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The chiral transition in lattice QCD

•  Nature of the chiral transition in the chiral limit is of much research interest - 
although many emerging results indicate possibility of a second order transition [F. 
Cuteri et.al., JHEP 21, S. Sharma et al PRD 22 & PhD thesis 21, see talks O. Philipsen and Y. Zhang 
Wednesday, and more] 

•  On lattice, such a study necessarily requires extrapolation to zero quark mass - 
simulating even close to this limit is numerically challenging 

•  Proposal for studying the critical surface that separates first-order regions from 
crossover as function of degenerate  quarks by F. Cuteri et.al., JHEP 11 (2021) 

•  One of the (many) results of this study was to find the Z2 boundary separating the 
first order and the crossover region at finite lattice spacings as a function of  

•  In M. Neumann et.al., PoS LATTICE2022 (2023), the authors studied  
degenerate quarks and determined the Z2 boundary - replacing some of the finite 
size scaling analysis with novel Machine Learning (ML) techniques 

•  The goal of the present work is to apply this analysis to data published in F. Cuteri 
et.al., JHEP 11 (2021) to see if the ML analysis can reproduce their results

Nf

Nf

Nf = 5
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Z2 boundary for Nf=5 HISQ 

• The ML technique used in this work aims at the joint probability densities 
 conditioned on lattice parameters like  

• Learning such a density correctly allows interpolation in the dimensions of the 
conditional inputs - avoiding some expensive lattice simulations 

• Interpolation in the gauge coupling already exits (  re-weighting) - can this ML 
technique do better?

p (ψ̄ ψ, S) Nσ , ml , β

β

M. Neumann et.al., PoS LATTICE2022 (2023)
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A ML approach to many flavor QCD M. Neumann

of measurements, performed at a large number of V-values, since $ (() is obtained via the 2D-
histogram of the action and the observable we want to reweight. Moreover, the action histograms
obtained at the di�erent V< need to have a su�ciently large overlap.

The method can be extended to reweight a probability distribution of any observable by
reweighting each bin of the discretized distribution individually. This approach is thus limited to
data sets discretized in a set of bins and only interpolates in V-direction.
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Figure 3: Comparison of V-reweighting (left) and ML-reweighting (right). Data points show results obtained
from RHMC calculations in 5-flavor QCD, while the curves are obtained from the V- and ML-reweighting,
respectively.

In Figure 3 (left) V-reweighted data for the chiral condensate are shown. The reweighting is
done for the entire set of histograms at each mass, but only the expectation values are shown, to
obtain a compact plot. While this yields reasonable results for the lowest masses, for larger <;,
especially <; = 0.006, the V-reweighting obviously is over-fitting.

4. ML model

Normalizing flows are state-of-the-art tools for modeling probability distributions in physical
systems. We use a MAF (Masked Autoregressive Flow) [6] model with eight MADE (Masked
Autoencoder for Distribution Estimation) [7] blocks. MADE networks have been especially de-
signed to factorize a joint probability distribution into a product of conditional probabilities. Using
less than eight MADE blocks caused problems with fitting the double peaks, however, for fits in
the crossover region a fewer number of MADE should be su�cient. Compared to the classical
reweighting, this method has the advantage of allowing to interpolate in any parameter. In partic-
ular, there is no need for overlapping distributions of the action density and the method is able to
process continuous data. However, in order to visualize the learned probability distribution, we
need to draw a large number of samples from our model to fill a two dimensional histogram.

In the end, the model learns to transform a 2D-Gaussian distribution to “measurements” of
(k̄k, (), conditioned on the continuous parameters (#f ,<;, V). To avoid overfitting, we have
introduced penalty terms in the loss function, based on the L1- and L2-norms of the parameters
of the network, known as regularization. The regularization is applied on a per-layer basis and the
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Z2 boundary for Nf=5 HISQ 

• First step : Density estimation followed by  , ,  extrapolation using Masked 
Autoregressive flows 

• Second step :  Using the marginal probability  to identify first-order 
regions along the  and  axes 

• In the original analysis a further classification algorithm was used to compute the 
critical mass that separates the first-order regions from the crossover 

