq. (4), total degree of freedom for qµ and �

µ⌫

is, therefore, also 3, i.e. we have to express qµ or �µ⌫ by
other terms. If we keep the q

µ, then q
µ = � 1

2u⌫@�⌃�µ⌫

from Eq. (4) in the rest frame becomes q
i ⇠ @j⌃ji0,

which does not contain the time derivatives and cannot
be used for time evolution. Therefore, we have to keep
�
µ⌫ . Second, to get the squared form, we need to write

all terms in terms of independent basis. For convenience,
we choose the basis at the O(@1) as,

@ · u , �µ⌫
@⌫� +Duµ , @<µu⌫> , @�S

µ⌫
. (12)

The other terms can be written as the combination of the
above terms by using the equations of motion. Note that,
we take �µ⌫

@⌫�+Duµ as a basis instead of each of them.
It helps us to reproduce the well-known Killing condi-
tions in spin hydrodynamics [Refs. Becattini]. Third,
the ambiguity of definition for entropy flow Sµ allows us
to introduce a total derivative term to the both sides of
Eq. (??) (also see our previous work [20]). Considering
these three aspects, we rewrite the terms proportional to
q
µ in Eq. (??) as,

q
µ [@µ� �D(�uµ)]

=
1

2
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Du⌫ + b�µ
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+
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2
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where we introduce a function b to get the general ex-
pression. Later on, we determine the value of b. After
some calculation, Eq. (??) becomes,

@µ(Sµ ��µ) = (hµ �H⌫
µ + h
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s )(@µ� + �Duµ)

+�(⌧µ⌫ + ⌧
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s )@(µu⌫)
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s )(@µu⌫ + 2!µ⌫), (14)

where �µ = S
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2 (1+b)Sµ⌫(@⌫�+�Du⌫), the spin
corrections to heat flow and viscous tensor reads,
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+
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and, the �
µ⌫ also contains the further corrections from

spin,
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Here,
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3

new S
µ⌫ satisfies (u ·S)µ = 0. In the above, the first line

contains h
µ, ⌫

µ, and ⇡
µ⌫ , the conventional dissipative

terms in relativistic hydrodynamics. The last line with
�
µ⌫ have been previously documented in Refs. [3, 11].

The important di↵erence from Refs. [3, 11] lies in the
second line with q

µ and !µ⌫ .
In the previous studies [3, 11], qµ was treated as an

unknown fixed from the second law of thermodynamics,
i.e., @µSµ � 0. In the present strategy, q

µ is already
given in Eq. (6). Besides, there was no such a term of
2�!µ⌫S

�µ
@�u

⌫ because @µ(uµ
S
⇢�) was previously noth-

ing but @µ⌃µ⇢� which is immediately translated to terms
involving q

µ and �
µ⌫ in Eq. (4). Now, because of our al-

tered definition of ⌃�µ⌫ , an additional term remains. At
a glance, it seems impossible to guarantee @µSµ � 0. We
will, however, demonstrate below that these unwanted
terms with q

µ and !µ⌫ in the second line can be absorbed
by renormalization of others.

Now, let us start with the latter term with !µ⌫ . Be-
cause of (u · !)µ = 0, we can insert �µ⌫ , and then we
shall consider the following quantity:

�S
�⇢
@�u

��µ
⇢�

⌫
�(2!µ⌫ + @µu⌫) . (9)

The second term in the parentheses is vanishing due
to (u · S)µ = 0 and the anti-symmetric nature of Sµ⌫ .
Therefore, using @µu⌫ = @(µu⌫) + @[µu⌫], we can put this
together with the terms with ⇡

µ⌫ and �
µ⌫ in Eq. (8),

namely:
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�(2!µ⌫ + @[µu⌫]) .

