Finite temperature QCD explored with chiral fermions

Yasumichi Aoki

Field Theory Research Team RIKEN Center for Computational Science

ECT* 2024 - 2024.9.11

https://www.r-ccs.riken.jp/labs/ftrt/

2

Acknowledgements

Codes used:

- Grid
- BQCD (Measurements)

(HMC)

- Bridge++ (Measurements)
- Hadrons (Measurements)

Grants:

- KAKANHI (FY2020-2024) QCD phase diagram explored by chiral fermions 20H01907
- MEXT Program for Promoting Researches on the Supercomputer **Fugaku** (PPR-Fugaku)
 - (FY2020-2022) Simulation for basic science: from fundamental laws of particles to creation of nuclei -JPMXP1020200105
 - (FY2023-2025) Simulation for basic science: approaching the new quantum era -JPMXP1020230411

Computers:

- RIKEN Hokusai BW
- Ito at Kyushu University (hp190124, hp200050)
- Polaire and Grand Chariot at Hokkaido University (hp200130)
- supercomputer Fugaku at R-CCS (ra000001; hp210032,hp220108,hp220233; hp200130, hp230207)

Nf=2:

- DWF \rightarrow Overlap; high T:
 - chiral symmetry, fate of U(1)A, topology
- DWF
 - spectrum (see Lattice 2024 talk by David Ward)

common set-up for :

- JLQCD type domain wall fermion (DWF)
 - Gauge: tree-level Symanzik
 - Fermions: Möbius DWF (scale factor=2 Shamir) with stout smeared links
- good knowledge of T=0 fine lattices for flavor physics
 - calibration for finite temperature needs only small effort (computational)

Nf=2+1:

- DWF \rightarrow Overlap for high T (led by Hidenori Fukaya)
- DWF: LCP analysis near and on the physical point
 - transition / crossover; topology
 - charge fluctuation (see Lattice 2024 talk by Jishnu Goswami)

Nf=3:

• DWF: phase hunting near three-flavor degenerate chiral limit (see talk by **Yu Zhang**)

Members involved in the main topics of this talk

- Y. Nakamura⁽¹⁾, Y. Zhang⁽⁶⁾,,,,
- (1): RIKEN Center for Computational Science
- (2): Osaka University
- (3): KEK
- (4): SOKENDAI
- (5): Kobayashi-Maskawa Institute, Nagoya Univ.
- (6): Bielefeld University

QCD phase transition near and on the physical point

- $N_f=2+1$, 2 fine lattice DWF simulation and reweighting to overlap [PRD(2021), PTEP(2022)]
 - Profound relation among: chiral symmetry, axial anomaly and topological susceptibility
- R & D for the $N_f\!\!=\!\!2\!+\!1$ thermodynamics with Line of Constant Physics (LCP)
 - Codes: Grid, Hadrons, Bridge++
 - LCP / Reweighting

אוא אוא

- Chiral order parameter and renormalization
- Quark number susceptibility
- $N_f=2+1$ thermodynamics with LCP (mass = ms/10 = about 3 x physical ud quark mass)
 - 2 step renormalization for chiral condensate (power and log divergence) with an xm_{res} correction
 - 2 lattice spacings N_t=12, 16
 - 3 volumes $N_s/N_t=2$, 3, 4
 - No phase transition !
 - T_{pc} determined $T_{pc} = 165(2)$ MeV
 - PPR-Fugaku FY2020-2022
 - [PoS Lattice 2021, 2022]
- Physical point study
 - PPR-Fugaku 2023- preliminary results \rightarrow

Modes of Simulations

to locate phase transition

- tune parameters near transition
- ➤ T: fixed, change m
- ➤ m: fixed, change T

Modes of Simulations

to locate phase transition

- tune parameters near transition
- ➤ T: fixed, change m
- ➤ m: fixed, change T

Modes of Simulations Nf=2: Ward (Lattice 2024) Nf=3: Zhang Symm to locate phase transition ∞ 1st order • tune parameters near transition ➤ T: fixed, change m physical pt. ➤ m: fixed, change T ms Symm $L = aN_s$ $\frac{1}{T} = aN_t$ D crossover M 0 ∞ m_{ud} Symm ∞ 1st order Fixing / changing the controlling parameter • *T*: controled by ms • $a(\beta)$: controlled by β • N_t : discrete Symm • *m*: controlled by 1st order crossover • input quark mass D M 0 ∞ Mud $m(\beta) \leftarrow$ matching with hadronic scale: $M_H(\beta, m)$