• Alternatively, one should compute Binder cumulants like  and  to determine  
and  [O. Philipsen PoS LATTICE2019 (2019) 273]

β ml Nσ

p (ψ̄ ψ |Nσ, ml, β)
β ml

B3 B4 βc
ml,c

M. Neumann et.al., PoS LATTICE2022 (2023) Neumann M (2023) PhD Thesis Universität Bielefeld

A ML approach to many flavor QCD M. Neumann

They signal the occurrence of a first order phase transition, with the right hand peak corresponding
to the end of the symmetry broken phase, the left hand peak corresponding to the symmetry restored
phase and the region between the peaks being the mixed phase. The corresponding phase

Figure 7: Phase diagram of 5-flavor QCD on lattices with fixed temporal
extent, #g = 6 in the <;-V plane.

diagram in the <;-V plane
is shown in Figure 7. It
suggests that the first or-
der region ends in a sec-
ond order end point at about
<2

; ' 0.0045. Clearly, as
the gap between the peaks
at low and high V becomes
smaller larger lattices will
be needed to resolve these
two peaks and establish a
gap between them. In the
next section we will discuss
a ML based approach to lo-
cate this end point.

6. EOS-meter

Petersen et al. have introduced the idea of using an ML image recognition approach to classify
phase transitions [8]. They used a convolutional neural network (CNN) model to classify data sets
obtained in heavy-ion collision. The resulting density plots they called an Equation-of-State-meter.
Recently, the transformer model [9], a model solely based on attention mechanisms, has been
shown to outperform recurrent or convolutional neural networks in translation tasks. Transformers
are expected to generalize well to other tasks, including image recognition applications. Since no
CNNs are used, information on pixel positions must be added artificially via a so-called positional
encoding. Here we have used a vision transformer based approach on density plots as shown in
Figure 8. We have labeled the histograms of the smallest masses, where a clear gap was visible as
“first order” while the histograms of the largest masses were labeled as “crossover”.
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Figure 8: Probability density plots used to train the EOS-meter. Each column of pixels corresponds to 1000
evaluations of the model. V2 (<;) does not need to be known exactly, as long as V2 is within the plot range.
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Abstract
There has been a lot of recent interest in designing
neural network models to estimate a distribution
from a set of examples. We introduce a simple
modification for autoencoder neural networks that
yields powerful generative models. Our method
masks the autoencoder’s parameters to respect
autoregressive constraints: each input is recon-
structed only from previous inputs in a given or-
dering. Constrained this way, the autoencoder
outputs can be interpreted as a set of conditional
probabilities, and their product, the full joint prob-
ability. We can also train a single network that
can decompose the joint probability in multiple
different orderings. Our simple framework can be
applied to multiple architectures, including deep
ones. Vectorized implementations, such as on
GPUs, are simple and fast. Experiments demon-
strate that this approach is competitive with state-
of-the-art tractable distribution estimators. At test
time, the method is significantly faster and scales
better than other autoregressive estimators.

1. Introduction
Distribution estimation is the task of estimating a joint distri-
bution p(x) from a set of examples {x(t)}Tt=1, which is by
definition a general problem. Many tasks in machine learn-
ing can be formulated as learning only specific properties of
a joint distribution. Thus a good distribution estimator can
be used in many scenarios, including classification (Schmah

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

et al., 2009), denoising or missing input imputation (Poon
& Domingos, 2011; Dinh et al., 2014), data (e.g. speech)
synthesis (Uria et al., 2015) and many others. The very
nature of distribution estimation also makes it a particular
challenge for machine learning. In essence, the curse of
dimensionality has a distinct impact because, as the number
of dimensions of the input space of x grows, the volume of
space in which the model must provide a good answer for
p(x) exponentially increases.

