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• Extremely wanted for studies of chiral effects

Nielsen-Ninomiya «no-go» theorem:

• Lattice chiral fermions  fermion doubling: ⟹

equal number of left- and right- handed particles
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[Nielsen and Ninomiya, 1981]
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[Neuberger, 1998]

[Ginsparg and Wilson, 1982]

Also [Y. Aoki, Wed, 10.50]
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Some details

•  overlap quarks, physical masses: Nf = 2 + 1 mπ = mphys
π

• Two Wilson fermions,  (kernel of )mWa = − 1.3 Dov

• Two boson fields with mass mBa = 0.54

• : Nt = 8,10,12 Q = 0

• : Nt = 8 ∑
Q

• Everything is preliminary!
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•  irrelevant


• Keep  ( )

• Make calculations faster

a → 0 :
Q = const Q = 0

[Fukaya et al., 2006]



Chiral condensate
 sectorQ = 0

• 


• Large cutoff effects and FV effects


• 


•  is completely of

M = 2 (ms⟨ψ̄ψ⟩l − ml⟨ψ̄ψ⟩s)

Tpc ∼ 160 MeV

Ns/Nt = 2
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Chiral susceptibility

6
Tpc ∼ 160 MeV

 sectorQ = 0
χM = m∂mM

•  is completely off


• Same for staggered [Borsanyi et al., 2024]

Ns/Nt = 2
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Can we do better and sum over ?Q

• We need:

•  for  - just simulate for M, χ Q ≠ 0 Q ≠ 0

• Weights  (or topological susceptibility ) - is also possibleZQ/Z0 χ
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Topological susceptibility from simulations at fixed Q
Slab method

8[Bietenholz, de Forcrand and Gerber, 2015]

p(q, Q − q) ∝ p1(q)p2(Q − q) ∝

xV

(1 − x)V

q

Q − q

Q, V ≡ V4

e− q2
2χVx e− (Q − q)2

2χV(1 − x) ∝ e− 1
2χV

q′￼
2

x(1 − x)

q′￼ = q − xQ

⟨q′￼

2⟩ = ⟨q2⟩ − x2Q2 ∝ χVx(1 − x)

⟨q⟩ = xQ

Up to boundary effects: V → ∞



9⟨q′￼

2⟩ ∝ χVx(1 − x)

xV

(1 − x)V

q

Q − q

Q, V ≡ V4

Topological susceptibility from simulations at fixed Q
Slab method



Topological susceptibility from fixed Q
Taking V → ∞

10Take half-sum  and : systematic uncertainty∼ (Ns/Nt)2 ∼ (Ns/Nt)3



Slab method Nt = 8

• Noisy


• Consistent with


[Borsanyi et al., 2016]


• Local topological fluctuations
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Topological susceptibility from simulations at fixed Q



Summing over topological sectors
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 from:

• Stag: [Borsanyi et al., 2016]

• Slab: overlap results at fixed 

χQ

Q



Dirac operator spectrum
D†

ovDov |ei⟩ = λ2
i |ei⟩

• Сhiral symmetry (Banks-Casher relation): 





• Axial symmetry:





• Talks: [I. Horvath, Tue, 11.30] [T. Kovacs, Tue, 14.30] [W.-P. Huang, Tue, 15.10]

ψ̄ψ ∝ ∫
m

λ2 + m2
ρ(λ)

m→0
ρ(λ = 0)

χA = χπ − χδ ∝ ∫ dλ
m2

(m2 + λ2)2
ρ(λ)
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Dirac operator spectrum, T = 145 MeV

D†
ovDov |ei⟩ = λ2

i |ei⟩
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Dirac operator spectrum, T = 170 MeV

D†
ovDov |ei⟩ = λ2

i |ei⟩
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Dirac operator spectrum, T = 170 MeV

D†
ovDov |ei⟩ = λ2

i |ei⟩

Peak : 

Large 

ρ(λ → 0)
Ns/Nt ≳ 4 − 5



• Dynamical overlap fermions at 


• Preliminary data around , mainly 


• Simulations at fixed 


• Summation over 


•  from overlap simulations


• Dirac spectrum: peak at  


for  at 

mπ = mphys
π

Tpc Nt = 8

Q

Q

χQ

ρ(λ → 0)

Ns/Nt ≳ 4 − 5 T ≳ Tpc

Summary
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for  at 

mπ = mphys
π
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Q

Q

χQ

ρ(λ → 0)

Ns/Nt ≳ 4 − 5 T ≳ Tpc

Summary
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Purely overlap result!

Thank you for your attention!



Backup



Action details

• Symanzik improved gauge action


• Fermion sector: 2 steps of HEX smeared gauge fields


•  flavours of overlap quarks, physical masses


• 2 flavours of Wilson fermions with mass 


• Two boson fields with mass 


•  MD trajectories per point 

Nf = 2 + 1

−mW

mBa = 0.54

O(1000 − 10000) (Q, T, L)
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[Fukaya et al., 2006]

•  irrelevant


• Keep  ( )

• Make calculations faster

a → 0 :
Q = const Q = 0



Lattice details, scale setting
Scale setting from simulations with large mπ

• Simulations are done along the LCP


• Scale setting: require  simulations


•  staggered simulations,  


•  overlap simulations,  at each  tune  to have 


•  overlap simulations, : 


• Physical point: 

T = 0

Nf = 3 T = 0, w(3)
0 = 0.153(1) fm, m(3)

π = 712(5) MeV

Nf = 3 T = 0, β mov
s mπw0 ≡ m(3)

π w(3)
0

Nf = 2 + 1 T ≠ 0 ms = mov
s , mud = Rmov

s , a = w(3)
0 /wov

0

mud = m(phys)
ud , ms = m(phys)

s

19
[Borsanyi et al., 2016]
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Implementing odd number of flavours
Exploiting Q = const

• Monte Carlo: determinant of a hermitian operator : 


• To simulate  (strange quark): need to take the square root


• Chirality projectors: , 


• Fixed topology : 



• Take  or 

H2 = DovD†
ov Nf = 2

Nf = 1

P± =
1 ± γ5

2
H2

± = P±H2P±

Q = const
det H2 ∼ det H2

+ det H2
− ∼ (det H2

+)2 ∼ (det H2
−)2

det H2
+ det H2

−

20



• Gaussian:  - central limit theorem


• Bessel:  - motivated by free instanton-antiinstanton gas

ZQ/Z0 = e−Q2/(2χV)

ZQ/Z0 = IV(χV)

Summing over topological sectors
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