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Analytic continuation from imaginary µ Motivations

The Sign Problem

▶ The study of the phase diagram requires
finite baryon number density

▶ Finite density lattice simulations ⇒
chemical potential µ ̸= 0

▶ Generic µ ⇒ complex Dirac determinant,
leads to sign problem

▶ For purely imaginary values of µ the Dirac
determinant remains real

▶ Methods to extrapolate physical functions of
real µ from the imaginary axis are needed
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Analytic continuation from imaginary µ Motivations

Imaginary µ

Reµ

Imµ

▶ Data from simulations at
imaginary µ

▶ Analytic continuation to
real µ

▶ Propagation of the
statistical uncertainty?

▶ Radius of convergence?

Various different methods for
analytitc continuation
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Analytic continuation from imaginary µ The Methods

The Methods

▶ Taylor Expansion: Pn(µ) =
n∑

k=0

ckµ
k

χn(T ,V , µB) =

(
∂

∂µB

)n
lnZ (T ,V , µB)

VT 3

▶ Padé analysis1: Rn
m(µ) =

∑n
k=0 pkµ

k

1 +
∑m

j=1 qjµ
j

▶ Cauchy’s Theorem integrated numerically2

▶ Power series of µ2, from µ2 < 0 to µ2 > 0

µ ≡ µB/T

HISQ Nf = 2 + 1, Nτ = 6,
T = 157.5MeV

Physical pion mass

From the Bielefeld-Parma
collaboration

Disclaimer: For now, only the central values will be shown (without errors).

1Explained in detail by C. Schmidt on Monday
2Explained in detail by F. Di Renzo on Tuesday
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Analytic continuation from imaginary µ The Methods

Input Data
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Analytic continuation from imaginary µ The Methods

Taylor Expansion

Dataset

{χ1(µ0), . . . , χ1(µN−1)}

χ1(µi ) =
N−1∑
k=0

1

k!
χ1+k(0)µ

k
i + O(µN)

▶ Straightforward to
implement

▶ Radius of convergence:
(way before) nearest
singularity

▶ No singularity structure
(polynomial)
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Analytic continuation from imaginary µ The Methods

Taylor Expansion - Fixed Parity

Charge conjugation symmetry =⇒ χ1(−µ) = −χ1(µ)


χ1(µi ) =

N+M−1∑
k=0

1

(2k + 1)!
χ2+2k(0)µ

2k+1
i + O(µ2N+2M)

χ2(µj) =
N+M−1∑

k=1

2k + 1

(2k + 1)!
χ2+2k(0)µ

2k
j + O(µ2N+2M−1)

▶ Higher number of significant
derivatives (with same input data)

▶ Worse condition number
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Analytic continuation from imaginary µ The Methods

Taylor Plots

7/20 M. Aliberti



Analytic continuation from imaginary µ The Methods

Padé Analysis

▶ Rational function

▶ Interpolates singularities

▶ Can have only poles

▶ Branch cuts are represented as a series of
poles and zeros

Rn
m(µ) =

n∑
k=0

pkµ
k

1 +
m∑
j=1

qjµ
j
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Analytic continuation from imaginary µ The Methods

Single-Point Padé

Dataset

χ1(0), χ2(0), . . . , χN(0)

Rn
m(µ) =

n∑
k=0

pkµ
k

1 +
m∑
j=1

qjµ
j

with n +m = N

Conditions: R(0) = χ1(0), R
′(0) = χ2(0), . . . , R

(N−1)(0) = χN(0)

Problem: Noisy high derivatives =⇒ Few parameters
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Analytic continuation from imaginary µ The Methods

Multi-Point Padé

Dataset

χ1(µ1), χ1(µ2), . . . , χ1(µN), χ2(µN+1), χ2(µN+2), . . . , χ2(µN+M)

Rn
m(µ) =
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pkµ
k
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qjµ
j

with n +m = N +M

Conditions:
R(µ1) = χ1(µ1), R(µ2) = χ1(µ2), . . . , R(µN) = χ1(µN)

R ′(µN+1) = χ2(µN+1), . . . , R
′(µN+M) = χ2(µN+M)

Problem: Convergence not rigorously defined
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Analytic continuation from imaginary µ The Methods

”Simplified” Multi-Point Padé
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Analytic continuation from imaginary µ The Methods

Padé Plots
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Analytic continuation from imaginary µ The Methods

Inverse Problem

z0

f (z0) =
1

2πi

∮
C

f (z)

z − z0
dz

χ1(µj) =
1

2π

∫ 2π

0

Re iθχ1(Re
iθ)

Re iθ − µj
dθ

Gauss-Legendre

χ1(µj) ≃
1

2π

n∑
k=1

wk
Re iθk

Re iθk − µj
χ̂1k

j = 1, . . . , n
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Analytic continuation from imaginary µ The Methods

Inverse Problem With Derivatives

z0

f (n)(z0) =
n!

2πi

∮
C

f (z)

(z − z0)n+1
dz

χn+1(µj) =
n!

2π

∫ 2π

0

Re iθχ1(Re
iθ)

(Re iθ − µj)n+1
dθ

Gauss-Legendre
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n!

2π
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wk
Re iθk χ̂1k
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j = 1, . . . , n
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Analytic continuation from imaginary µ The Methods

Inverse Problem Plots

15/20 M. Aliberti



Analytic continuation from imaginary µ The Methods

Analytic continuation from µ2 < 0

µ = {+0.3928i ,+0.7853i ,+ 1.178i ,+1.571i , . . . }

⇓
µ2 = {−0.1543,−0.6167,− 1.388,−2.468, . . . }

χ1(µ) =
∞∑
k=0

χ2k+1(0)

(2k + 1)!
µ2k+1

χ̃1(µ
2) =χ1(µ)/µ

▶ Polynomial fit in µ2

▶ Recover the original function by multiplying by µ
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Analytic continuation from imaginary µ The Methods

µ2 Fit Plots
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Analytic continuation from imaginary µ Results

Results Comparison
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Analytic continuation from imaginary µ Error Analysis

What About the Errors?
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Analytic continuation from imaginary µ Conclusions

In Conclusion...

▶ Various methods, with very different ways of operation, have been used for
analytical continuation from imaginary µB/T to real µB/T

▶ There is a common region (µB/T ≲ 1.5) where every method agree with
each other, with small error bars

▶ Outside this region (µB/T ≳ 1.5), they significantly deviate from each other,
but stay within the much larger error bars

▶ Beyond a given treshold, each method has a high systematic sensitivity with
respect to the choice of the input data

▶ A thorough error analysis (both statistical and systematic) is being performed

20/20 M. Aliberti
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