

The Roberge-Weiss transition in $N_f = 2+1$ QCD with background magnetic fields

K. Zambello^{1,2} M. D'Elia^{1,2} L. Maio³ G. Zanichelli¹

¹ University of Pisa ² INFN - Sezione di Pisa

³ CPT, Marseille

Trento, 12/09/2024

《曰》 《聞》 《臣》 《臣》

æ

୬ ବ େ 1/19

Introduction (I)

- The phase diagram of QCD in the presence of strong magnetic fields has been actively studied during recent years, being relevant for understanding a wide range of physical phenomena, from the physics of the early universe to heavy-ion collision experiments
- Some interesting features:
 - chiral symmetry breaking enhanced at zero T, but chiral condensate decreases around T_c (magnetic catalysis / inverse magnetic catalysis)
 - strengthening of the chiral transition, but chiral restoration temperature T_c decreases as a function of eB

Introduction (II)

Some interesting features:

• the transition is a crossover at low eB, turns first order somewhere between 4 and 9 GeV^2

JHEP 07, 173 (2015) Phys.Rev.D 105, 034511 (2022) but see also Phys.Rev.D 102, 054505 (2020)

• the (adimensional) curvature coefficient of the chiral crossover temperature $k_2 \sim 0.013(2)$ is weakly dependent on *eB*;

the (physical) curvature coefficient $A_2(eB) = k_2(eB)/T_c(eB)$ qualitatively changes behaviour at $eB \sim 0.6 \ GeV^2$

$$rac{T_c(eB,\mu_B)}{T_c(eB)} = 1 - k_2 \left(rac{\mu_B}{T_c(eB)}
ight)^2$$

Phys.Rev.D 100, 114503 (2019)

Introduction (III)

- In this work we investigate the Roberge-Weiss transition in the phase diagram at imaginary chemical potentials
 - RW line at $\mu_B/T = i\pi$, whose end-point $(i\pi, T_{RW})$ is believed to be a second order critical point for physical quark masses

Phys.Rev.D 93, 074504 (2016) Phys.Rev.D 105, 034513 (2022)

 \bullet indications that $T_{RW} \sim T_{Chiral}$ in the chiral limit

Phys.Rev.D 99, 014502 (2019) Phys.Rev.D 106, 014510 (2022)

Questions:

- What is the dependence of T_{RW} on eB?
- What is the fate of the transition at strong magnetic fields?
- Is there any relation between T_{RW} and the chiral restoration temperature?

æ

クヘ 4/19

Introduction

Numerical set-up

Numerical set-up:

- ► N_f = 2 + 1, stout-staggered fermions with physical masses, tree-level Symanzik improved action
- $N_t = 6, 8$ lattices with different volumes
- We stay at constant chemical potential $\mu_f/T = i\pi$
- ▶ We use the (imaginary part of the) Polyakov loop L = ⟨|Im L|⟩ as the order parameter of the transition.

For different *eB* we estimate T_{RW} as the inflection point of L(T) and the peak of its susceptibility $\chi_L(T)$,

 $L = \langle |Im L| \rangle$ $\chi_L = N_t N_s^3 (\langle (Im L)^2 \rangle - \langle |Im L| \rangle^2)$

At fixed N_t and b_z , the temperature T is tuned by changing a. The magnetic field is $eB = \frac{6\pi b_z}{(aN_s)^2} = \frac{6\pi b_z N_t^2}{N_s^2} T^2$.

Finite-size scaling analysis to determine the order of the transition $\chi_L = N_s^{\frac{\gamma}{\nu}} \phi(t N_s^{\frac{1}{\nu}}), \ t = \frac{T - T_{RW}}{T_{RW}}$

Transition at finite eB

Transition at $0.2, 0.4, 0.6 \ GeV^2$

$$N_t = 6$$
 runs at $eB = 0.2, 0.4, 0.6$ GeV² (and 0 GeV²)

 \triangleright $N_s = 18,24$ give similar results for T_{RW} , finite-size effects are tiny i.e. $T_{RW}(N_s = 18, eB = 0.6 \text{ GeV}^2) = 180.38(69) \text{ MeV}$ $T_{RW}(N_s = 24, eB = 0.6 \ GeV^2) = 178.99(59) \ MeV$ 0.025 $\stackrel{(0.020)}{|T_m^{m}I|} = 0.015$ χ^r 1.0 -0.010 Ŧ Ŧ 0.005 17 $T [MeV]^{180}$ 187 190 T [MeV]

▶ We observe that T_{RW} decreases as a function of eB and the data fit well to a rational function $T_{RW}(eB) = T_{RW}^0 \frac{1+a(eB)^2}{1+b(eB)^2}$

