A. Yu. Kotov in collaboration with T. Kovacs, K. Szabo, Z. Fodor

Finite temperature QCD from lattice simulations with overlap fermions

New developments in studies of the QCD phase diagram, Trento, 2024

Chiral fermions on the lattice

-
-
-
-
-
- - - - -

Chiral fermions on the lattice

• Extremely wanted for studies of chiral effects

Chiral fermions on the lattice

• Extremely wanted for studies of chiral effects

Nielsen-Ninomiya «no-go» theorem:

- Lattice chiral fermions \Longrightarrow fermion doubling: equal number of left- and right- handed particles
-

[Nielsen and Ninomiya, 1981]

• Continuous chiral symmetry: $\gamma_5 D + D \gamma_5 = 0$

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]

- Continuous chiral symmetry: $\gamma_5 D + D \gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]
- Overlap fermions: $aD_{ov} =$ 1 $\frac{1}{2}$ (1 + *γ*₅sign(*γ*₅*D_w*(−*m_w*))) [Neuberger, 1998]

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]
- Overlap fermions: $aD_{ov} =$ 1 $\frac{1}{2}$ (1 + *γ*₅sign(*γ*₅*D_w*(−*m_w*)))
- Very expensive numerically: require multiple tricks

[Neuberger, 1998]

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]
- Overlap fermions: $aD_{ov} =$ 1
- Very expensive numerically: require multiple tricks
- $N_{\!f} = 2 + 1$ dynamical overlap fermions m_{π}

$$
\frac{1}{2} \left(1 + \gamma_5 \text{sign}(\gamma_5 D_w(-m_w)) \right)
$$
\n[Neuberger, 1998]

• <u>My talk</u>: some selected results on QCD @ finite T (around chiral crossover T_c) $= m_{\pi}^{\text{phys}}$ *π* $= 135$ MeV

- Continuous chiral symmetry: $\gamma_5 D + D\gamma_5 = 0$
- Ginsparg-Wilson relation: $\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D$ [Ginsparg and Wilson, 1982]
- Overlap fermions: $aD_{ov} =$ 1
- Very expensive numerically: require multiple tricks
- $N_{\!f} = 2 + 1$ dynamical overlap fermions m_{π}

$$
\frac{1}{2} \left(1 + \gamma_5 \text{sign}(\gamma_5 D_w(-m_w)) \right)
$$
 [Neuberger, 1998]

• <u>My talk</u>: some selected results on QCD @ finite T (around chiral crossover T_c) $= m_{\pi}^{\text{phys}}$ *π* $= 135$ MeV

Also [Y. Aoki, Wed, 10.50]

-
-
-
-
-
-
- -
- -
-
-
-
-
-
-
-
-
-
-
-
- -
	-
-
-
- -
-
- -
	- - -
		-
		-
- -
-
-
-
-
-
-
-
-
- -
-

 $\overline{\mathbf{4}}$

• $N_f = 2 + 1$ overlap quarks, physical masses: m_π

$= m_{\pi}^{\text{phys}}$ *π*

4

- $N_f = 2 + 1$ overlap quarks, physical masses: m_π $= m_{\pi}^{\text{phys}}$ *π*
- Two Wilson fermions, $m_W a = -1.3$ (kernel of $D_{\rm OV}$)
- Two boson fields with mass $m_B a = 0.54$
- $a \rightarrow 0$: irrelevant $a \rightarrow 0:$
- Keep $Q = const (Q = 0)$ *Q* = const *Q* = 0
- Make calculations faster
	- [Fukaya et al., 2006]

- $N_f = 2 + 1$ overlap quarks, physical masses: m_π $= m_{\pi}^{\text{phys}}$ *π*
- Two Wilson fermions, $m_W a = -1.3$ (kernel of $D_{\rm OV}$)
- Two boson fields with mass $m_B a = 0.54$
- $N_t = 8,10,12$: $Q = 0$
- $a \rightarrow 0$: irrelevant $a \rightarrow 0:$
- Keep $Q = const (Q = 0)$ *Q* = const *Q* = 0
- Make calculations faster
	- [Fukaya et al., 2006]