Fortunately, recent research has made substantial progress
on this task. Specifically, learning algorithms for a vari-
ety of neural network models have been proposed (Bengio
& Bengio, 2000; Larochelle & Murray, 2011; Gregor &
LeCun, 2011; Uria et al., 2013; 2014; Kingma & Welling,
2014; Rezende et al., 2014; Bengio et al., 2014; Gregor
et al., 2014; Goodfellow et al., 2014; Dinh et al., 2014).
These algorithms are showing great potential in scaling to
high-dimensional distribution estimation problems. In this
work, we focus our attention on autoregressive models (Sec-
tion 3). Computing p(x) exactly for a test example x is
tractable with these models. However, the computational
cost of this operation is still larger than typical neural net-
work predictions for a D-dimensional input. For previous
deep autoregressive models, evaluating p(x) costs O(D)
times more than a simple neural network point predictor.

This paper’s contribution is to describe and explore a simple
way of adapting autoencoder neural networks that makes
them competitive tractable distribution estimators that are
faster than existing alternatives. We show how to mask the
weighted connections of a standard autoencoder to convert it
into a distribution estimator. The key is to use masks that are
designed in such a way that the output is autoregressive for a
given ordering of the inputs, i.e. that each input dimension is
reconstructed solely from the dimensions preceding it in the
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Université de Sherbrooke, Canada

Karol Gregor KAROL.GREGOR@GMAIL.COM

Google DeepMind

Iain Murray I.MURRAY@ED.AC.UK

University of Edinburgh, United Kingdom

Hugo Larochelle HUGO.LAROCHELLE@USHERBROOKE.CA
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• Goal : Learn a probability density from examples of data  

• How : Interpret the outputs of an Neural Network as conditional probabilities  

• Why : 

( ⃗x , ⃗y) → p ( ⃗x | ⃗y)

p(x1, x2 . . . xD) = p (xN |x1, . . . xN−1) p (xN−1 |x1, . . . xN−2) . . . p (x1)
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• The authors used masking of connections in an Autoencoder to implement the 
autoregressive property needed for constructing conditional probabilities :

OD\HU� RI� UHGXFHG� GLPHQVLRQV�� 7KH� WDVN� RI� WKH� QHWZRUN� LV� WR
UHFRQVWUXFW�WKH�LQSXW�[�DW�WKH�RXWSXW�[ƌ�XVLQJ�WKH�PDSSLQJV�K� �J�[�
�HQFRGHU��DQG�[ƌ� �I�K���GHFRGHU���ZKLFK�DW� ILUVW�PD\�VHHP�QRW�YHU\
XVHIXO�� +RZHYHU�� WR� SUHYHQW� WKH� QHWZRUN� IURP� MXVW� UHSOLFDWLQJ� WKH
LQSXW� E\� OHDUQLQJ� WKH� LGHQWLW\� IXQFWLRQ�� WKH� LQSXW� LV� SDVVHG� E\� WKH
HQFRGHU� WKURXJK� D� OD\HU� RI� UHVWULFWHG� GLPHQVLRQV� EHIRUH� EHLQJ
UHFRQVWUXFWHG� E\� WKH� GHFRGHU�� 7KH� DXWRHQFRGHU� LV� WKHQ� WUDLQHG� WR
PLQLPL]H�WKH�UHFRQVWUXFWLRQ�HUURU�XVLQJ�D�VXLWDEOH�ORVV�IXQFWLRQ

)LJ�� ������ 6FKHPDWLF� EDVLF� DXWRHQFRGHU�� 7KH� FRPSUHVVHG
UHSUHVHQWDWLRQ�K� LV� DOVR� FDOOHG� ODWHQW� YDULDEOHV�� ODWHQW� YHFWRU�� ODWHQW
VSDFH��RU�FRGH�

ZKLFK�PD\�EH�D�VLPSOH�PHDQ�VTXDUHG�HUURU��������IRU�1�GLPHQVLRQDO
UHDO�YDOXHG�LQSXW�

MADE: Masked Autoencoder for Distribution Estimation

ordering. The resulting Masked Autoencoder Distribution
Estimator (MADE) preserves the efficiency of a single pass
through a regular autoencoder. Implementation on a GPU is
straightforward, making the method scalable.

The single hidden layer version of MADE corresponds to the
previously proposed autoregressive neural network of Ben-
gio & Bengio (2000). Here, we go further by exploring
deep variants of the model. We also explore training MADE
to work simultaneously with multiple orderings of the in-
put observations and hidden layer connectivity structures.
We test these extensions across a range of binary datasets
with hundreds of dimensions, and compare its statistical
performance and scaling to comparable methods.

