

Work in progress on analytic continuation from imaginary chemical potential

Marco Aliberti^{1,2}

In collaboration with F. Di Renzo, P. Dimopoulos (Parma) and the Bielefeld-Parma collaboration

Spetember 13, 2024

¹Università degli Studi di Parma

²INFN - Sezione di Milano Bicocca Gruppo Collegato di Parma

Motivations

The Sign Problem

- The study of the phase diagram requires finite baryon number density
 - Finite density lattice simulations \Rightarrow chemical potential $\mu \neq 0$
 - Generic $\mu \Rightarrow$ complex Dirac determinant, leads to sign problem
- For purely imaginary values of μ the Dirac determinant remains real
- Methods to extrapolate physical functions of real µ from the imaginary axis are needed

DI PARMA

DI PARMA

The Methods

Taylor Expansion:
$$P_n(\mu) = \sum_{k=0} c_k \mu^k$$

Padé analysis¹:
$$R_m^n(\mu) = rac{\sum_{k=0}^n p_k \mu^k}{1 + \sum_{j=1}^m q_j \mu^j}$$

Cauchy's Theorem integrated numerically²

• Power series of μ^2 , from $\mu^2 < 0$ to $\mu^2 > 0$

¹Explained in detail by C. Schmidt on Monday
²Explained in detail by F. Di Renzo on Tuesday

The Methods

• Taylor Expansion:
$$P_n(\mu) = \sum_{k=0}^n c_k \mu^k \chi_n(T, V, \mu_B) = \left(\frac{\partial}{\partial \mu_B}\right)^n \frac{\ln Z(T, V, \mu_B)}{VT^3}$$

Padé analysis¹:
$$R_m^n(\mu) = \frac{\sum_{k=0}^n p_k \mu^k}{1 + \sum_{j=1}^m q_j \mu^j}$$
 $\mu \equiv \mu_B/T$

Cauchy's Theorem integrated numerically²

• Power series of μ^2 , from $\mu^2 < 0$ to $\mu^2 > 0$

¹Explained in detail by C. Schmidt on Monday
²Explained in detail by F. Di Renzo on Tuesday

The Methods

Taylor Expansion:
$$P_n(\mu) = \sum_{k=0}^n c_k \mu^k \chi_n(T, V, \mu_B) = \left(\frac{\partial}{\partial \mu_B}\right)^n \frac{\ln Z(T, V, \mu_B)}{VT^3}$$

Padé analysis¹:
$$R_m^n(\mu) = \frac{\sum_{k=0}^n p_k \mu^k}{1 + \sum_{j=1}^m q_j \mu^j}$$
 $\mu \equiv \mu_B/T$

Cauchy's Theorem integrated numerically²

T = 157.5 MeVPhysical pion mass

HISQ $N_f = 2 + 1$, $N_{\tau} = 6$,

Power series of μ^2 , from $\mu^2 < 0$ to $\mu^2 > 0$

From the Bielefeld-Parma collaboration

Disclaimer: For now, only the central values will be shown (without errors).

¹Explained in detail by C. Schmidt on Monday
²Explained in detail by F. Di Renzo on Tuesday

The Methods

Input Data

The Methods

Taylor Expansion

Dataset

 $\{\chi_1(\mu_0), \ldots, \chi_1(\mu_{N-1})\}$

$$\chi_1(\mu_i) = \sum_{k=0}^{N-1} \frac{1}{k!} \chi_{1+k}(0) \mu_i^k + O(\mu^N)$$

The Methods

Taylor Expansion

Dataset

$$\begin{cases} \chi_1(\mu_i) = \sum_{k=0}^{N+M-1} \frac{1}{k!} \chi_{1+k}(0) \mu_i^k + O(\mu^{N+M}) \\ \\ \chi_2(\mu_j) = \sum_{k=1}^{N+M-1} \frac{k}{k!} \chi_{1+k}(0) \mu_j^{k-1} + O(\mu^{N+M-1}) \end{cases}$$