(10)

Now, let us turn to the term with q
µ in Eq. (8). With

Eq. (6), we can spell them out, and we focus on the term
involving @µ�, for the terms with uµ and its derivatives
appear in various places. Then, it is straightforward to
see:

1

2
(Sµ⌫

Du⌫ +�µ
⌫@�S

⌫�)(@µ� � �Duµ)
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@µ� . (11)

The first term gives a renormalization of the heat flow.
In the parentheses in the second line, the first term is
vanishing because of the anti-symmetric nature of Sµ⌫ .
Now, the only unwanted term is ���µ

⌫ (@�S
⌫�)Duµ =

��(@�S⌫�)Du⌫ . In the same way as other terms, we can
manipulate it as

To guarantee the second law of thermodynamics, i.e.
@µSµ � 0, all terms in Eq. (??) should be written in a
cast of squared form, then one can get the constitutive

equations, e.g. ⇡
µ⌫ = 2⌘@<µ

u
⌫> with ⌘ > 0 being shear

viscosity. Here, we notice three important things before
doing that. First, we emphasize that the spin tensor ⌃�µ⌫

at the O(1) can only has 3 independent components. Ac-
cording to Eq. (4), total degree of freedom for qµ and �

µ⌫

is, therefore, also 3, i.e. we have to express qµ or �µ⌫ by
other terms. If we keep the q

µ, then q
µ = � 1

2u⌫@�⌃�µ⌫

from Eq. (4) in the rest frame becomes q
i ⇠ @j⌃ji0,

which does not contain the time derivatives and cannot
be used for time evolution. Therefore, we have to keep
�
µ⌫ . Second, to get the squared form, we need to write

all terms in terms of independent basis. For convenience,
we choose the basis at the O(@1) as,

@ · u , �µ⌫
@⌫� +Duµ , @<µu⌫> , @�S

µ⌫
. (12)

The other terms can be written as the combination of the
above terms by using the equations of motion. Note that,
we take �µ⌫

@⌫�+Duµ as a basis instead of each of them.
It helps us to reproduce the well-known Killing condi-
tions in spin hydrodynamics [Refs. Becattini]. Third,
the ambiguity of definition for entropy flow Sµ allows us
to introduce a total derivative term to the both sides of
Eq. (??) (also see our previous work [20]). Considering
these three aspects, we rewrite the terms proportional to
q
µ in Eq. (??) as,

q
µ [@µ� �D(�uµ)]

=
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+
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where we introduce a function b to get the general ex-
pression. Later on, we determine the value of b. After
some calculation, Eq. (??) becomes,

@µ(Sµ ��µ) = (hµ �H⌫
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2 (1+b)Sµ⌫(@⌫�+�Du⌫), the spin
corrections to heat flow and viscous tensor reads,
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and, the �
µ⌫ also contains the further corrections from

spin,
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Here,
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Maybe…, these do not appear, 
if the entropy current is chosen better.
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3

new S
µ⌫ satisfies (u ·S)µ = 0. In the above, the first line

contains h
µ, ⌫

µ, and ⇡
µ⌫ , the conventional dissipative

terms in relativistic hydrodynamics. The last line with
�
µ⌫ have been previously documented in Refs. [3, 11].

The important di↵erence from Refs. [3, 11] lies in the
second line with q

µ and !µ⌫ .
In the previous studies [3, 11], qµ was treated as an

unknown fixed from the second law of thermodynamics,
i.e., @µSµ � 0. In the present strategy, q

µ is already
given in Eq. (6). Besides, there was no such a term of
2�!µ⌫S

�µ
@�u

⌫ because @µ(uµ
S
⇢�) was previously noth-

ing but @µ⌃µ⇢� which is immediately translated to terms
involving q

µ and �
µ⌫ in Eq. (4). Now, because of our al-

tered definition of ⌃�µ⌫ , an additional term remains. At
a glance, it seems impossible to guarantee @µSµ � 0. We
will, however, demonstrate below that these unwanted
terms with q

µ and !µ⌫ in the second line can be absorbed
by renormalization of others.

Now, let us start with the latter term with !µ⌫ . Be-
cause of (u · !)µ = 0, we can insert �µ⌫ , and then we
shall consider the following quantity:

�S
�⇢
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⌫
�(2!µ⌫ + @µu⌫) . (9)

The second term in the parentheses is vanishing due
to (u · S)µ = 0 and the anti-symmetric nature of Sµ⌫ .
Therefore, using @µu⌫ = @(µu⌫) + @[µu⌫], we can put this
together with the terms with ⇡

µ⌫ and �
µ⌫ in Eq. (8),

namely:
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(10)

Now, let us turn to the term with q
µ in Eq. (8). With

Eq. (6), we can spell them out, and we focus on the term
involving @µ�, for the terms with uµ and its derivatives
appear in various places. Then, it is straightforward to
see:
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The first term gives a renormalization of the heat flow.
In the parentheses in the second line, the first term is
vanishing because of the anti-symmetric nature of Sµ⌫ .
Now, the only unwanted term is ���µ

⌫ (@�S
⌫�)Duµ =

��(@�S⌫�)Du⌫ . In the same way as other terms, we can
manipulate it as
To guarantee the second law of thermodynamics, i.e.