2. Autoencoders
A brief description of the basic autoencoder, on which this
work builds upon, is required to clearly grasp what follows.
In this paper, we assume that we are given a training set of
examples {x(t)}Tt=1. We concentrate on the case of binary
observations, where for every D-dimensional input x, each
input dimension xd belongs in {0, 1}. The motivation is
to learn hidden representations of the inputs that reveal the
statistical structure of the distribution that generated them.

An autoencoder attempts to learn a feed-forward, hidden
representation h(x) of its input x such that, from it, we can
obtain a reconstruction bx which is as close as possible to x.
Specifically, we have

h(x) = g(b+Wx) (1)
bx = sigm(c+Vh(x)) , (2)

where W and V are matrices, b and c are vectors, g is a non-
linear activation function and sigm(a) = 1/(1 + exp(�a)).
Thus, W represents the connections from the input to the
hidden layer, and V represents the connections from the
hidden to the output layer.

To train the autoencoder, we must first specify a training
loss function. For binary observations, a natural choice is
the cross-entropy loss:

`(x) =
DX

d=1

�xd log bxd � (1�xd) log(1�bxd) . (3)

By treating bxd as the model’s probability that xd is 1, the
cross-entropy can be understood as taking the form of a
negative log-likelihood function. Training the autoencoder
corresponds to optimizing the parameters {W,V,b, c} to
reduce the average loss on the training examples, usually
with (mini-batch) stochastic gradient descent.

One advantage of the autoencoder paradigm is its flexibility.
In particular, it is straightforward to obtain a deep autoen-
coder by inserting more hidden layers between the input

and output layers. Its main disadvantage is that the repre-
sentation it learns can be trivial. For instance, if the hidden
layer is at least as large as the input, hidden units can each
learn to “copy” a single input dimension, so as to recon-
struct all inputs perfectly at the output layer. One obvious
consequence of this observation is that the loss function
of Equation 3 isn’t in fact a proper log-likelihood func-
tion. Indeed, since perfect reconstruction could be achieved,
the implied data ‘distribution’ q(x)=

Q
d bx

xd
d (1�bxd)1�xd

could be learned to be 1 for any x and thus not be properly
normalized (

P
x q(x) 6=1).

3. Distribution Estimation as Autoregression
An interesting question is what property we could impose
on the autoencoder, such that its output can be used to obtain
valid probabilities. Specifically, we’d like to be able to write
p(x) in such a way that it could be computed based on the
output of a properly corrected autoencoder.

First, we can use the fact that, for any distribution, the prob-
ability product rule implies that we can always decompose
it into the product of its nested conditionals

p(x) =
DY

d=1

p(xd |x<d), (4)

where x<d = [x1, . . . , xd�1]>.

By defining p(xd = 1 |x<d) = x̂d, and thus p(xd =
0 |x<d) = 1�x̂d, the loss of Equation 3 becomes a valid
negative log-likelihood:

� log p(x) =
DX

d=1

� log p(xd |x<d)

=
DX

d=1

�xd log p(xd=1 |x<d)

� (1�xd) log p(xd=0 |x<d)

= `(x) .

(5)

This connection provides a way to define autoencoders
that can be used for distribution estimation. Each output
bxd = p(xd |x<d) must be a function taking as input x<d

only and outputting the probability of observing value xd

at the d
th dimension. In particular, the autoencoder forms

a proper distribution if each output unit x̂d only depends
on the previous input units x<d, and not the other units
x�d = [xd, . . . , xD]>.

We refer to this property as the autoregressive property,
because computing the negative log-likelihood (5) is equiv-
alent to sequentially predicting (regressing) each dimension
of input x.

Masking

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix
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Abstract

Autoregressive models are among the best performing neural density estimators.
We describe an approach for increasing the flexibility of an autoregressive model,
based on modelling the random numbers that the model uses internally when gen-
erating data. By constructing a stack of autoregressive models, each modelling the
random numbers of the next model in the stack, we obtain a type of normalizing
flow suitable for density estimation, which we call Masked Autoregressive Flow.
This type of flow is closely related to Inverse Autoregressive Flow and is a gen-
eralization of Real NVP. Masked Autoregressive Flow achieves state-of-the-art
performance in a range of general-purpose density estimation tasks.