Monte Carlo history and histogram of ImL at $\frac{\mu_f}{T} = i\pi, T < T_{RW}$

<ロ> (四) (四) (三) (三) (三)

クヘ 7/19

Monte Carlo history and histogram of ImL at $\frac{\mu_f}{T} = i\pi, T \gtrsim T_{RW}$

 \rightarrow first order phase transition between left and right sectors

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 8/19

Transition at finite eBFSS analysis at 1 GeV^2

 $N_t = 6$ runs at eB = 1 GeV^2

Finite-size scaling analysis for $N_s = 18, 24, 30$, collapse plots:

 \rightarrow compatible with a second order transition of the Z(2) universality class

Fitting the peaks of
$$\chi_L$$
:

$$\chi_{max}(N_s) = \alpha \ N_s^{\frac{\gamma}{\nu}} \to \frac{\gamma}{\nu} = 2.04(19)$$

Transition at finite eB

Transition at 2.5 GeV^2 (I)

 $N_t = 6$ runs at eB = 2.5 GeV²

Histograms show a double peaked distribution, suggesting the presence of metastable states typical of a first order transition.

This can be compared with $eB = 1.0 \ GeV^2$,

Transition at finite eBTransition at 2.5 GeV^2 (II)

 $N_t = 6$ runs at eB = 2.5 GeV²

Histograms show a double peaked distribution, suggesting the presence of metastable states typical of a first order transition.

But we expect large discretization effects.

$$eB = \frac{6\pi b_z N_t^2}{N_s^2} T^2, \text{ we want } \frac{b_z}{N_s^2} \ll 1$$

At 1 GeV², $b_z = 30 \text{ and } N_s = 24 \rightarrow \frac{b_z}{N_s^2} \approx 0.05$
At 2.5 GeV², $b_z = 89 \text{ and } N_s = 24 \rightarrow \frac{b_z}{N_s^2} \approx 0.15$

Towards the continuum limit FSS analysis at 1 GeV^2

$$N_t = 8$$
 runs at $eB = 1$ GeV^2

Finite-size scaling analysis for $N_s = 28, 32, 40$, collapse plots:

 \rightarrow compatible with a second order transition of the Z(2) universality class

Fitting the peaks of
$$\chi_L$$
:

$$\chi_{max}(N_s) = \alpha \ N_s^{\frac{\gamma}{\nu}} \rightarrow \frac{\gamma}{\nu} = 1.97(28)$$

Binder cumulant:

Results are compatibile with a critical point belonging to the Z(2) universality class, but a tricritical point cannot be ruled out.

Towards the continuum limit FSS analysis at 2.5 GeV^2

 $N_t = 8$ runs at eB = 2.5 GeV²

Histograms still show a double peaked distribution, suggesting the presence of metastable states typical of a first order transition.

14/19

《曰》 《聞》 《臣》 《臣》 三臣

In this case $\frac{b_z}{N_s^2} \approx 0.08$.

Towards the continuum limit FSS analysis at 2.5 GeV^2

 $N_t = 8$ runs at eB = 2.5 GeV²

Finite-size scaling analysis for $N_s = 24, 32, 40$, collapse plots:

 \rightarrow compatible with a first order transition

Fitting the peaks of χ_L :

$$\chi_{max}(N_s) = \alpha \ N_s^{\frac{\gamma}{\nu}} \rightarrow \frac{\gamma}{\nu} = 3.03(18)$$

Curvature of the critical line

Curvature of the critical line (I)

All in all, data fit well to a rational function $T_{RW}(eB) = T^0_{RW} \frac{1+a(eB)^2}{1+b(eB)^2}$ up to 1.6 GeV^2 .

Full data set (including 2.5 GeV^2) well parametrized by $T_{RW}(eB) = T^0_{RW} \frac{1+a(eB)^2+c(eB)^4}{1+b(eB)^2+d(eB)^4}.$

Curvature of the critical line

Curvature of the critical line (II)

We can Taylor expand the rational function ansatz around eB = 0:

$$T_{RW}(eB) = T_{RW}^0 + k(eB)^2$$

Curvature close to the curvature of the chiral critical line at $\mu = 0$ found by ref. JHEP 07, 173 (2015) from $\langle \bar{\psi}_I \psi_I \rangle$:

$$k \sim -44.8 \leftrightarrow k_{(eB)^2} = -50.0(3.5)$$
, $k_{(eB)^4} = -56(10)$

クヘペ 17/19

To summarize:

- We have studied the RW end-point in the presence of background magnetic fields
- The RW temperature decreases as a function of the strenght of the magnetic field
- We have found indications that the RW transition becomes first order between 1 and 2.5 GeV²
- The curvature of the critical line is close to the curvature of the chiral critical line (from the light quark condensate) at $\mu = 0$

Thank you for listening!