Finite temperature QCD from lattice simulations with overlap fermions

A. Yu. Kotov in collaboration with T. Kovacs, K. Szabo, Z. Fodor

New developments in studies of the QCD phase diagram, Trento, 2024

Chiral fermions on the lattice

Chiral fermions on the lattice

• Extremely wanted for studies of chiral effects

Chiral fermions on the lattice

• Extremely wanted for studies of chiral effects

Nielsen-Ninomiya «no-go» theorem:

- Lattice chiral fermions \implies fermion doubling: \bullet equal number of left- and right- handed particles

[Nielsen and Ninomiya, 1981]

• Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$
- Overlap fermions: $aD_{ov} = \frac{1}{2} \left(1 + \gamma_5 \operatorname{sign}(\gamma_5 D_w(-m_w)) \right)$

 $\gamma_5 = 2aD\gamma_5D$ [Ginsparg and Wilson, 1982]

 $\gamma_5 \operatorname{sign}(\gamma_5 D_w(-m_w)))$ [Neuberger, 1998]

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]
- Overlap fermions: $aD_{ov} = \frac{1}{2} \left(1 + \gamma_5 \operatorname{sign}(\gamma_5 D_w(-m_w)) \right)$
- Very expensive numerically: require multiple tricks

[Neuberger, 1998]

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]
- Overlap fermions: $aD_{ov} = \frac{1}{2}(1 + \gamma)$
- Very expensive numerically: require multiple tricks
- $N_f = 2 + 1$ dynamical overlap fermions $m_{\pi} = m_{\pi}^{\text{phys}} = 135 \text{ MeV}$

$$\gamma_5 \operatorname{sign}(\gamma_5 D_w(-m_w)))$$
[Neuberger, 1998]

• My talk: some selected results on QCD @ finite T (around chiral crossover T_c)

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]
- Overlap fermions: $aD_{ov} = \frac{1}{2}(1 + \gamma)$
- Very expensive numerically: require multiple tricks
- $N_f = 2 + 1$ dynamical overlap fermions $m_{\pi} = m_{\pi}^{\text{phys}} = 135 \text{ MeV}$

$$\gamma_5 \operatorname{sign}(\gamma_5 D_w(-m_w)))$$
[Neuberger, 1998]

<u>My talk</u>: some selected results on QCD @ finite T (around chiral crossover T_c)

Also [Y. Aoki, Wed, 10.50]

• $N_f = 2 + 1$ overlap quarks, physical masses: $m_{\pi} = m_{\pi}^{\text{phys}}$

- $N_f = 2 + 1$ overlap quarks, physical masses: $m_{\pi} = m_{\pi}^{\text{phys}}$
- Two Wilson fermions, $m_W a = -1.3$ (kernel of D_{OV})
- Two boson fields with mass $m_B a = 0.54$

- a → 0 : irrelevant
 Keep Q = const (Q = 0)
 Make calculations faster
 - - [Fukaya et al., 2006]

- $N_f = 2 + 1$ overlap quarks, physical masses: $m_{\pi} = m_{\pi}^{\text{phys}}$
- Two Wilson fermions, $m_W a = -1.3$ (kernel of D_{OV})
- Two boson fields with mass $m_B a = 0.54$
- $N_t = 8,10,12$: Q = 0

- *a* → 0 : irrelevant
 Keep *Q* = const (*Q* = 0)
 Make calculations faster
- - [Fukaya et al., 2006]

- $N_f = 2 + 1$ overlap quarks, physical masses: $m_{\pi} = m_{\pi}^{\text{phys}}$
- Two Wilson fermions, $m_W a = -1.3$ (kernel of D_{OV})
- Two boson fields with mass $m_B a = 0.54$
- $N_t = 8,10,12$: Q = 0

$$N_t = 8: \sum_{Q}$$

- *a* → 0 : irrelevant
 Keep *Q* = const (*Q* = 0)
 Make calculations faster
- - [Fukaya et al., 2006]

- $N_f = 2 + 1$ overlap quarks, physical masses: $m_{\pi} = m_{\pi}^{\text{phys}}$
- Two Wilson fermions, $m_W a = -1.3$ (kernel of D_{OV})
- Two boson fields with mass $m_B a = 0.54$
- $N_t = 8,10,12$: Q = 0

$$N_t = 8: \sum_{Q}$$

Everything is preliminary!