The Methods

Taylor Expansion

Dataset

The Methods

Taylor Expansion

Dataset

The Methods

Taylor Expansion

Dataset

Charge conjugation symmetry $\implies \chi_1(-\mu) = -\chi_1(\mu)$

Charge conjugation symmetry $\Longrightarrow \chi_1(-\mu) = -\chi_1(\mu)$

$$\chi_{1}(\mu_{i}) = \sum_{k=0}^{N+M-1} \frac{1}{(2k+1)!} \chi_{2+2k}(0) \mu_{i}^{2k+1} + O(\mu^{2N+2M})$$
$$\chi_{2}(\mu_{j}) = \sum_{k=1}^{N+M-1} \frac{2k+1}{(2k+1)!} \chi_{2+2k}(0) \mu_{j}^{2k} + O(\mu^{2N+2M-1})$$

Charge conjugation symmetry $\implies \chi_1(-\mu) = -\chi_1(\mu)$

$$\begin{split} \chi_{1}(\mu_{i}) &= \sum_{k=0}^{N+M-1} \frac{1}{(2k+1)!} \chi_{2+2k}(0) \mu_{i}^{2k+1} + O(\mu^{2N+2M}) \\ \chi_{2}(\mu_{j}) &= \sum_{k=1}^{N+M-1} \frac{2k+1}{(2k+1)!} \chi_{2+2k}(0) \mu_{j}^{2k} + O(\mu^{2N+2M-1}) \end{split}$$

 Higher number of significant derivatives (with same input data)

Charge conjugation symmetry $\implies \chi_1(-\mu) = -\chi_1(\mu)$

$$\begin{split} & \begin{pmatrix} \chi_1(\mu_i) = \sum_{k=0}^{N+M-1} \frac{1}{(2k+1)!} \chi_{2+2k}(0) \mu_i^{2k+1} + O(\mu^{2N+2M}) \\ & \chi_2(\mu_j) = \sum_{k=1}^{N+M-1} \frac{2k+1}{(2k+1)!} \chi_{2+2k}(0) \mu_j^{2k} + O(\mu^{2N+2M-1}) \end{split}$$

 Higher number of significant derivatives (with same input data)

Worse condition number

The Methods

Taylor Plots

Padé Analysis

Rational function

- Interpolates singularities
- Can have only poles

 Branch cuts are represented as a series of poles and zeros

The Methods

Single-Point Padé

Dataset

$\chi_1(0), \chi_2(0), \ldots, \chi_N(0)$

$$R_m^n(\mu) = \frac{\sum_{k=0}^n p_k \mu^k}{1 + \sum_{j=1}^m q_j \mu^j} \quad \text{with} \quad n+m = N$$

Conditions: $R(0) = \chi_1(0), R'(0) = \chi_2(0), \dots, R^{(N-1)}(0) = \chi_N(0)$

The Methods

Single-Point Padé

Dataset

 $\chi_1(0), \chi_2(0), \ldots, \chi_N(0)$

$$R_m^n(\mu) = \frac{\sum_{k=0}^n p_k \mu^k}{1 + \sum_{j=1}^m q_j \mu^j} \quad \text{with} \quad n+m = N$$

Conditions: $R(0) = \chi_1(0), R'(0) = \chi_2(0), \dots, R^{(N-1)}(0) = \chi_N(0)$

Problem: Noisy high derivatives \implies Few parameters

Multi-Point Padé

Dataset

 $\chi_1(\mu_1), \chi_1(\mu_2), \ldots, \chi_1(\mu_N), \quad \chi_2(\mu_{N+1}), \chi_2(\mu_{N+2}), \ldots, \chi_2(\mu_{N+M})$

$$R_m^n(\mu) = \frac{\sum_{k=0}^n p_k \mu^k}{1 + \sum_{j=1}^m q_j \mu^j} \quad \text{with} \quad n+m = N + N$$

$$R(\mu_1) = \chi_1(\mu_1), R(\mu_2) = \chi_1(\mu_2), \dots, R(\mu_N) = \chi_1(\mu_N)$$
$$R'(\mu_{N+1}) = \chi_2(\mu_{N+1}), \dots, R'(\mu_{N+M}) = \chi_2(\mu_{N+M})$$

