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Introduction

Introduction (I)

» The phase diagram of QCD in the presence of strong magnetic
fields has been actively studied during recent years, being relevant
for understanding a wide range of physical phenomena, from the
physics of the early universe to heavy-ion collision experiments

» Some interesting features:
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Introduction

Introduction (I1)

» Some interesting features:

e the transition is a crossover at low eB,
turns first order somewhere between 4 and
9 GeV?

JHEP 07, 173 (2015) Phys.Rev.D 105, 034511 (2022)

but see also Phys.Rev.D 102, 054505 (2020) B
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Introduction

Introduction (111)

» In this work we investigate the Roberge-Weiss transition in the
phase diagram at imaginary chemical potentials

e RW line at ug/ T = im, whose end-point

(im, Trw) is believed to be a second order

critical point for physical quark masses ‘ l
TRW

Phys.Rev.D 93, 074504 (2016)
Phys.Rev.D 105, 034513 (2022) =

e indications that Tryw ~ Tchira in the
chiral limit ‘
Phys.Rev.D 99, 014502 (2019) ijn:ﬁBJ/(nT)

Phys.Rev.D 106, 014510 (2022)
» Questions:

e What is the dependence of Trw on eB?
e What is the fate of the transition at strong magnetic fields?

e |s there any relation between Tgw and the chiral restoration
temperature?



Introduction

Numerical set-up
Numerical set-up:

» Nf =2+ 1, stout-staggered fermions with physical masses,
tree-level Symanzik improved action

» N, = 6,8 lattices with different volumes

v

We stay at constant chemical potential uf/T = im

» We use the (imaginary part of the) Polyakov loop L = (|Im L|) as
the order parameter of the transition.

For different eB we estimate Tgy as the inflection point of L(T)
and the peak of its susceptibility x,(T),

L= {(ImL|)
Xt = NeN2(((Im L)2) — (|im L])?)
At fixed N; and b,, the temperature T is tuned by changing a. The

_— . 67b, N?
magnetic field is eB = (g’,fvb; = Tt T2
s s

» Finite-size scaling analysis to determine the order of the transition

XL = ngd)(th%)' t= T3l

Trw



Transition at finite eB

Transition at 0.2,0.4,0.6 GeV/?
N; = 6 runs at eB = 0.2,0.4,0.6 GeV? (and 0 GeV/?)
» Ns; = 18,24 give similar results for Trw, finite-size effects are tiny

i.e. Trw(Ns = 18,eB = 0.6 GeV?) = 180.38(69) MeV
Trw(Ns = 24, eB = 0.6 GeV?) = 178.99(59) MeV

<|imL| >
et

3 'l\\lrl\wJ P wu o i TM“

» We observe that Trw decreases as a

-
function of eB and the data fit well to a 5. N .
rational function Trw(eB) = Thw ii;g:g;z o

o e
B [GeV?)



Transition at finite eB

Crosscheck for the RW line (low T)

Monte Carlo history and histogram of ImL at “—Tf =im, T < Trw

§:§5§§ | | ' ‘

0 1000 2000 3000 4000 5000
500

400

300

200

100

0
-0.03 -0.02 -001 0 0.01 0.02 0.03
ImL



Transition at finite eB

Crosscheck for the RW line (high T)

Monte Carlo history and histogram of ImL at &t = im, T 2 Trw
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— first order phase transition between left and right sectors



Transition at finite eB

FSS analysis at 1 GeV/?
N; = 6 runs at eB =1 GeV?

» Finite-size scaling analysis for Ny = 18, 24, 30, collapse plots:
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— compatible with a second order transition of the Z(2)
universality class

» Fitting the peaks of y;:

X(T)

X
Xmax(Ns) =a Ny — 1= 204(19)

v




Transition at finite eB

Transition at 2.5 GeV/? (1)
N; = 6 runs at eB = 2.5 GeV?

Histograms show a double peaked distribution, suggesting the presence of
metastable states typical of a first order transition.
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Transition at finite eB

Transition at 2.5 GeV/? (Il)
N; = 6 runs at eB = 2.5 GeV?

Histograms show a double peaked distribution, suggesting the presence of
metastable states typical of a first order transition.

— N-l
001 w0
002
50
000

rrrrrrr Lot 100 oty 0
001 — N1 0
002
30
000
S0 Lo 1 o 2200 20

0014

002

0.00 )
0 5000 10000 15000 20000 25000 000 001 002 003 004 005

But we expect large discretization effects.
2
eB = 2N T2 e want 25 < 1

At1l GeV? b, =30and N; =24 — 2 ~ 0.05
At 2.5 GeV?, b, =89 and N; =24 — 2 ~ 0.15



Towards the continuum limit

FSS analysis at 1 GeV/?
Ny =8 runs at eB =1 GeV/?

» Finite-size scaling analysis for Ny = 28, 32,40, collapse plots:
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— compatible with a second order transition of the Z(2)
universality class

» Fitting the peaks of x;:
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Towards the continuum limit

FSS analysis at 1 GeV/?

Binder cumulant:

Results are compatibile with a critical point belonging to the Z(2)
universality class, but a tricritical point cannot be ruled out.
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Towards the continuum limit

FSS analysis at 2.5 GeV/?
N; = 8 runs at eB = 2.5 GeV/?

Histograms still show a double peaked distribution, suggesting the
presence of metastable states typical of a first order transition.
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In this case % ~ 0.08.



Towards the continuum limit

FSS analysis at 2.5 GeV/?

N; = 8 runs at eB = 2.5 GeV?

» Finite-size scaling analysis for Ny = 24, 32,40, collapse plots:
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Curvature of the critical line

Curvature of the critical line (1)

All in all, data fit well toza rational function
Trw(eB) = Thy traegl up to 1.6 GeV/2.

Full data set (including 2.5 GeV?) well parametrized by
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Curvature of the critical line

Curvature of the critical line (Il)
We can Taylor expand the rational function ansatz around eB = 0:
TRw(eB) = TI%W + k(eB)2

Curvature close to the curvature of the chiral critical line at 4 =0
found by ref. JHEP 07, 173 (2015) from (t))):

k ~ —44.8 + k(eB)2 = 7500(35), k(eB)“ = 756(10)
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Conclusions

To summarize:

» We have studied the RW end-point in the presence of background
magnetic fields

» The RW temperature decreases as a function of the strenght of the
magnetic field

» We have found indications that the RW transition becomes first
order between 1 and 2.5 GeV/?

» The curvature of the critical line is close to the curvature of the
chiral critical line (from the light quark condensate) at =0



Thank you for listening!
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