- *a* → 0 : irrelevant
 Keep *Q* = const (*Q* = 0)
 Make calculations faster
- - [Fukaya et al., 2006]

Chiral condensate Q = 0 sector

- $M = 2 \left(m_s \langle \bar{\psi} \psi \rangle_l m_l \langle \bar{\psi} \psi \rangle_s \right)$
- Large cutoff effects and FV effects
- $T_{pc} \sim 160 \text{ MeV}$
- $N_s/N_t = 2$ is completely off

Chiral susceptibility Q = 0 sector

• $N_{\rm s}/N_{\rm f} = 2$ is completely off

Same for staggered [Borsanyi et al., 2024]

 $\chi_M = m \partial_m M$

 $T_{pc} \sim 160 \text{ MeV}$

• We need:

- We need:
 - M, χ for $Q \neq 0$ just simulate for $Q \neq 0$

- We need:
 - M, χ for $Q \neq 0$ just simulate for $Q \neq 0$
 - Weights Z_Q/Z_0 (or topological susceptibility χ) is also possible

Topological susceptibility from simulations at fixed Q**Slab method**

[Bietenholz, de Forcrand and Gerber, 2015]

 $p(q, Q-q) \propto p_1(q)p_2(Q-q) \propto$

$$q' = q - xQ$$

$$\langle q \rangle = xQ$$

 $\langle q'^2 \rangle = \langle q^2 \rangle - x^2 Q^2 \propto \chi V x (1 - x)$

Up to boundary effects: $V \rightarrow \infty$

Topological susceptibility from simulations at fixed QSlab method

$$Q, V \equiv V_4$$

 $T = 155 \text{ MeV} N_s/N_t = 4 Q = 0$

Topological susceptibility from fixed Q Taking $V \to \infty$ $N_t = 8 T = 155 [MeV]$ $N_t = 8 T = 155 [MeV]$

Topological susceptibility from simulations at fixed QSlab method $N_t = 8$

[MeV]

- Noisy
- Consistent with

[Borsanyi et al., 2016]

Local topological fluctuations

Summing over topological sectors $N_{t} = 8$

 χ_O from: • Stag: [Borsanyi et al., 2016] • Slab: overlap results at fixed Q

Dirac operator spectrum $D_{\rm ov}^{\dagger} D_{\rm ov} |e_i\rangle = \lambda_i^2 |e_i\rangle$

Chiral symmetry (Banks-Casher relation):

$$\bar{\psi}\psi \propto \int \frac{m}{\lambda^2 + m^2} \rho(\lambda) \xrightarrow[m \to 0]{} \rho(\lambda = 0)$$

• Axial symmetry:

$$\chi_A = \chi_\pi - \chi_\delta \propto \int d\lambda \frac{m^2}{(m^2 + \lambda^2)^2} \rho(\lambda)$$

Talks: [I. Horvath, Tue, 11.30] [T. Kovacs, Tue, 14.30] [W.-P. Huang, Tue, 15.10]

Dirac operator spectrum, T = 145 MeV

$D_{\rm ov}^{\dagger} D_{\rm ov} |e_i\rangle = \lambda_i^2 |e_i\rangle$

 λ/m_q

Summary

- Dynamical overlap fermions at $m_{\pi} = m_{\pi}^{\text{phys}}$
 - Preliminary data around $T_{\rm pc}$, mainly $N_t = 8$

 $\rho(\lambda/m_q)$ [MeV⁴]