$N_f=2+1$ Möbius DWF LCP for 2023-

For the Line of Constant Physics: $am_s(\beta)$ with $a(\beta)$

- Step 1: determine $a(\beta)$ [fm] with t_0 (BMW) input
 - at $\beta = 4.0, 4.1^*, 4.17, 4.35, 4.47$
 - * β =4.0 new data, to add support at small β
 - * β =4.1 old pilot study data, removed small volume and statistics
- Step 2: determine $Z_m(\beta)$ using Non-Perturbative Renormalization results
 - at $\beta = 4.17, 4.35, 4.47; Z_m$ with \overline{MS} 2 GeV are available
 - NNNLO running: $\mu = 2 \text{ GeV} \rightarrow 1/a \& \beta$ polynomial fit & running back
 - use $Z_m(\beta)$ so obtained for $\beta \ge 4.0$: $\beta < 4.17$ region is extrapolation
 - $1/Z_m(\beta)$ will be used to renormalize scalar operator, **chiral condensate**
- Step 3: solve $am_s(\beta)$ with input (*quark mass input*):
 - $m_s^R = Z_m \cdot a m_s^{latt} \cdot a^{-1} = 92 \text{ MeV}$
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
- See for details in Lattice 2021 proc by S.Aoki et al.

Do simulation

• Step 4: proper tuning of input mass: correct m_{res}

Do simulation 2nd round / correction with reweighting + valence meas.

LCP remarks for FT2023-

Features

- Fine lattice: use of existing results ($0.04 \le a \le 0.08$ fm)
 - Granted preciseness towards continuum limit
- Coarse lattice parametrization is an extrapolation
 - Preciseness might be deteriorated
 - Newly computing Z_m e.g. at $\beta = 4.0$ (lower edge) might improve, but not done so far
 - NPR of Z_m at $a^{-1} \simeq 1.4$ GeV may have sizable error (window problem) anyway
- Smooth connection from fine to coarse should not alter leading $O(a^2)$
 - Difference should be higher order
- Error estimated from Kaon mass
 - $\Delta m_K \sim \frac{10\%}{}$ at $\beta = 4.0$ $(a \simeq 0.14 \text{ fm}) \rightarrow \Delta m_K \sim a \text{ few \%}$
 - $\Delta m_{K} \sim a \text{ few \% at } \beta = 4.17 \ (a \simeq 0.08 \text{ fm})$

Domain wall fermions

- Möbius DWF \rightarrow OVF by reweighting
 - Successful (w/ error growth) at β = 4.17 (a \simeq 0.08 fm)
 - See Lattice 2021 JLQCD (presenter: K.Suzuki)
 - Questionable for
 - Coarser lattice: rough gauge, DWF chiral symmetry breaking
 - Finer lattice: larger V (# sites)
- Chiral fermion with continuum limit
 - A practical choice is to stick on DWF
- Controlling chiral symmetry breaking with DWF
 - WTI residual mass m_{res} : $m_{\pi}^2 \propto (m_f + m_{res})(1 + h.o.)$
 - Understanding $m_{res}(\beta)$ with fixed L_s (5-th dim size)
- $m_{res}[MeV] \sim a^X$, where $X \sim 5$
 - Vanishes quickly as $a \rightarrow 0$
 - 1st (dumb) approximation: forget about m_{res}
 - Better : $m_f^{cont} \leftrightarrow (m_f + m_{res})$ but, this is not always enough

Simulation plan: 2nd round w/ treatment of m_{res} effect $L_{\rm s} = 12$ fixed throughout this study • T1-(d) • T2-(c) • $N_t = 12$ • $N_t = 16$ • $m_l = 0.1 m_s$ • $m_l = 0.1 m_s$ • *m_{res}* shift by reweighting • $m_a^{input} = m_q^{LCP} - m_{res}$ • $V_{\rm s} = 32^3$ • $V_{\rm s} = 24^3, 36^3$ • T1-(q) • T1-(p) • $N_t = 16$ • $N_t = 12$ • $m_l = m_{ud}$ • $m_l = m_{ud}$ • $m_a^{input} = m_q^{LCP} - m_{res}$ • $m_a^{input} = m_a^{LCP} - m_{res}$ • $V_{\rm s} = 48^3$ • $V_{\rm s} = 36^3, 48^3$

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: conventional and residual power divergence

- $\Sigma|_{DWF} \sim C_D \frac{m_f + xm_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)
 - $m_{res} \neq x m_{res}$; $x = O(1) \neq 1$
 - "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a very expensive proposition." - S. Sharpe.

