agram at ensity the chiral phase transition in many flavour QCD

Owe Philipsen

ion in massless limit constrains the QCD phase diagram

Darmstadt, 10.04.14

ıstadt, 10.04.14

common wisdom": 2nd order for all N_f

NIC at GU and GSI: Lat

QCD

History: motivation for the critical endpoint

[Rajagopal 95, Halasz et al., PRD 98, Stephanov, Rajagopal, Shuryak PRL 98, Rajagopal, Wilczek 00, Hatta, Ikeda, PRD 03,...]

Breaking/restoration of exact chiral symmetry requires a (non-analytic) phase transition

Model predictions, no QCD information

Other (mostly ignored) possibilities

The order of the chiral phase transition at $\mu_B = 0$ narrows down possibilities

rder of p.t., arbiard Order of p.t., arbitrary quark masses $\mu=0$

I ne thermal phase transition at imaginary The Columbia plot with chemical potential

"As m_s is reduced from infinity, the tricritical point ... moves to lower μ until it reaches the T-axis and can be identified with the tricritical point in the (T, m_s) -plane"

tr.

The nature of the QCD chiral transition at zero density

... is elusive, massless limit not simulable!

igodows Coarse lattices or unimproved actions: Ist order for $N_f=2,3$

Ist order region shrinks rapidly as a o 0, no 1st order for improved staggered actions For fixed lattice spacing: apparent contradictions between different lattice actions

Details and references: [O.P., Symmetry 13, 2021]

The nature of the QCD chiral transition, Nf=3

...has enormously large cut-off effects!

O(a)-improved Wilson: Ist order region shrinks for $a \rightarrow 0$

 $m_{\pi}^c \le 110 \text{ MeV} \quad N_{\tau} = 4, 6, 8, 10, 12$

Different view point: mass degenerate quarks

Consider analytic continuation to continuous N_f

) Tricritical point guaranteed to exist if there is 1st order at any N_f

- Known exponents for critical line entering tric. point!
- Continuation to $a \neq 0$: Z(2) surface ends in tricritical line

[Cuteri, O.P., Sciarra PRD 18]

Different view point: mass degenerate quarks

Consider analytic continuation to continuous N_f

) Tricritical point guaranteed to exist if there is 1st order at any N_f

- Known exponents for critical line entering tric. point!
- Continuation to $a \neq 0$: Z(2) surface ends in tricritical line

[Cuteri, O.P., Sciarra PRD 18]

Methodology to determine order of transition

Bare parameter space of unimproved staggered LQCD

Bare parameter space of unimproved staggered LQCD

Tricritical scaling observed also in plane of mass vs. lattice spacing
 Allows extrapolation to lattice chiral limit, tricritical points N^{tric}_τ(N_f)
 Ist order scenario: m_c(a) = m_c(0) + c₁(aT) + c₂(aT)² + ...
 Incompatible with data! χ²_{dof} > 10

Implications for the continuum

Finite $N_{\tau}^{\text{tric}}(N_f)$ implies that 1st order transition is not connected to continuum

Approaching continuum first, then chiral limit: Continuum chiral phase transition second-order!

Nf=3 O(a)-improved Wilson fermions

Nf=3 consistent with staggered, 2nd order in chiral continuum limit!

The Columbia plot in the continuum

[Cuteri, O.P., Sciarra JHEP 21]

Crossover for DW fermions, Nf=3, $m_q \sim m_{phys}$ [Zhang et al., PoS LAT22, 23]

QCD with imaginary chemical potential at imaginary chemical potential

Motivation: no sign problem!

D phase diagram from the lattice **Roberge-Weiss (center)** symmetry:

$$Z\left(T, i\frac{\mu_i}{T}\right) = Z\left(T, i\frac{\mu_i}{T} + i\frac{2n\pi}{N_c}\right)$$

Results from coarse lattices: $N_{\tau} = 4$

Chiral critical surface analytic around $\mu_B = 0$, negative curvature [de Forcrand, O.P. 07]

Details and reference list: [O.P., Symmetry 13, 2021]

 $(b) \ 0 < m_q < m_1^c$

From (Philipsen and Sciarra 2020)

Imaginary chemical potential: cutoff effects

Repeat study of Columbia plot with $\mu = i \ 0.81 \pi T/3$

Same situation as $\mu = 0$

I st-order region not connected to continuum limit!

