

Faculty of Physics

Testing machine learning against finite size scaling using MAFs

Simran Singh University of Bielefeld

work done as part of **A01** project in **CRC Tr-211** between **Bielefeld** (F. Karsch, C. Schmidt & S. Singh) and **Frankfurt** (O. Phillipsen, R. Kaiser, J.P. Klinger)

New developments in the studies of the QCD phase diagram @ ECT* Trento

September 13, 2024

Outline

- I. Motivation The chiral phase transition
- *II.* Nf = 5 project using MAFs and HISQ (old)
- III. The Machine Learning model Masked Autoregressive Flows
- IV. (new) Nf = 5 using unimproved staggered
- V. Results on density estimation
- VI. Summary and outline

The chiral transition in lattice QCD

- Nature of the chiral transition in the chiral limit is of much research interest although many emerging results indicate possibility of a second order transition [F. Cuteri et.al., *JHEP* 21, S. Sharma et al PRD 22 & PhD thesis 21, see talks O. Philipsen and Y. Zhang Wednesday, and more]
- On lattice, such a study necessarily requires extrapolation to zero quark mass simulating even close to this limit is numerically challenging
- Proposal for studying the critical surface that separates first-order regions from crossover as function of degenerate N_f quarks by F. Cuteri et.al., *JHEP* 11 (2021)
- One of the (many) results of this study was to find the Z2 boundary separating the first order and the crossover region at finite lattice spacings as a function of N_f
- In M. Neumann et.al., *PoS* LATTICE2022 (2023), the authors studied $N_f = 5$ degenerate quarks and determined the Z2 boundary replacing some of the finite size scaling analysis with novel Machine Learning (ML) techniques
- The goal of the present work is to apply this analysis to data published in F. Cuteri et.al., *JHEP* 11 (2021) to see if the ML analysis can reproduce their results

Z2 boundary for Nf=5 HISQ

- The ML technique used in this work aims at the joint probability densities $p(\bar{\psi}\psi, S)$ conditioned on lattice parameters like N_{σ}, m_l, β
- Learning such a density <u>correctly</u> allows interpolation in the dimensions of the conditional inputs - avoiding some expensive lattice simulations
- Interpolation in the gauge coupling already exits (β re-weighting) can this ML technique do better?

Z2 boundary for Nf=5 HISQ

M. Neumann et.al., PoS LATTICE2022 (2023)

Neumann M (2023) PhD Thesis Universität Bielefeld

- <u>First step</u> : Density estimation followed by β , m_l , N_σ extrapolation using Masked Autoregressive flows
- <u>Second step</u> : Using the marginal probability $p(\bar{\psi}\psi|N_{\sigma}, m_l, \beta)$ to identify first-order regions along the β and m_l axes
- In the original analysis a further classification algorithm was used to compute the critical mass that separates the first-order regions from the crossover
- Alternatively, one should compute Binder cumulants like B_3 and B_4 to determine β_c and $m_{l,c}$ [O. Philipsen PoS LATTICE2019 (2019) 273]

Density estimation using MADE

- Goal : Learn a probability density from examples of data $(\vec{x}, \vec{y}) \rightarrow p(\vec{x} | \vec{y})$
- How : Interpret the outputs of an Neural Network as conditional probabilities

• Why :
$$p(x_1, x_2 \dots x_D) = p(x_N | x_1, \dots, x_{N-1}) p(x_{N-1} | x_1, \dots, x_{N-2}) \dots p(x_1)$$

MADE: Masked Autoencoder for Distribution Estimation

- Mathieu Germain Karol Gregor Iain Murray Hugo Larochelle
- The authors used **masking** of connections in an Autoencoder to implement the **autoregressive property** needed for constructing conditional probabilities :

Masked Autoregressive Flows

• Next step : Combine these MADE blocks as a chain to make a **Masked Autoregressive Flow**

Masked Autoregressive Flow for Density Estimation

George Papamakarios University of Edinburgh g.papamakarios@ed.ac.uk **Theo Pavlakou** University of Edinburgh theo.pavlakou@ed.ac.uk

Iain Murray University of Edinburgh i.murray@ed.ac.uk

- A flow is then constructed by MADE blocks in a chain more blocks add complexity to the estimated density each of whose random numbers modelled by the previous block
- Each conditional as a single Gaussian : $p(x_i | \vec{x}_{1:i-1}) = \mathcal{N}(x_i | \mu_i, (\exp(\alpha_i))^2)$ with $\mu_i = f_{\mu_i}(\vec{x}_{1:i-1})$ and $\alpha_i = f_{\alpha_i}(\vec{x}_{1:i-1})$
- Data generated via : $x_i = u_i \exp(\alpha_i) + \mu_i$ with $u_i \sim \mathcal{N}(0,1)$
- Goal : Maximise the log-likelihood of the data under the NN model

