The anomalous $U_A(1)$ symmetry

and a *second* order chiral phase transition

RDP & F. Rennecke, 2401.06130

F. Giacosa, G. Kovacs, P. Kovacs, RDP & F. Rennecke, 2410.?

RDP, 2410.?

or: how being wrong can feel so right…

θ-dependence from instantons, without quarks

Topological susceptibility of QCD, no quarks:

$$
\mathcal{S}_{\theta} = \mathcal{S} + i\theta Q \; ; \; \mathcal{S} \sim \int d^4x \, \text{tr}\, G_{\mu\nu}^2 \; ; \; Q \sim \int d^4x \, \text{tr}\, G_{\mu\nu} \widetilde{G}_{\mu\nu} = \pm \text{ integer}
$$

 $Q =$ integer \rightarrow periodicity in θ :

$$
e^{-VE(\theta)} = \int \mathcal{D}A_{\mu} e^{-S_{\theta}} \, ; \, E(\theta + 2\pi) = E(\theta)
$$

 $Q = \pm 1$: $S_{\text{inst}} = \frac{8\pi^2}{a^2}$ 't Hooft: dilute instanton gas with $Q = \pm 1, \pm 2...$

$$
E(\theta) - E(0) \sim \cos(\theta) e^{-8\pi^2/g^2} + \text{\#}\cos(2\theta) e^{-16\pi^2/g^2} + \dots
$$

Jing-Yuan Chen, 2406.06673: "Instanton Density Operator in Lattice QCD from Higher Category Theory"

instanton # at *non*-zero lattice spacing! ~ generalized Villian transformation

θ-dependence from instantons, with quarks

With N_f flavors of massless quarks, $no \theta$ dependence:

 $\theta_{\text{eff}} = \theta + \log \det m$

Adler-Bell-Jackiw anomaly and Atiyah-Singer index theorem.

For N_f flavors, generate terms invariant under global flavor of $SU_L(N_f)$ x $SU_R(N_f)$, but *not* the anomalous axial $U_A(1)$ symmetry.

 $\Phi = \overline{q}_L q_R$

 $\mathcal{L}_{\text{eff}} \sim \#(\mathrm{e}^{i\theta} \det \Phi + \text{c.c.}) \mathrm{e}^{-8\pi^2/g^2} + \#'(\mathrm{e}^{2i\theta} (\det \Phi)^2 + \text{c.c.}) \mathrm{e}^{-16\pi^2/g^2} + \dots$

Infinite series of terms which violate $U_A(1)$. $\Phi \rightarrow e^{-i\theta/N_f}\Phi$ For *all* such terms, eliminate θ just by $U_A(1)$ rotation,

 $\det \Phi \sim \Phi^{N_f}$ *Cubic* for 3 flavors \Rightarrow *1st* order chiral trans. RDP & Wilczek '84. (det Φ) 2 : RDP & Rennecke, 1910.14052

θ -dependence at large N_c, without quarks

Two flavors:

 $\Phi = (\sigma + i\eta)\mathbf{1}$; tr $\Phi^{\dagger}\Phi = \sigma^2 + \eta^2$; $-(\det \Phi + \det \Phi^{\dagger}) \sim -\sigma^2 + \eta^2$

~ det Φ makes the η heavy. For N_f = 3, the η' is heavy.

't Hooft: QCD ~ large N_c. But instantons vanish as N_c $\rightarrow \infty$!

Keeping $\lambda = g^2 N_c$ fixed, a single instanton $\sim \exp(-8 \pi^2/\lambda N_c)$

Witten & Veneziano '79: at large N_c, small N_f, $E(\theta)$ periodic in 2 π/N_c :

$$
E(\theta) = N_c^2 \, \widetilde{E}(\theta/N_c) = \# \, \theta^2
$$

Like fractional instantons with $Q = \pm 1/N_c$. RDP & V.P. Nair, 2206.11284

 $m_{\eta'}^2 = \frac{4}{\tilde{f}^2} \frac{N_f}{N_c} \left(\frac{d^2 E}{d\theta^2}\right)_{\theta=0}^{\text{no qks}}$ Witten '79: at large N_c , small N_f , η' is light: $\widetilde{f}_{\pi} \sim 1$ as $N_c \to \infty$

θ-dependence at large N_c , without quarks: lattice ω T=0

Bonanno, Bonati & D'Elia, 2012.14000 $SU(N_c)$, $N_c = 3, 4, 6$, without quarks

$$
E(\theta) - E(0) = \frac{\chi}{2} \theta^2 (1 + b_2 \theta^2 + \ldots)
$$

θ-dependence in QCD: lattice, T ≠ 0

Petreczky, Schadler & Sharma, 1606.03145: $E(\theta) - E(0) = \frac{\chi}{2} \theta^2 + \dots$ QCD, $N_c=3$, $N_f = 2+1$.