@µSµ � 0, all terms in Eq. (??) should be written in a
cast of squared form, then one can get the constitutive
equations, e.g. ⇡

µ⌫ = 2⌘@<µ
u
⌫> with ⌘ > 0 being shear

viscosity. Here, we notice three important things before
doing that. First, we emphasize that the spin tensor ⌃�µ⌫

at the O(1) can only has 3 independent components. Ac-
cording to Eq. (4), total degree of freedom for qµ and �

µ⌫

is, therefore, also 3, i.e. we have to express qµ or �µ⌫ by
other terms. If we keep the q

µ, then q
µ = � 1

2u⌫@�⌃�µ⌫

from Eq. (4) in the rest frame becomes q
i ⇠ @j⌃ji0,

which does not contain the time derivatives and cannot
be used for time evolution. Therefore, we have to keep
�
µ⌫ . Second, to get the squared form, we need to write

all terms in terms of independent basis. For convenience,
we choose the basis at the O(@1) as,

@ · u , �µ⌫
@⌫� +Duµ , @<µu⌫> , @�S

µ⌫
. (13)

The other terms can be written as the combination of the
above terms by using the equations of motion. Note that,
we take �µ⌫

@⌫�+Duµ as a basis instead of each of them.
It helps us to reproduce the well-known Killing condi-
tions in spin hydrodynamics [Refs. Becattini]. Third,
the ambiguity of definition for entropy flow Sµ allows us
to introduce a total derivative term to the both sides of
Eq. (??) (also see our previous work [20]). Considering
these three aspects, we rewrite the terms proportional to
q
µ in Eq. (??) as,

q
µ [@µ� �D(�uµ)]

=
1

2
(Sµ⌫

Du⌫ + b�µ
↵@�S

↵�)(@µ� + �Duµ)

+
1

2
(1� b)�µ

↵@�S
↵�

@µ� � 1

2
(1 + b)@�S

µ�
�Duµ,(14)

where we introduce a function b to get the general ex-
pression. Later on, we determine the value of b. After
some calculation, Eq. (??) becomes,

@µ(Sµ ��µ) = (hµ �H⌫
µ + h

µ
s )(@µ� + �Duµ)

+�(⌧µ⌫ + ⌧
µ⌫
s )@(µu⌫)

+�(�µ⌫ + �
µ⌫
s )(@µu⌫ + 2!µ⌫), (15)

where �µ = S
µ⌫
@⌫�� 1

2 (1+b)Sµ⌫(@⌫�+�Du⌫), the spin
corrections to heat flow and viscous tensor reads,

h
µ
s ⌘ 1

2
S
µ⌫
Du⌫ +

1

2
b�µ

↵@�S
↵�

+
1

2
HS

µ�
@�[(1 + b)H�1], (16)

⌧
µ⌫
s ⌘ 2! (⌫

↵ S
µ)↵ + 2�µ⌫

S
⇢�
!⇢�v

2
b , (17)

and, the �
µ⌫ also contains the further corrections from

spin,

�
µ⌫
s ⌘ 2! [⌫

↵ S
µ]↵ � S

µ⌫(@ · u)v2b . (18)

Renormalized in 
the heat current.
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3

new S
µ⌫ satisfies (u ·S)µ = 0. In the above, the first line

contains h
µ, ⌫

µ, and ⇡
µ⌫ , the conventional dissipative

terms in relativistic hydrodynamics. The last line with
�
µ⌫ have been previously documented in Refs. [3, 11].

The important di↵erence from Refs. [3, 11] lies in the
second line with q

µ and !µ⌫ .
In the previous studies [3, 11], qµ was treated as an

unknown fixed from the second law of thermodynamics,
i.e., @µSµ � 0. In the present strategy, q

µ is already
given in Eq. (6). Besides, there was no such a term of
2�!µ⌫S

�µ
@�u

⌫ because @µ(uµ
S
⇢�) was previously noth-

ing but @µ⌃µ⇢� which is immediately translated to terms
involving q

µ and �
µ⌫ in Eq. (4). Now, because of our al-

tered definition of ⌃�µ⌫ , an additional term remains. At
a glance, it seems impossible to guarantee @µSµ � 0. We
will, however, demonstrate below that these unwanted
terms with q

µ and !µ⌫ in the second line can be absorbed
by renormalization of others.