- $N_f = 2 + 1$ overlap quarks, physical masses: m_π $= m_{\pi}^{\text{phys}}$ *π*
- Two Wilson fermions, $m_W a = -1.3$ (kernel of $D_{\rm OV}$)
- Two boson fields with mass $m_B a = 0.54$
- $N_t = 8,10,12$: $Q = 0$
- $a \rightarrow 0$: irrelevant $a \rightarrow 0:$
- Keep $Q = const (Q = 0)$ *Q* = const *Q* = 0
- Make calculations faster
	- [Fukaya et al., 2006]

$$
N_t = 8: \sum_{Q}
$$

- $N_f = 2 + 1$ overlap quarks, physical masses: m_π $= m_{\pi}^{\text{phys}}$ *π*
- Two Wilson fermions, $m_W a = -1.3$ (kernel of $D_{\rm OV}$)
- Two boson fields with mass $m_B a = 0.54$
- $N_t = 8,10,12$: $Q = 0$
- $a \rightarrow 0$: irrelevant $a \rightarrow 0:$
- Keep $Q = const (Q = 0)$ *Q* = const *Q* = 0
- Make calculations faster
	- [Fukaya et al., 2006]

$$
N_t = 8: \sum_{Q}
$$

Everything is preliminary!

Chiral condensate *Q* = 0 **sector**

- $M = 2 (m_s \langle \bar{\psi} \psi \rangle_l m_l \langle \bar{\psi} \psi \rangle_s)$
- Large cutoff effects and FV effects
- *Tpc* ∼ 160 MeV
- $N_s/N_t = 2$ is completely of

Chiral susceptibility *Q* = 0 **sector**

• $N_s/N_t = 2$ is completely of

• Same for staggered [Borsanyi et al., 2024]

 $\chi_M = m \partial_m M$

 $T_{pc} \sim 160 \;{\rm MeV}$

• We need:

- We need:
	- M , χ for $Q \neq 0$ just simulate for $Q \neq 0$

- We need:
	- M , χ for $Q \neq 0$ just simulate for $Q \neq 0$
	- Weights Z_0/Z_0 (or topological susceptibility χ) is also possible

Topological susceptibility from simulations at fixed *Q* **Slab method**

[Bietenholz, de Forcrand and Gerber, 2015] **8**

 $p(q, Q - q) \propto p_1(q)p_2(Q - q) \propto$

⟨*q*′ $\langle q^2 \rangle - x^2 Q^2 \propto \chi V x (1 - x)$

$$
q'=q-xQ
$$

$$
\langle q \rangle = xQ
$$

Up to boundary effects: *V* → ∞

 $T = 155$ MeV $N_s/N_t = 4$ Q = 0

$$
Q, V \equiv V_4
$$

Topological susceptibility from simulations at fixed *Q* **Slab method**

Topological susceptibility from fixed Q Taking $V \rightarrow \infty$
 $N_t = 8$ $T = 155$ [MeV] $N_t = 8$ $T = 155$ [MeV]

[Borsanyi et al., 2016]

Local topological fluctuations

Slab method $N_t = 8$ **Topological susceptibility from simulations at fixed** *Q*

[MeV]

- **Noisy**
- Consistent with

Summing over topological sectors $N_t = 8$

-
-

 from: *χQ* • Stag: [Borsanyi et al., 2016] • Slab: overlap results at fixed *Q*

Dirac operator spectrum D_0^\dagger $\int_{\mathrm{ov}}\!\!{D_{\mathrm{ov}}}\!\mid e_i$ $\rangle = \lambda_i^2$ $\frac{2}{i}$ | e_i \rangle

• Сhiral symmetry (Banks-Casher relation):

• Axial symmetry:

• Talks: [I. Horvath, Tue, 11.30] [T. Kovacs, Tue, 14.30] [W.-P. Huang, Tue, 15.10]

$$
\bar{\psi}\psi \propto \int \frac{m}{\lambda^2 + m^2} \rho(\lambda) \xrightarrow[m \to 0]{} \rho(\lambda = 0)
$$

$$
\chi_A = \chi_{\pi} - \chi_{\delta} \propto \int d\lambda \frac{m^2}{(m^2 + \lambda^2)^2} \rho(\lambda)
$$

Dirac operator spectrum, $T = 145$ MeV

$D_{\rm OV}^{\dagger}D_{\rm OV}|e_i\rangle = \lambda_i^2|e_i\rangle$

-
-
-
-
-
-
-
-
-

 λ/m_q

- Simulations at fixed *Q*
- Summation over *Q*
- χ_{Q} from overlap simulations
- Dirac spectrum: peak at *ρ*(*λ* → 0)

for $N_{\rm s}/N_{\rm t}\gtrsim4-5$ at $T\gtrsim T_{\rm pc}$

Summary

- Dynamical overlap fermions at *mπ* $= m_{\pi}^{\text{phys}}$ *π*
	- Preliminary data around T_{pc} , mainly $N_t = 8$