•
$$\Sigma|_{DWF} \rightarrow C_D \frac{xm_{res}}{a^2} + \Sigma|_{cont.} + \cdots; (m_f \rightarrow 0)$$

•
$$\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.} + \cdots; (m_f \rightarrow -m_{res})$$

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: no power div. in disconnected susceptibility

•
$$\chi_{disc} = \langle \overline{u}u \cdot \overline{d}d \rangle - \langle \overline{u}u \rangle \langle \overline{d}d \rangle$$

- power divergence in $\langle \overline{\psi}\psi
 angle$ cancels out
- no new divergence over $\boldsymbol{\Sigma}$ because no new contact terms
- needs multiplicative renormalization for logarithmic divergence
- $Z_S(\beta) = 1/Z_m(\beta)$
- we stick for now on this quantity
- $\chi_{total} = \langle \overline{\psi}\psi \cdot \overline{\psi}\psi \rangle \langle \overline{\psi}\psi \rangle \langle \overline{\psi}\psi \rangle$
 - has power divergence everywhere
 - needs to understand the power divergence of $\Sigma = -\langle \overline{\psi}\psi \rangle$ first

Chiral susceptibility (disconnected) $m_l = 0.1m_s$ (about 3 time larger than physics u,d mass)

- no subtraction needed in addition to vacuum subtraction
- peak position : mild volume dependence \rightarrow infinite volume limit
- observing no dependence for $N_t\!\!=\!\!12$ and 16 (LT=2)
- $T_{pc} = 165$ (2) MeV from the disconnected chiral condensate

Disconnected chiral susceptibility at average **physical** u and d quark mass

Likely NO phase transition at physical point with chiral fermions. No surprise happened so far..

$$m_l = m_s/10$$

- d1,d2,d3 : $N_t = 12$, LT=2,3,4
- c1 : $N_t = 16$, LT=2
- good scaling $N_t = 12 16$ observed for LT=2
- $m_l = m_{ud}$
- p2,p3: N_t=12, aspect ratio LT = 3, 4
 - Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU
 - LT=4 very preliminary, currently running to get to planned satat.
- $T_{pc} = 151(3)$ MeV (preliminary) on $36^3 \times 12$, compared with
 - T_{pc} = 155 (1)(8) w/ DWF (N_t=8) by HotQCD (2014)
 - T_{pc} = 156.5 (1.5) w/ HISQ by HotQCD (2019)
 - $T_{pc} = 158.0 (0.6)$ w/ stout staggered by Budapest-Wuppertal (2020)

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$

- Two step UV renormalization necessary (naively)
 - Logarithmic divergence (multiplicative): $Z_S(\overline{MS}, 2 \text{ GeV})$
 - Power divergence (additive):
 - Subtracted using (ss)

 $\propto m_f a^{-2}$

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$

- Two step UV renormalization necessary (naively)
 - Logarithmic divergence (multiplicative): $Z_S(\overline{MS}, 2 \text{ GeV})$
 - Power divergence (additive):
 - Subtracted using (ss)

 $\propto m_f a^{-2}$

Light quark $\Sigma = -\langle \psi \psi \rangle$

- Two step UV renormalization necessary (naively)
 - Logarithmic divergence (multiplicative): $Z_{S}(\overline{MS}, 2 \text{ GeV})$
 - Power divergence (additive):
 - Subtracted using (\overline{ss})

 $\propto m_f a^{-2}$

 $\langle 0|J_{5q}|\pi\rangle$

 $m_{res} =$

Light quark
$$\Sigma = -\langle \overline{\psi}\psi \rangle$$
: residual power divergence

• $\Sigma|_{DWF} \sim \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)

 $m_{res} \neq x m_{res}; \quad x = O(1) \neq 1$

- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a very expensive proposition." S. Sharpe.
- We propose another way to estimate xm_{res} using m'_{res} <u>If chiral symmetry is restored</u> $\rightarrow \Sigma|_{cont.} = 0$ $\rightarrow m_f = -xm_{res}$ is a zero of $\Sigma|_{DWF}$ which is related with $m'_{res} = \frac{\sum_{\vec{x}} \langle J_{5q}(\vec{x},t)P(0) \rangle}{\sum_{\vec{x}} \langle P(\vec{x},t)P(0) \rangle} \rightarrow \frac{\langle 0|J_{5q}|\pi \rangle}{\langle 0|P|\pi \rangle}$

$$\begin{split} m_f &= -m_{res}' \text{ is } \underline{a \text{ zero }} \text{ of } \Sigma|_{DWF} \qquad (\leftrightarrow \qquad m_f = -m_{res} \text{ is } \underline{a \text{ zero }} \text{ of }, m_\pi^2) \\ \text{Due to Axial WT identity:} \qquad (m_f + m'_{res}) \sum_x \langle P(x) P(0) \rangle = \Sigma \\ \text{From:} \qquad \Delta_\mu \langle A_\mu(x) P(0) \rangle = 2m_f \langle P(x) P(0) \rangle + 2 \langle J_{5q}(x) P(0) \rangle - 2 \Sigma \delta_{x,0} \end{split}$$