Columbia plot with chemical potential, continuum

Columbia plot with chemical potential, continuum

Critical point not ruled out The thermal phase transition at imaginary μ Critical point not ruled out

But requires additional critical surface

This is opposite to the "traditionally expected" scena

Tuning of parameters for $N_f=2+1$ theory with critical point at $\mu=0$! \exists

CD data of the HotQCD collaboration for χ_2^B and χ_4^B/χ_2^B . The temperature coefficients, reconstructed from the HotQCD collaboration's lattice data on e critical point is shown in Fig. 3 by the green symbols. The extracted values agree rather data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue

 μ_B

 Ordering of critical temperatures µ^{cep}_B > 3.1 T_{pc}(0) ≈ 485 MeV [O.P. Symmetry 21]

 Cluster expansion model of lattice fluctuations µ^{cep}_B > πT [Vovchenko et al. PRD 18]

 Singularities, Pade-approx. fluctuations µ^{cep}_B > 2.5T, T < 125 MeV [Bollweg et al. PRD 21]

 Direct simulations with refined reweighting µ^{cep}_B > 2.5T [Wuppertal-Budpest collaboration, PRD 21]

 Consistent with DSE, fRG [Fischer PPNP 19; Fu, Pawlowski, Rennecke PRD 20; Gao, Pawlowski PRD 21]

 CEP seen at larger density, but "not yet controlled" (T_{CEP}, µ_{BCEP}) = (98, 643) MeV

The chiral phase transition for different N_f

Temperature dependence:

Order of the transition:

For lattice, see [Miura, Lombardo, NPB 13]

[Cuteri, O.P., Sciarra, JHEP 21]

The chiral phase transition in the massless limit is likely second-order for all N_f Consistent with [Fejos, Hatsuda PRD 24, Pisarski, Renneke PRD 24] with conditions on anomaly

Towards the conformal window, $N_f > 6$

Towards the conformal window: our approach

We can reliably determine tricritical points in the lattice chiral limit (fixed a)

0.5

Conclusions

Chiral transition at zero density is second order for Nf=2-6 massless quark flavours

So far consistent between all lattice discretisations + DSE

Imaginary chemical potential has no effect on the order of the chiral transition

Lesson from cutoff effects:

Correct UV sector of a theory is crucial for its phase diagram!

"Low energy effective models" can be deceiving

Onset of conformal window in reach

Backup slides

The nature of the QCD chiral transition, Nf=3,4

...has enormously large cut-off effects!

Unimproved staggered: Ist order region shrinks for $a \to 0$, both for $N_f = 3, 4$ [de Forcrand, D'Elia, PoS LAT 17]

No first-order region at all for HISQ fermions

[HotQCD PRD 19, 22]

Machines and computing approach

Goethe-HLR (Goethe U.) and VIRGO cluster (GSI), AMD-GPU cluster

Scans of parameter space parallel, one lattice per GPU, strictly zero communication overhead

Search for phase boundary:

3-4 coupling values with multiple simulation chains

Good control over autocorrelation; merge independent chains

Repeat for different masses

Repeat for different volumes

Bare parameter space of unimproved staggered LQCD

[Cuteri, O.P., Sciarra JHEP 21] ~120 M Monte Carlo trajectories with light fermions, aspect ratios 3,4,5

Data points implicitly labeled by Nf

Tricritical scaling observed in lattice bare parameter space

Tricritical extrapolation always possible!

Meanwhile in Frankfurt...

progressing to finer lattices

New $N_{\tau} = 10$ result on predicted scaling curve!

What about Pisarski, Wilczek 1984?

- igsiring 3d $\,\phi^4\,$ Ginzburg-Landau-Wilson theory for chiral condensate plus t'Hooft term
- Epsilon expansion about $\epsilon = 1$
- All conclusions confirmed by [Butti, Pelisetto, Vicari, JHEP 03] (High order perturbative expansion in fixed d)
- Support also from simulation of 3d sigma model [Gausterer, Sanielovici, PLB 88]

Suggested resolution: ϕ^6 term, in 3d renormalisable; even higher powers....?

[Fejos, PRD 22] 3d ϕ^6 with t'Hooft term, functional RG study: IR-stable fixed point, 2nd order transition for restored anomaly

[Kousvos, Stergiou, SciPost 23] Numerical conformal bootstrap: U(3)xU(3) displays IR stable fixed point

No contradictions!

Bare parameter space of unimproved staggered LQCD

[Cuteri, O.P., Sciarra JHEP 21] ~120 M Monte Carlo trajectories with light fermions, aspect ratios 3,4,5

Data points implicitly labeled by Nf

Tricritical scaling observed in lattice bare parameter space

Tricritical extrapolation always possible!

Digression: tricritical points as function of Nf

- $N_{\tau}^{\mathrm{tric}}(N_f)$ increasing function
- Tricritical line in the plane of the lattice chiral limit, separates 1st from 2nd
- Is there a tricritical point in the continuum?