 $\rho(\lambda/m_q)$ [MeV⁴]

- Dynamical overlap fermions at *mπ* $= m_{\pi}^{\text{phys}}$ *π*
	- Preliminary data around T_{pc} , mainly $N_t = 8$
	- Simulations at fixed *Q*
	- Summation over *Q*
- χ_{Q} from overlap simulations
- Dirac spectrum: peak at *ρ*(*λ* → 0)

for $N_{\rm s}/N_{\rm t}\gtrsim4-5$ at $T\gtrsim T_{\rm pc}$

Summary

 $\rho(\lambda/m_q)$ [MeV⁴]

- Dynamical overlap fermions at *mπ* $= m_{\pi}^{\text{phys}}$ *π*
	- Preliminary data around T_{pc} , mainly $N_t = 8$
	- Simulations at fixed *Q*
	- Summation over *Q*
- χ_{Q} from overlap simulations
- Dirac spectrum: peak at *ρ*(*λ* → 0)

for $N_{\rm s}/N_{\rm t}\gtrsim4-5$ at $T\gtrsim T_{\rm pc}$

Summary

 $\rho(\lambda/m_q)$ [MeV⁴]

Thank you for your attention!

Backup

Action details

- Symanzik improved gauge action
- Fermion sector: 2 steps of HEX smeared gauge fields
- $N_f = 2 + 1$ flavours of overlap quarks, physical masses
- 2 flavours of Wilson fermions with mass $-m_W$
- Two boson fields with mass $m_B a = 0.54$
- $O(1000 10000)$ MD trajectories per point (Q, T, L)
- $a \rightarrow 0$: irrelevant $a \rightarrow 0:$
- Keep $Q = const (Q = 0)$ *Q* = const *Q* = 0
- Make calculations faster

[Fukaya et al., 2006]

Lattice details, scale setting Scale setting from simulations with large *m^π*

- Simulations are done along the LCP
- Scale setting: require $T = 0$ simulations
- $N_f = 3$ staggered simulations, $T = 0$, $w_0^{(3)}$
-
- $N_f = 2 + 1$ overlap simulations, $T \neq 0$: m_s
- Physical point: $m_{ud} = m_{ud}^{(phys)}$ $\frac{m}{ud}$, m_s

• $N_f = 3$ overlap simulations, $T = 0$, at each β tune $m_s^{\rm o}{\rm v}$ to have $m_\pi w_0 \equiv m_\pi^{(3)} w_0^{(3)}$ 0 $= 0.153(1)$ fm, $m_{\pi}^{(3)}$ *π* $= 712(5)$ MeV 0 $= m_s^{\text{ov}}, \quad m_{ud} = R m_s^{\text{ov}}, \quad a = w_0^{(3)}/w_0^{\text{ov}}$ $= m_s^{(phys)}$ *s*

[Borsanyi et al., 2016]

Implementing odd number of flavours Exploiting *Q* = const

-
- To simulate $N_f = 1$ (strange quark): need to take the square root
- Chirality projectors: $P_{\pm} = \frac{P_{\pm}}{2}$, 1 ± *γ*⁵ 2
- Fixed topology $Q = const$: det $H^2 \sim \det H^2_+ \det H^2_- \sim (\det H^2_+)$
- Take det H_+^2 or det H_-^2

• Monte Carlo: determinant of a hermitian operator $H^2=D_{\rm ov}D_{\rm ov}^\dagger$: $N_{\!f}=2$

$$
H_{\pm}^2 = P_{\pm}H^2P_{\pm}
$$

2 ∼ (det *H*² $\binom{2}{ }$ 2

Summing over topological sectors $N_t = 8$ $-\frac{(\frac{3}{2})^4}{\frac{3}{2}}$
 \times ($\frac{1}{2}$ 0.0007 -
 $\frac{3}{2}$ 0.0007 - $=2(m_s(\bar{\psi}\psi))$ 0.0005 $N_s/N_t = 3$ G $N_s/N_t = 4$ G 0.0004 $N_s/N_t = 3 B$ $N_s/N_t = 4 B$ \mathbf{z} 0.0003 165 135 150 155 160 140 145 T [MeV]

• Gaussian: $Z_{Q}/Z_{0} = e^{-Q^{2}/(2\chi V)}$ - central limit theorem

• <u>Bessel</u>: $Z_{\mathcal{Q}}/Z_0 = I_{V}(\chi V)$ - motivated by free instanton-antiinstanton gas