Multi-Point Padé

Dataset

 $\chi_1(\mu_1), \chi_1(\mu_2), \ldots, \chi_1(\mu_N), \quad \chi_2(\mu_{N+1}), \chi_2(\mu_{N+2}), \ldots, \chi_2(\mu_{N+M})$

$$R_m^n(\mu) = \frac{\sum_{k=0}^n p_k \mu^k}{1 + \sum_{j=1}^m q_j \mu^j} \quad \text{with} \quad n+m = N + N$$

Conditions:

$$R(\mu_1) = \chi_1(\mu_1), \ R(\mu_2) = \chi_1(\mu_2), \ \dots, \ R(\mu_N) = \chi_1(\mu_N), \ R'(\mu_{N+1}) = \chi_2(\mu_{N+1}), \ \dots, \ R'(\mu_{N+M}) = \chi_2(\mu_{N+M})$$

Problem: Convergence not rigorously defined

The Methods

UNIVERSITÀ

DI PARMA

"Simplified" /Multi-Point Padé

11/20

The Methods

Padé Plots

The Methods

UNIVERSITÀ

DI PARMA

Inverse Problem

The Methods

Inverse Problem

The Methods

Inverse Problem

The Methods

Inverse Problem With Derivatives

The Methods

Inverse Problem With Derivatives

The Methods

Inverse Problem Plots

M. Aliberti

 $\mu = \{+0.3928i, +0.7853i, +1.178i, +1.571i, \dots\} \qquad \chi_1(\mu) = \sum_{k=0}^{\infty} \frac{\chi_{2k+1}(0)}{(2k+1)!} \mu^{2k+1}$

 $\mu = \{+0.3928i, +0.7853i, +1.178i, +1.571i, \dots\}$ $\chi_1(\mu) = \sum_{k=0}^{\infty} \frac{\chi_{2k+1}(0)}{(2k+1)!} \mu^{2k+1}$ $\mu^2 = \{-0.1543, -0.6167, -1.388, -2.468, \dots\}$ $\tilde{\chi}_1(\mu^2) = \chi_1(\mu)/\mu$

 $\mu = \{+0.3928i, +0.7853i, +1.178i, +1.571i, \dots\}$ $\chi_1(\mu) = \sum_{k=0}^{\infty} \frac{\chi_{2k+1}(0)}{(2k+1)!} \mu^{2k+1}$ $\mu^2 = \{-0.1543, -0.6167, -1.388, -2.468, \dots\}$ $\tilde{\chi}_1(\mu^2) = \chi_1(\mu)/\mu$

Polynomial fit in μ^2

 $\mu = \{+0.3928i, +0.7853i, +1.178i, +1.571i, \dots\}$ $\chi_1(\mu) = \sum_{k=0}^{\infty} \frac{\chi_{2k+1}(0)}{(2k+1)!} \mu^{2k+1}$ $\mu^2 = \{-0.1543, -0.6167, -1.388, -2.468, \dots\}$ $\tilde{\chi}_1(\mu^2) = \chi_1(\mu)/\mu$

Polynomial fit in μ^2

Recover the original function by multiplying by μ

The Methods

μ^2 Fit Plots

Results Comparison

M. Aliberti

Error Analysis

UNIVER

DI PARMA

What About the Errors?

19/20

M. Aliberti

Error Analysis

What About the Errors?

Error Analysis

UNIVERSITÀ

DI PARMA

What About the Errors?

M. Aliberti

Error Analysis

UNIVERSITÀ

DI PARMA

What About the Errors?

19/20

M. Aliberti

In Conclusion...

Various methods, with very different ways of operation, have been used for analytical continuation from imaginary μ_B/T to real μ_B/T

- ▶ There is a common region ($\mu_B/T \lesssim 1.5$) where every method agree with each other, with *small* error bars
- Outside this region ($\mu_B/T \gtrsim 1.5$), they significantly deviate from each other, but stay within the *much larger* error bars

Beyond a given treshold, each method has a high systematic sensitivity with respect to the choice of the input data

A thorough error analysis (both statistical and systematic) is being performed