Now, let us start with the latter term with !µ⌫ . Be-
cause of (u · !)µ = 0, we can insert �µ⌫ , and then we
shall consider the following quantity:

�S
�⇢
@�u

��µ
⇢�

⌫
�(2!µ⌫ + @µu⌫) . (9)

The second term in the parentheses is vanishing due
to (u · S)µ = 0 and the anti-symmetric nature of Sµ⌫ .
Therefore, using @µu⌫ = @(µu⌫) + @[µu⌫], we can put this
together with the terms with ⇡

µ⌫ and �
µ⌫ in Eq. (8),

namely:

�(⇡⇢� + S
�(⇢

@�u
�))�µ

⇢�
⌫
�@(µu⌫)

+ �(�⇢� + S
�[⇢

@�u
�])�µ

⇢�
⌫
�(2!µ⌫ + @[µu⌫]) .

(10)

Now, let us turn to the term with q
µ in Eq. (8). With

Eq. (6), we can spell them out, and we focus on the term
involving @µ�, for the terms with uµ and its derivatives
appear in various places. Then, it is straightforward to
see:

1

2
(Sµ⌫

u̇⌫ +�µ
⌫@�S

⌫�)(@µ� � �u̇µ)

= �1

2
(Sµ⌫

u̇⌫ +�µ
⌫@�S

⌫�)(@µ� + �u̇µ)

+ (Sµ⌫
u̇⌫ +�µ

⌫@�S
⌫�)@µ�

= �1

2
(�µ

⌫@�S
⌫� + �

�1
S
µ⌫
@⌫�)(@µ� + �u̇µ)

+�µ
⌫@�S

⌫�
@µ� . (11)

�µ
⌫@�S

⌫�
@µ�

= @�(�
µ
⌫S

⌫�
@µ�)� �̇S

µ⌫
@µu⌫ (12)

The first term gives a renormalization of the heat flow.
In the parentheses in the second line, the first term is
vanishing because of the anti-symmetric nature of Sµ⌫ .
Now, the only unwanted term is ���µ

⌫ (@�S
⌫�)Duµ =

��(@�S⌫�)Du⌫ . In the same way as other terms, we can
manipulate it as
To guarantee the second law of thermodynamics, i.e.

@µSµ � 0, all terms in Eq. (??) should be written in a
cast of squared form, then one can get the constitutive
equations, e.g. ⇡

µ⌫ = 2⌘@<µ
u
⌫> with ⌘ > 0 being shear

viscosity. Here, we notice three important things before
doing that. First, we emphasize that the spin tensor ⌃�µ⌫

at the O(1) can only has 3 independent components. Ac-
cording to Eq. (4), total degree of freedom for qµ and �

µ⌫

is, therefore, also 3, i.e. we have to express qµ or �µ⌫ by
other terms. If we keep the q

µ, then q
µ = � 1

2u⌫@�⌃�µ⌫

from Eq. (4) in the rest frame becomes q
i ⇠ @j⌃ji0,

which does not contain the time derivatives and cannot
be used for time evolution. Therefore, we have to keep
�
µ⌫ . Second, to get the squared form, we need to write

all terms in terms of independent basis. For convenience,
we choose the basis at the O(@1) as,

@ · u , �µ⌫
@⌫� +Duµ , @<µu⌫> , @�S

µ⌫
. (13)

The other terms can be written as the combination of the
above terms by using the equations of motion. Note that,
we take �µ⌫

@⌫�+Duµ as a basis instead of each of them.
It helps us to reproduce the well-known Killing condi-
tions in spin hydrodynamics [Refs. Becattini]. Third,
the ambiguity of definition for entropy flow Sµ allows us
to introduce a total derivative term to the both sides of
Eq. (??) (also see our previous work [20]). Considering
these three aspects, we rewrite the terms proportional to
q
µ in Eq. (??) as,

q
µ [@µ� �D(�uµ)]

=
1

2
(Sµ⌫

Du⌫ + b�µ
↵@�S

↵�)(@µ� + �Duµ)