1 Introduction

The joint density p(x) of a set of variables x is a central object of interest in machine learning. Being
able to access and manipulate p(x) enables a wide range of tasks to be performed, such as inference,
prediction, data completion and data generation. As such, the problem of estimating p(x) from a set
of examples {xn} is at the core of probabilistic unsupervised learning and generative modelling.

In recent years, using neural networks for density estimation has been particularly successful. Combin-
ing the flexibility and learning capacity of neural networks with prior knowledge about the structure
of data to be modelled has led to impressive results in modelling natural images [4, 30, 37, 38] and
audio data [34, 36]. State-of-the-art neural density estimators have also been used for likelihood-free
inference from simulated data [21, 23], variational inference [13, 24], and as surrogates for maximum
entropy models [19].

Neural density estimators differ from other approaches to generative modelling—such as variational
autoencoders [12, 25] and generative adversarial networks [7]—in that they readily provide exact
density evaluations. As such, they are more suitable in applications where the focus is on explicitly
evaluating densities, rather than generating synthetic data. For instance, density estimators can learn
suitable priors for data from large unlabelled datasets, for use in standard Bayesian inference [39].
In simulation-based likelihood-free inference, conditional density estimators can learn models for
the likelihood [5] or the posterior [23] from simulated data. Density estimators can learn effective
proposals for importance sampling [22] or sequential Monte Carlo [8, 21]; such proposals can be
used in probabilistic programming environments to speed up inference [15, 16]. Finally, conditional
density estimators can be used as flexible inference networks for amortized variational inference and
as part of variational autoencoders [12, 25].

A challenge in neural density estimation is to construct models that are flexible enough to represent
complex densities, but have tractable density functions and learning algorithms. There are mainly
two families of neural density estimators that are both flexible and tractable: autoregressive models
[35] and normalizing flows [24]. Autoregressive models decompose the joint density as a product of
conditionals, and model each conditional in turn. Normalizing flows transform a base density (e.g. a
standard Gaussian) into the target density by an invertible transformation with tractable Jacobian.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

• Next step : Combine these MADE blocks as a chain to make a Masked 
Autoregressive Flow

• A flow is then constructed by MADE blocks in a chain - more blocks add 
complexity to the estimated density - each of whose random numbers 
modelled by the previous block  

• Each conditional as a single Gaussian :  
with  and  

• Data generated via :  with  

• Goal : Maximise the log-likelihood of the data under the NN model 

p (xi | ⃗x1:i−1) = 𝒩 (xi |μi , (exp(αi))2)
μi = fμi ( ⃗x1:i−1) αi = fαi ( ⃗x1:i−1)

xi = ui exp(αi) + μi ui ∼ 𝒩 (0,1)
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Goal 1: Test the procedure by removing data  

• Goal : To reproduce the Z2 critical boundary via ML for [F. Cuteri et.al., JHEP 
11 (2021)] 

• Un-improved staggered quarks  with  and

 [!Frankfurt Data!] 

• Initially trained only on , total training data ~3.4 million values for 

Nf = 5 , Nτ = 4 Nσ ∈ {8, 12, 16}
ml ∈ {0.075, 0.080, 0.085, 0.090}

Nσ ∈ {8, 16}
(ψ̄ ψ, S)
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Results :  for ⟨ψ̄ψ⟩ Nσ = 8

•  Training done by removing all  data - training time ~ 4hr 30 minutes   

•  Quantity obtained :  

•  Results for 100K evaluations of the model

Nσ = 12

p (ψ̄ ψ, S |Nσ, ml, β)

MAF prediction for 
the  interpolation 
on training set

β

9



Results for  for ⟨ψ̄ψ⟩ Nσ = 16
MAF prediction for the  interpolation 
on training set

β
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Results for  for ⟨ψ̄ψ⟩ Nσ = 12
MAF prediction for volume,  and mass interpolation 