- Simulations at fixed Q
- Summation over Q
- χ_O from overlap simulations
- Dirac spectrum: peak at $\rho(\lambda \rightarrow 0)$

for $N_s/N_t \gtrsim 4-5$ at $T \gtrsim T_{\rm pc}$

Summary

 $\rho(\lambda/m_q) [MeV^4]$

- Dynamical overlap fermions at $m_{\pi} = m_{\pi}^{\text{phys}}$
 - Preliminary data around $T_{\rm pc}$, mainly $N_t = 8$
 - Simulations at fixed Q
 - Summation over Q
- χ_O from overlap simulations
- Dirac spectrum: peak at $\rho(\lambda \rightarrow 0)$

for $N_s/N_t \gtrsim 4-5$ at $T \gtrsim T_{\rm pc}$

Summary

 $\rho(\lambda/m_q) [MeV^4]$

- Dynamical overlap fermions at $m_{\pi} = m_{\pi}^{\text{phys}}$
 - Preliminary data around $T_{\rm pc}$, mainly $N_t = 8$
 - Simulations at fixed Q
 - Summation over Q
- χ_O from overlap simulations
- Dirac spectrum: peak at $\rho(\lambda \rightarrow 0)$

for $N_s/N_t \gtrsim 4-5$ at $T \gtrsim T_{\rm pc}$

Thank you for your attention!

Backup

Action details

- Symanzik improved gauge action
- Fermion sector: 2 steps of HEX smeared gauge fields
- $N_f = 2 + 1$ flavours of overlap quarks, physical masses
- 2 flavours of Wilson fermions with mass $-m_W$
- Two boson fields with mass $m_B a = 0.54$
- O(1000 10000) MD trajectories per point (Q, T, L)

- a → 0 : irrelevant
 Keep Q = const (Q = 0)
 Make calculations faster

[Fukaya et al., 2006]

Lattice details, scale setting Scale setting from simulations with large m_{π}

- Simulations are done <u>along the LCP</u>
- Scale setting: require $\underline{T=0}$ simulations

- <u>Physical point</u>: $m_{ud} = m_{ud}^{(phys)}$, $m_s = m_s^{(phys)}$

• $N_f = 3$ staggered simulations, T = 0, $w_0^{(3)} = 0.153(1)$ fm, $m_{\pi}^{(3)} = 712(5)$ MeV • $N_f = 3$ overlap simulations, T = 0, at each β tune m_s^{ov} to have $m_\pi w_0 \equiv m_\pi^{(3)} w_0^{(3)}$ • $N_f = 2 + 1$ overlap simulations, $T \neq 0$: $m_s = m_s^{ov}$, $m_{ud} = Rm_s^{ov}$, $a = w_0^{(3)}/w_0^{ov}$

[Borsanyi et al., 2016]

Implementing odd number of flavours **Exploiting** Q = const

- To simulate $N_f = 1$ (strange quark): need to take the square root
- Chirality projectors: $P_{\pm} = \frac{1 \pm \gamma_5}{2}$, $E_{\pm} = \frac{1 \pm \gamma_5}{2}$
- Fixed topology Q = const: $\det H^2 \sim \det \tilde{H}_+^2 \det H_-^2 \sim (\det H_+^2)^2 \sim (\det H_-^2)^2$
- Take det H^2_+ or det H^2_-

• Monte Carlo: determinant of a hermitian operator $H^2 = D_{ov}D_{ov}^{\dagger}$: $N_f = 2$

$$H_{\pm}^2 = P_{\pm} H^2 P_{\pm}$$

Summing over topological sectors $N_{t} = 8$ $\frac{1}{4} \frac{\dot{(m_{0})}}{100000} \times \frac{\dot{(m_{0})}{100000}}{100000} \times \frac{1}{1000000}$ $= 2(m_{\rm s}\langle \bar{\psi}\psi \rangle_{\rm I} -$ 0.0005 $N_s/N_t = 3 \text{ G}$ $N_s/N_t = 4 \text{ G}$ 0.0004 $N_{s}/N_{t} = 3 \text{ B}$ $N_{s}/N_{t} = 4 \text{ B}$ Σ 0.0003 165 135 150 155 160 140 145 T [MeV]

• <u>Gaussian</u>: $Z_O/Z_0 = e^{-Q^2/(2\chi V)}$ - central limit theorem

• <u>Bessel</u>: $Z_O/Z_0 = I_V(\chi V)$ - motivated by free instanton-antiinstanton gas