+
1

2
(1� b)�µ

↵@�S
↵�

@µ� � 1

2
(1 + b)@�S

µ�
�Duµ,(14)

where we introduce a function b to get the general ex-
pression. Later on, we determine the value of b. After
some calculation, Eq. (??) becomes,

@µ(Sµ ��µ) = (hµ �H⌫
µ + h

µ
s )(@µ� + �Duµ)

+�(⌧µ⌫ + ⌧
µ⌫
s )@(µu⌫)

+�(�µ⌫ + �
µ⌫
s )(@µu⌫ + 2!µ⌫), (15)

where �µ = S
µ⌫
@⌫�� 1

2 (1+b)Sµ⌫(@⌫�+�Du⌫), the spin
corrections to heat flow and viscous tensor reads,

h
µ
s ⌘ 1

2
S
µ⌫
Du⌫ +

1

2
b�µ

↵@�S
↵�

+
1

2
HS

µ�
@�[(1 + b)H�1], (16)

⌧
µ⌫
s ⌘ 2! (⌫

↵ S
µ)↵ + 2�µ⌫

S
⇢�
!⇢�v

2
b , (17)

and, the �
µ⌫ also contains the further corrections from

spin,

�
µ⌫
s ⌘ 2! [⌫

↵ S
µ]↵ � S

µ⌫(@ · u)v2b . (18)

Renormalized in 
the entropy current.
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a glance, it seems impossible to guarantee @µSµ � 0. We
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terms with q
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together with the terms with ⇡
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Now, let us turn to the term with q
µ in Eq. (8). With

Eq. (6), we can spell them out, and we focus on the term
involving @µ�, for the terms with uµ and its derivatives
appear in various places. Then, it is straightforward to
see:
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The first term gives a renormalization of the heat flow.
In the parentheses in the second line, the first term is
vanishing because of the anti-symmetric nature of Sµ⌫ .
Now, the only unwanted term is ���µ
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manipulate it as
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@µSµ � 0, all terms in Eq. (??) should be written in a
cast of squared form, then one can get the constitutive
equations, e.g. ⇡

µ⌫ = 2⌘@<µ
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⌫> with ⌘ > 0 being shear

viscosity. Here, we notice three important things before
doing that. First, we emphasize that the spin tensor ⌃�µ⌫

at the O(1) can only has 3 independent components. Ac-
cording to Eq. (4), total degree of freedom for qµ and �
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is, therefore, also 3, i.e. we have to express qµ or �µ⌫ by
other terms. If we keep the q

µ, then q
µ = � 1

2u⌫@�⌃�µ⌫

from Eq. (4) in the rest frame becomes q
i ⇠ @j⌃ji0,

which does not contain the time derivatives and cannot
be used for time evolution. Therefore, we have to keep
�
µ⌫ . Second, to get the squared form, we need to write

all terms in terms of independent basis. For convenience,
we choose the basis at the O(@1) as,

@ · u , �µ⌫
@⌫� +Duµ , @<µu⌫> , @�S

µ⌫
. (14)

The other terms can be written as the combination of the
above terms by using the equations of motion. Note that,
we take �µ⌫

@⌫�+Duµ as a basis instead of each of them.
It helps us to reproduce the well-known Killing condi-
tions in spin hydrodynamics [Refs. Becattini]. Third,
the ambiguity of definition for entropy flow Sµ allows us
to introduce a total derivative term to the both sides of
Eq. (??) (also see our previous work [20]). Considering
these three aspects, we rewrite the terms proportional to
q
µ in Eq. (??) as,

q
µ [@µ� �D(�uµ)]

=
1

2
(Sµ⌫

Du⌫ + b�µ
↵@�S

↵�)(@µ� + �Duµ)

+
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(1� b)�µ
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@µ� � 1
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�Duµ,(15)

where we introduce a function b to get the general ex-
pression. Later on, we determine the value of b. After
some calculation, Eq. (??) becomes,

@µ(Sµ ��µ) = (hµ �H⌫
µ + h

µ
s )(@µ� + �Duµ)

+�(⌧µ⌫ + ⌧
µ⌫
s )@(µu⌫)

+�(�µ⌫ + �
µ⌫
s )(@µu⌫ + 2!µ⌫), (16)

where �µ = S
µ⌫
@⌫�� 1

2 (1+b)Sµ⌫(@⌫�+�Du⌫), the spin
corrections to heat flow and viscous tensor reads,

h
µ
s ⌘ 1

2
S
µ⌫
Du⌫ +

1

2
b�µ

↵@�S
↵�

+
1

2
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µ�
@�[(1 + b)H�1], (17)