Goal 1: Test the procedure by removing data

- Goal : To reproduce the Z2 critical boundary via ML for [F. Cuteri et.al., JHEP 11 (2021)]
- Un-improved staggered quarks $N_f = 5$, $N_\tau = 4$ with $N_\sigma \in \{8, 12, 16\}$ and $m_l \in \{0.075, 0.080, 0.085, 0.090\}$ [!Frankfurt Data!]
- Initially trained only on $N_{\sigma} \in \{8, 16\}$, total training data ~3.4 million values for $(\bar{\psi}\psi, S)$

Results : $\langle \bar{\psi}\psi \rangle$ for $N_{\sigma} = 8$

- Training done by removing all $N_{\sigma} = 12$ data training time ~ 4hr 30 minutes
- Quantity obtained : $p\left(\bar{\psi}\psi, S \mid N_{\sigma}, m_{l}, \beta\right)$
- Results for 100K evaluations of the model

Results for $\langle \bar{\psi}\psi \rangle$ for $N_{\sigma} = 16$

MAF prediction for the β interpolation on training set

Results for $\langle \bar{\psi}\psi \rangle$ for $N_{\sigma} = 12$

MAF prediction for volume, β and mass interpolation $N_{\sigma} = 12$ (genuine prediction !)

MAF applied to the entire data

• Goal II : Training the model on all data in order to estimate the Z2 boundary for $N_f = 5$ and $N_{\tau} = 4$ in accordance with F. Cuteri et.al., *JHEP* 11 (2021) :

	N_{τ}	N_{f}	am_{\min}	am_{\max}	am_c	d.o.f.	$\chi^2_{\rm d.o.f.}$	Q[%]	β_c at am_c
What we want to reproduce with the ML analysis	2.1	0.0015	0.0045	0.00343(14)	9	0.173	99.7	5.2363(3)	
		2.2	0.0025	0.01	0.00579(15)	10	0.257	99	5.2238(3)
		2.4	0.0075	0.015	0.01088(19)	13	0.603	85	5.2006(4)
		2.6	0.0125	0.02	0.01577(23)	10	0.230	99	5.1779(5)
	-	2.8	0.0175	0.025	0.02106(25)	10	0.270	99	5.1568(5)
	4	3	0.0225	0.3	0.0264(5)	10	0.164	99.8	5.1368(9)
	tne	4	0.05	0.065	0.0551(7)	10	0.365	96	5.0529(13)
		5	0.07	0.09	0.0820(8)	12	0.734	72	4.9828(15)
		6	0.1	0.12	0.1078(6)	7	1.148	33	4.9234(12)
		7	0.12	0.14	0.1308(8)	7	0.874	53	4.8692(18)
		8	0.14	0.17	0.1539(11)	7	0.668	7	4.8233(24)

MAF applied to the entire data

Check that the model still reproduces the data !

Results for $p(\bar{\psi}\psi, S)$ for some N_{σ}, m_l, β

Results for $p(\bar{\psi}\psi, S)$ for some N_{σ}, m_l, β

MAF applied to the entire data

• Picture when we should be in the first order region

MAF applied to the entire data

• Picture when we (should be) in the crossover region

Results : $\chi_{\bar{\psi}\psi}$ for $8^3 \times 4$

- With $p(\bar{\psi}\psi, S \mid N_{\sigma}, m_{l}, \beta)$ we are free to compute higher moments !
- We see scaling of peak height, width, location from ML prediction

Results for $\chi_{\bar{\psi}\psi}$ for 16^3 , $12^3 \times 4$

Summary & Outlook

- The MAF model tuned for the HISQ data seems to work ``out of the box" when applied to Frankfurt data
- Results on interpolation appear consistent with actual lattice data at least at the level of the chiral condensate
- Model evaluations are cheap ~ 0.5 seconds for 1M evaluations
- One fit for all data but with 7333 trainable parameters
- Yet to determine critical mass and gauge coupling in agreement with F. Cuteri et.al., *JHEP* 11 (2021)
- Plan I : Study the systematics of ML model may not always converge to the same fit parameters some kind of bootstrap needed ?
- Plan II : is to also include data for different N_{τ} to be able to interpolate in that direction reproduce the tri-critical scaling

Backup slides

Some numbers and parameters

Some Training Statistics

- With $N_{\sigma} = 12$ removed on 1 GPU with Approximately 30.8 GB of GPU memory used at peak with training time ~ 4hr 30 mins
- With all data on 1 GPU with Approximately 32.9 GB of GPU memory used at peak with training time ~ 5hr 20 mins

Some Evaluation Statistics

• Time for 1 M for each β , m_l , N_σ evaluation : ~ 0.45 seconds

	MAF parameter	value		
	kernel regulizer	L1L2		
Model narameters used from	L1	0.0001		
	L2	0.0001		
	loss function	- log prob		
	number of MADE blocks	8		
model parameters asea norm	number of samples	1000000		
Marius Neumann's Thesis	number of epochs	500		
	number of inputs	$2 (S, \bar{\psi}\psi)$		
	number of conditional inputs	$3 \ (\beta, m_l, N_\sigma)$		
	batch size	<u> 1024 </u> 2048		
	amount of training data -	$1.583.962 \text{ x} (S, \bar{\psi}\psi) \sim 4.3 \text{ M}$		
	optimizer	Adam		

MAF Inference on probability