Light quark
$$\Sigma = -\langle \overline{\psi}\psi \rangle$$
: residual power divergence

• $\Sigma|_{DWF} = C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)

 $m_{res} \neq x m_{res}; \quad x = O(1) \neq 1$

4.

- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a very expensive proposition." S. Sharpe.
- Yet another way for the subtraction including xm_{res} using $N_f = 3$, T = 0 information \rightarrow see the talk by Yu Zhang
 - 1. Prepare several different lattice spacing
 - 2. Compute coefficient linear in m_f : $\Sigma|_{DWF} \sim const. + (\frac{c_D}{a^2} + C_R)m_f + \cdots$
 - 3. Separate divergent term : *linear fit in a^2 of*: $C_D + a^2 C_R \rightarrow C_D = 0.37(2)$

Estimate x through
$$\Sigma|_{DWF} \rightarrow \frac{-C_D(1-x)m_{res}}{a^2}$$
 for $m_f \rightarrow -m_{res}$ at $T > T_c$

this is meant to impose renorm. cond. $\Sigma|_{cont.} = 0$

→
$$N_f = 3; \beta = 4.0$$
 estimate: $x = -0.6(1)$

- In general, \boldsymbol{x} may depend on $\boldsymbol{\beta}$, for now use this value as a reference for all $\boldsymbol{\beta}$
- We also use C_D (single flavor normalization) of $N_f = 3$ for $N_f = 2 + 1$

test on $N_f = 2 + 1, T = 0$ measurements

test on $N_f = 2 + 1, T = 0$ measurements

Seemingly, both conventional and residual divergence are controlled, but

- need to check if x does not depend much on β
- refinement of precision and check applicability range of C_D necessary

Disconnected chiral susceptibility and chiral condensate

0.03 $\left[\langle \bar{\psi}\psi\rangle_l - \frac{C^D}{a^2}(m_u + xm_{\rm res})\right]^{\overline{\rm MS}}(\mu = 2\,{\rm GeV})[{\rm GeV}^3]$ $C^D = 0.37(2), x = -0.6(1)$ 0.025c1, $N_e^3 \times N_t = 32^3 \times 16$ ₽ $\times N_t = 24^3 \times 12$ $N_t = 36^3 \times 12$ $\times N_t = 48^3 \times 12$ 0.02 Φ $\times N_t = 36^3 \times 12$ $\vdash \nabla$ $\times N_t = 48^3 \times 12$ 0.015 $m_l = m_{ud}$ $m_l = m_s / 10$ 0.01ф ∇ 0.005¥ 200 130140150180 190210120160170T [MeV]

 $m_l = m_{ud}$

- p2,p3: N_t =12, aspect ratio LT = 3, 4
 - Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU
 - LT=4 very preliminary, currently running to get to planned satat.
- $T_{pc} = 151$ (3) MeV (preliminary) on $36^3 \times 12$, compared with

Likely NO phase transition at physical point with chiral fermions. No surprise happened so far..

Summary and Outlook

$Nf{=}2{+}1\ Physical\ point\ computation\ of\ QCD\ thermodynamics\ with\ M\"obius\ DWF$

- use LCP, determined with T=0 JLQCD knowledge
- no surprise on the existence/non-existence on the transition, Tpc Tpc (staggered)
- machinery to treat power divergence, residual chiral symmetry effect is being finalized
- seemingly the both type of divergence are under control using Nf=3 results
- further improvement underway
- Disconnected chiral susceptibility show no hint of phase transition for Nt=12
 - $T_{pc} \simeq T_{pc}$ (staggered)
 - no surprise so far with chiral fermions
- Topological susceptibility showing large lattice artifact for Nt=12. Nt=16 promising.

Outlook

- refinement of power divergence subtraction using T=0 information of very fine MDWF
- 48^3 for Nt=12 and 16 are being run on Fugaku
- plan to be completed by the end of FY2025 with a few additional points on 64^3x16 .
- use of these configuration underway
 - » see eg. Lattice 2024 talk by Goswami on charge fluctuation