⌧
µ⌫
s ⌘ 2! (⌫

↵ S
µ)↵ + 2�µ⌫

S
⇢�
!⇢�v

2
b , (18)

Renormalized in ϕμν Renormalized in Π
·β = (∂p

∂e )n,Sμνβ(∂ ⋅ u)
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δhμ = −
1
2

Δμ
ν∂λSνλ −

1
2

β−1Sμν∂νβ

δπμν = Sλ<ρ∂λuσ>

δΠ =
1
3

Sμν∂μuν − 2( ∂p
∂e )n,SμνSμνωμν

ϕμν = γΔμρΔνσ(2βωρσ + ∂[ρuσ]) + β−1 ·βSμν

We are still checking the calculations… 
Coefficients may be wrong, but the strategy is correct.
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Tensor decomposition and renormalization 
seem to be not unique…??? 

The present demonstration is just one 
simple example… we found a family of 
non-negative decomposition of tensors. 

Any principle still overlooked???



Summary

Spin hydrodynamics in the canonical (and 
Belinfante) form have some redundancy. 
□ Spin has not 6 but 3 charge observables. 
□ Symmetrized form should be physical. 
Extra terms can be renormalized so that the 

second law of thermodyanmics is satisfied. 
□ Overconstrained problem is resolved. 
 Tensor decomposition seems to be non-unique. 
□ A family of decompositions with unfixed parameters 

was found to satisfy the entropy principle… more 
physical conditions?
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Pseudo-Gauge Sym. in Energy-Momentum Tensor 
Fukushima-Pu (2020)

3

where ⌦µ⌫
⌘ ��µ⇢�⌫�@[⇢(�u�]) is usually referred to

as the thermal vorticity [33], and � and � are nonneg-
ative transport coe�cients. We can reasonably under-
stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
gauge transformation:

T
µ⌫ = ⇥µ⌫ + @�K

�µ⌫ , (10)

K�µ⌫ =
1

2

�
⌃�µ⌫

� ⌃µ�⌫ + ⌃⌫µ�
�
. (11)

With this choice we can get rid of the spin source and it
is easy to confirm that T

µ⌫ is symmetric; T µ⌫ = T
⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�

�
= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ

T
↵⌫

� x⌫
T

↵µ , (13)

where J
↵µ⌫

⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,

T
µ⌫ = ⇥µ⌫ +

1

2
@�(u

�Sµ⌫
� uµS�⌫ + u⌫Sµ�) +O(@2)

= ⇥µ⌫
(s) +

1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤
+O(@2) . (14)

If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
µ⌫ = (e+ p)uµu⌫

� pgµ⌫ + T
µ⌫
(1) +O(@2) , (15)

where

T
µ⌫
(1) = 2h(µu⌫) + ⇡µ⌫ +

1

2
@�(u

µS⌫� + u⌫Sµ�) . (16)

We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:

2h(µu⌫) + ⇡µ⌫ +
1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤

= �euµu⌫ + 2
�
h(µ + �h(µ

�
u⌫) + ⇡µ⌫ + �⇡µ⌫ .

(17)

Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by

�e = u⇢@�S
⇢� ,

�hµ =
1

2

⇥
�µ

�@�S
�� + u⇢S

⇢�@�u
µ
⇤
,

�⇡µ⌫ = @�(u
<µS⌫>�) + �⇧�µ⌫ ,

�⇧ =
1

3
@�(u

�S⇢�)�⇢� ,

(18)

where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic

3
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other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�

�
= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ

T
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� x⌫
T

↵µ , (13)

where J
↵µ⌫

⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,

T
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If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
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where
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We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:
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Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic
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where ⌦µ⌫
⌘ ��µ⇢�⌫�@[⇢(�u�]) is usually referred to

as the thermal vorticity [33], and � and � are nonneg-
ative transport coe�cients. We can reasonably under-
stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
gauge transformation:

T
µ⌫ = ⇥µ⌫ + @�K

�µ⌫ , (10)

K�µ⌫ =
1
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With this choice we can get rid of the spin source and it
is easy to confirm that T

µ⌫ is symmetric; T µ⌫ = T
⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�
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= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ

T
↵⌫
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↵µ , (13)

where J
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⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,