  (genuine prediction !) 
β

Nσ = 12

0.090

11
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• Goal II : Training the model on all data in order to estimate the Z2 boundary 
for  and  in accordance with F. Cuteri et.al., JHEP 11 (2021) : Nf = 5 Nτ = 4

N· Nf ammin ammax amc d.o.f. ‰
2
d.o.f. Qr%s —c at amc

4

2.1 0.0015 0.0045 0.00343p14q 9 0.173 99.7 5.2363p3q
2.2 0.0025 0.01 0.00579p15q 10 0.257 99 5.2238p3q
2.4 0.0075 0.015 0.01088p19q 13 0.603 85 5.2006p4q
2.6 0.0125 0.02 0.01577p23q 10 0.230 99 5.1779p5q
2.8 0.0175 0.025 0.02106p25q 10 0.270 99 5.1568p5q
3 0.0225 0.3 0.0264p5q 10 0.164 99.8 5.1368p9q
4 0.05 0.065 0.0551p7q 10 0.365 96 5.0529p13q
5 0.07 0.09 0.0820p8q 12 0.734 72 4.9828p15q
6 0.1 0.12 0.1078p6q 7 1.148 33 4.9234p12q
7 0.12 0.14 0.1308p8q 7 0.874 53 4.8692p18q
8 0.14 0.17 0.1539p11q 7 0.668 7 4.8233p24q

6

3 0.0025 0.005 0.0025p3q 2 1.298 27 5.2126p12q
3.6 0.0075 0.0125 0.00910p20q 7 1.930 6 5.1396p7q
4 0.0125 0.015 0.01392p16q 7 1.482 17 5.0953p5q
4.4 0.015 0.025 0.0184p4q 6 2.029 6 5.0516p12q
5 0.02 0.03 0.02614p28q 6 0.884 51 4.9931p9q
6 0.035 0.045 0.04012p26q 6 2.478 2 4.9081p9q
7 0.05 0.06 0.05372p27q 7 3.616 0.1 4.8309p9q

8
5 0.005 0.0075 0.00608p13q 3 2.181 9 4.9828p15q
6 0.01 0.015 0.0125p25q – – – 4.847p15q
7 0.015 0.02 0.0175p25q – – – 4.731p14q

Table 1. Overview of the finite size scaling analysis and of the —c interpolation. Large values
of ‰

2
d.o.f. are due to the low number of simulated mass values and/or to the still low accumulated

statistics. For Nf P t6, 7u at N· “ 8, the available data are not yet su�cient to obtain an acceptable
fit, and the quoted critical mass represents the middle point of simulated masses at which the order
of the transition was clear from the ordering of the kurtosis on increasing spatial lattice size,
i.e. towards the thermodynamic limit.

where the chiral condensate has been chosen as observable, O “ Â̄Â, as it becomes
the order parameter of the thermal phase transition in the chiral limit. In particu-
lar, to extract the order of the transition as a function of the quark mass, we evalu-
ate the kurtosis B4p—c, am, N‡q [39] of the sampled xÂ̄Ây distribution, where —c denotes
the (pseudo-) critical coupling of the phase boundary, for which the zero-skewness con-
dition B3p— “ —c, am, N‡q “ 0 holds. In the thermodynamic limit N‡ Ñ 8, the kurtosis
B4p—c, am, N‡q takes the values of 1 for a first order transition and 3 for an analytic cros-
sover, respectively, with a discontinuity when passing from a first order region to a crossover
region via a second order point; for the 3D Ising universality class of interest here, it takes
the value 1.604 [40]. On finite, increasing volumes this discontinuity is smoothed out and

– 9 –

MAF applied to the entire data

What we want to 
reproduce with the 
ML analysis
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MAF applied to the entire data

Check that the model still reproduces 
the data !



Results for  for some   p (ψ̄ψ, S) Nσ, ml, β

From the data 

MAF prediction 

Another indication of learning the 
correct density 
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Results for  for some   p (ψ̄ψ, S) Nσ, ml, β

All MAF 
predictions - recall

 and βc ∼ 4.9828
amc ∼ 0.082

15
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MAF applied to the entire data

• Picture when we should be in the first order region 

Peaks appear to 
resolve with 
increasing volume

recall -

aml = 0.075

amc ∼ 0.082



MAF applied to the entire data

• Picture when we (should be) in the crossover region 

recall -

aml = 0.085

amc ∼ 0.082
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Results :  for χψ̄ψ 83 × 4

•  With  - we are free to compute higher moments ! 