T
µ⌫ = ⇥µ⌫ +
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(s) +
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+O(@2) . (14)

If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
µ⌫ = (e+ p)uµu⌫

� pgµ⌫ + T
µ⌫
(1) +O(@2) , (15)

where

T
µ⌫
(1) = 2h(µu⌫) + ⇡µ⌫ +

1

2
@�(u

µS⌫� + u⌫Sµ�) . (16)

We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:

2h(µu⌫) + ⇡µ⌫ +
1

2
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Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by
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⇢� ,
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic

(conserved current redefined)
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where ⌦µ⌫
⌘ ��µ⇢�⌫�@[⇢(�u�]) is usually referred to

as the thermal vorticity [33], and � and � are nonneg-
ative transport coe�cients. We can reasonably under-
stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
gauge transformation:

T
µ⌫ = ⇥µ⌫ + @�K

�µ⌫ , (10)

K�µ⌫ =
1
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. (11)

With this choice we can get rid of the spin source and it
is easy to confirm that T

µ⌫ is symmetric; T µ⌫ = T
⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�

�
= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ
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↵µ , (13)

where J
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⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,

T
µ⌫ = ⇥µ⌫ +

1
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� uµS�⌫ + u⌫Sµ�) +O(@2)

= ⇥µ⌫
(s) +
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µS⌫� + u⌫Sµ�)
⇤
+O(@2) . (14)

If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
µ⌫ = (e+ p)uµu⌫

� pgµ⌫ + T
µ⌫
(1) +O(@2) , (15)

where

T
µ⌫
(1) = 2h(µu⌫) + ⇡µ⌫ +

1

2
@�(u

µS⌫� + u⌫Sµ�) . (16)

We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:
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Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic
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where ⌦µ⌫
⌘ ��µ⇢�⌫�@[⇢(�u�]) is usually referred to

as the thermal vorticity [33], and � and � are nonneg-
ative transport coe�cients. We can reasonably under-
stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
gauge transformation:

T
µ⌫ = ⇥µ⌫ + @�K

�µ⌫ , (10)

K�µ⌫ =
1
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⌃�µ⌫

� ⌃µ�⌫ + ⌃⌫µ�
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. (11)

With this choice we can get rid of the spin source and it
is easy to confirm that T

µ⌫ is symmetric; T µ⌫ = T
⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�

�
= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ
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T

↵µ , (13)

where J
↵µ⌫

⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,

T
µ⌫ = ⇥µ⌫ +

1
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= ⇥µ⌫
(s) +
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µS⌫� + u⌫Sµ�)
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+O(@2) . (14)

If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
µ⌫ = (e+ p)uµu⌫

� pgµ⌫ + T
µ⌫
(1) +O(@2) , (15)

where

T
µ⌫
(1) = 2h(µu⌫) + ⇡µ⌫ +

1

2
@�(u

µS⌫� + u⌫Sµ�) . (16)

We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:

2h(µu⌫) + ⇡µ⌫ +
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2
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Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic

Spin induced terms are “renormalized” as
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where ⌦µ⌫
⌘ ��µ⇢�⌫�@[⇢(�u�]) is usually referred to

as the thermal vorticity [33], and � and � are nonneg-
ative transport coe�cients. We can reasonably under-
stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
gauge transformation:

T
µ⌫ = ⇥µ⌫ + @�K

�µ⌫ , (10)

K�µ⌫ =
1

2

�
⌃�µ⌫

� ⌃µ�⌫ + ⌃⌫µ�
�
. (11)

With this choice we can get rid of the spin source and it
is easy to confirm that T

µ⌫ is symmetric; T µ⌫ = T
⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�

�
= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ

T
↵⌫

� x⌫
T

↵µ , (13)

where J
↵µ⌫

⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,

T
µ⌫ = ⇥µ⌫ +

1

2
@�(u

�Sµ⌫
� uµS�⌫ + u⌫Sµ�) +O(@2)

= ⇥µ⌫
(s) +

1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤
+O(@2) . (14)

If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
µ⌫ = (e+ p)uµu⌫

� pgµ⌫ + T
µ⌫
(1) +O(@2) , (15)

where

T
µ⌫
(1) = 2h(µu⌫) + ⇡µ⌫ +

1

2
@�(u

µS⌫� + u⌫Sµ�) . (16)

We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:

2h(µu⌫) + ⇡µ⌫ +
1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤

= �euµu⌫ + 2
�
h(µ + �h(µ

�
u⌫) + ⇡µ⌫ + �⇡µ⌫ .