•  We see scaling of peak height, width, location from ML prediction 

p (ψ̄ ψ, S Nσ, ml, β)

18

mass values in 
original data

Interpolated mass 
values



Results for  for χψ̄ψ 163 , 123 × 4

With increasing lattice volume 
and decreasing bare quark we 
see narrowing and shifting of 
peaks

19

Pending analysis with of fitting 
peak positions to obtain  and 
then computing to 
find the  boundary …

βc
B4(βc, aml, Nσ)

Z2



Summary & Outlook

• The MAF model tuned for the HISQ data seems to work ``out of the box’’ 
when applied to Frankfurt data  

• Results on interpolation appear consistent with actual lattice data - at least at 
the level of the chiral condensate 

• Model evaluations are cheap ~ 0.5 seconds for 1M evaluations 

• One fit for all data - but with 7333 trainable parameters 

• Yet to determine critical mass and gauge coupling in agreement with F. Cuteri 
et.al., JHEP 11 (2021)  

• Plan I : Study the systematics of ML model - may not always converge to the 
same fit parameters - some kind of bootstrap needed ? 

• Plan II : is to also include data for different  to be able to interpolate in that 
direction - reproduce the tri-critical scaling 

Nτ

20



Backup slides



• With  removed - on 1 GPU with Approximately 30.8 GB of GPU 
memory used at peak with training time ~ 4hr 30 mins  

• With all data - on 1 GPU with Approximately 32.9 GB of GPU memory 
used at peak with training time ~ 5hr 20 mins 

Nσ = 12

Some numbers and parameters

• Time for 1 M for each , ,  evaluation : ~ 0.45 secondsβ ml Nσ

Some Training Statistics

Some Evaluation Statistics

Model parameters used from 
Marius Neumann’s Thesis

6.4. Machine-learning-reweighting

MAF parameter value
kernel regulizer L1L2

L1 0.0001
L2 0.0001

loss function - log prob
number of MADE blocks 8

number of samples 1000000
number of epochs 500
number of inputs 2 (S, Â̄Â)

number of conditional inputs 3 (—, ml, N‡)
batch size 1024

amount of training data 1.583.962 x (S, Â̄Â)
optimizer Adam

Table 6.4: ML-reweighting model architecture based on Masked Autoregressive Flow code example
“Conditional Invertible Neural Network for Parameter Estimation” [65].

min max
Â̄Â 0.0 0.5
S 0.55 0.65
— 4.5 5.4
ml 0.001 0.016
N‡ 16 24

Table 6.5: ML-reweighting normalizations. All values have been linearly mapped to fulfil min æ
≠1 and max æ 1. Note that not all values lie in [min, max], since this is not required by a MAF,
but a necessary optimization.

As a proof-of-concept, we take the data for our highest statistics parameter set. The
time history for Â̄Â was shown in Figure 6.2. We compare its (Â̄Â, S)-histogram to the
histogrammized output of our ML model at the same parameter and arrive at Figure 6.7.
We can see that both data sets show artifacts: The original data does show irregularities or
a low resolution in the action, which presumably arise from the low acceptance rate. The
fitted data, on the other hand, has a bridge connecting the two phases. This connection
can be seen in the raw data, but is overpopulated in the ML fit. It is a know weakness of
the masked autoregressive flow, that disconnected regions are not fitted e�ciently, as can
be seen in the two moons example [68]. Obviously, this is not a problem in the crossover
region. This could be circumvented by using more MADE layers in the model, but this
leads to overfitting e�ects. Furthermore, Figure 6.7 emphasizes the advantage of the ML
model, which comes from not having to histogrammize the data, resulting in a much higher
resolution.

70

2048 
~ 4.3 M
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MAF Inference on probability 

not trained on

23

Did not learn the density of the 
skipped  !Nσ = 12