(17)

Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by

�e = u⇢@�S
⇢� ,

�hµ =
1

2

⇥
�µ

�@�S
�� + u⇢S

⇢�@�u
µ
⇤
,

�⇡µ⌫ = @�(u
<µS⌫>�) + �⇧�µ⌫ ,

�⇧ =
1

3
@�(u

�S⇢�)�⇢� ,

(18)

where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic

An electric current    is implied… Spin Vorticity Effectj ∝ ∇ × S
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extension (5) reads,

S
µ =

u⌫

T
T

µ⌫ +
p

T
uµ

�
µ

T
jµ �

1

T
!⇢�S

⇢�uµ +O(@2)

= suµ +
u⌫

T
T

µ⌫
(1) �

µ

T
jµ(1) +O(@2) (19)

with which the divergence of the entropy current takes
the following form:

@µS
µ =

✓
n

e+ p
hµ

� jµ(1)

◆
�µ⌫@

⌫ µ

T
+

1

T
⇡µ⌫@µu⌫ +�

(20)
with

� ⌘
1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤
@µ

u⌫

T
�

!⇢�

T
@�(u

�S⇢�) .

(21)
Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,

� =
1

2
@µ


@�(u

�Sµ⌫ + uµS⌫� + u⌫Sµ�)
u⌫

T

�

�
1

2

⇥
@�(u

�Sµ⌫)
⇤
@µ

u⌫

T
�

!⇢�

T
@�(u

�S⇢�) .

(22)

Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at

�0 = �@�(u
�Sµ⌫)

✓
1

2
@µ

u⌫

T
+

!µ⌫

T

◆
. (23)

In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:

jµL(1) =

✓
jµ(1) �

n

e+ p
hµ

◆
+ �jµ(1) (26)

with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed
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extension (5) reads,

S
µ =

u⌫

T
T

µ⌫ +
p

T
uµ

�
µ

T
jµ �

1

T
!⇢�S

⇢�uµ +O(@2)

= suµ +
u⌫

T
T

µ⌫
(1) �

µ

T
jµ(1) +O(@2) (19)

with which the divergence of the entropy current takes
the following form:

@µS
µ =

✓
n

e+ p
hµ

� jµ(1)

◆
�µ⌫@

⌫ µ

T
+

1

T
⇡µ⌫@µu⌫ +�

(20)
with

� ⌘
1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤
@µ

u⌫

T
�

!⇢�

T
@�(u

�S⇢�) .

(21)
Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,

� =
1

2
@µ


@�(u

�Sµ⌫ + uµS⌫� + u⌫Sµ�)
u⌫

T

�

�
1

2

⇥
@�(u

�Sµ⌫)
⇤
@µ

u⌫

T
�

!⇢�

T
@�(u

�S⇢�) .

(22)

Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at

�0 = �@�(u
�Sµ⌫)

✓
1

2
@µ

u⌫

T
+

!µ⌫

T

◆
. (23)

In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:

jµL(1) =

✓
jµ(1) �

n

e+ p
hµ

◆
+ �jµ(1) (26)

with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed
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extension (5) reads,

S
µ =

u⌫

T
T

µ⌫ +
p

T
uµ

�
µ

T
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1

T
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⇢�uµ +O(@2)

= suµ +
u⌫

T
T

µ⌫
(1) �

µ

T
jµ(1) +O(@2) (19)

with which the divergence of the entropy current takes
the following form:

@µS
µ =
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e+ p
hµ

� jµ(1)
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⌫ µ

T
+

1
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(20)
with

� ⌘
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µS⌫� + u⌫Sµ�)
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(21)
Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,

� =
1

2
@µ


@�(u

�Sµ⌫ + uµS⌫� + u⌫Sµ�)
u⌫
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⇥
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�Sµ⌫)
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u⌫
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(22)

Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at

�0 = �@�(u
�Sµ⌫)

✓
1

2
@µ

u⌫

T
+

!µ⌫

T

◆
. (23)

In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:

jµL(1) =
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jµ(1) �
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◆
+ �jµ(1) (26)

with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed

Total derivative

Canonical results
𝒮μ → 𝒮′￼μ

Absorbed in the entropy, 
then it is just canonical!
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