Three regimes: $T < T_{ch} \sim 155$ MeV: $\chi(T) \approx$ const. "Veneziano-Witten" (VW)

T: T_{ch} \rightarrow T_{deconf} \sim 300 MeV: $\chi(T)$ *not* DIG, falls slower with T

 $T > T_{deconf}$: Dilute Instanton Gas (DIG)

Veneziano-Witten: large $N_c \gg N_f$, T=0

Under global axial U_A(1) transformation $q_{L,R} \to e^{\mp i \phi_A/2}$, $\Phi = \overline{q}_L q_R \to e^{i \phi_A}$

With massless quarks, can *always* eliminate θ by $\Phi \rightarrow e^{-i\theta/N_f}\Phi$ At large $N_c \gg N_f$, *uniquely* fixes effective Lag.

$$
\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_{0}(\Phi) + i(\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))Q \ , \ Q \sim \int d^{4}x \operatorname{tr} G_{\mu\nu} \widetilde{G}^{\mu\nu}
$$

Introduce Abelian "ghost", $Q \sim \epsilon_{\mu\nu\alpha\beta} F^{\mu\nu\alpha\rho}$ and a term $\sim Q^2$. Int.'g out Q,

$$
\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_0(\Phi) + \widetilde{f}_\pi^{\, 2} \, m_{\eta'}^2 (\theta - i/2 \, \text{tr} \log(\Phi/\Phi^\dagger))^2 + \ldots
$$

First term in a low energy expansion. Veneziano, diVecchia, Luscher, Witten...'79-'82

$$
m_{\eta'}^2 = \frac{4}{\tilde{f}_\pi^2}\frac{N_f}{N_c}\left(\frac{d^2E}{d\theta^2}\right)_{\theta=0}^{\text{no qks}}
$$

Corrections power series in $\sim Q^2$ and $(\theta - i/2 \text{ tr} \log(\Phi/\Phi^{\dagger}))^2$

Veneziano-Witten: $N_f \sim N_c$, first try

At large $N_c \gg N_f$ the η' is light, $m_{\eta'}^2 \sim N_f/N_c$.

When $N_c \sim N_f$ the η' is heavy, $m_{\eta'}^2 \sim N_f/N_c \sim 1$. Includes QCD.

Assume: for massless quarks, θ-independence implies for $N_c \sim N_f$, L_{eff} is constructed from powers of:

 $(\theta - i/2 \text{ tr} \log(\Phi/\Phi^{\dagger}))^2$

Need the log to ensure an axial rotation can eliminate θ.

First such term is a mass for the η':

 $\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_{0}(\Phi) + M^{4}(\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))^{2} + \dots$

What is M⁴? For Nc $\Rightarrow \infty \gg N_f$, M⁴ $\sim d^2 E(\theta)/d\theta^2$.

But in general, $E(\theta)$ is independent of θ with massless quarks, $d^2 E(\theta)/d\theta^2 = 0!$ Can M⁴ ~ constant? But then $(\theta - i/2 \text{ tr} \log(\Phi/\Phi^{\dagger}))^2$ is singular as $\Phi \rightarrow 0!$

Veneziano-Witten: $N_f \sim N_c$, improved

Second guess:

 $\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_{0}(\Phi) + M^{2} \operatorname{tr}(\Phi^{\dagger} \Phi) (\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))^{2} + \dots$

Regular as $\Phi \rightarrow 0$. Usual chiral Lagrangian:

 $\mathcal{L}_0(\Phi) = \text{tr} |\partial_\mu \Phi|^2 + m^2 \text{tr} \Phi^\dagger \Phi + \lambda_1 (\text{tr} \Phi^\dagger \Phi)^2 + \lambda_2 \text{tr} (\Phi^\dagger \Phi)^2$

Can also add $(\theta=0)$:

 $(\xi_1(\text{tr}(\Phi^{\dagger}\Phi))^2 + \xi_2\text{tr}(\Phi^{\dagger}\Phi)^2)|\text{tr}\log(\Phi/\Phi^{\dagger})|^2 + \dots$ $(\kappa_1(\text{tr}(\Phi^{\dagger}\Phi))^2 + \kappa_2\text{tr}(\Phi^{\dagger}\Phi)^2)(|\text{tr} \log(\Phi/\Phi^{\dagger})|^2)^2 + \dots$

2nd order chiral transition possible for $all N_f = 1, 2, 3, 4$.

Only invariant under $SU_L(N_f)$ x $SU_R(N_f)$, *not* $U_A(1)$.

New universality class with *non*-polynomial interactions?

Going up in T, without quarks

θ-dependence for $SU(N_c)$ without quarks.

T=0: $E(\theta)$ not just simple quadratic form: cusps @ integer $*\pi/N_c$.

 $E(\theta) - E(0) = \frac{\chi}{2} \theta^2, \ \theta < \frac{\pi}{N_c}$

Periodic in $\theta \rightarrow \theta + 2\pi/N_c$.

 $T > T_{deconf}$: dilute instanton gas

periodic in $\theta \rightarrow \theta + 2\pi$

$$
E(\theta) - E(0) \sim \cos(\theta) e^{-8\pi^2/\lambda N_c} + \dots
$$

\mathbb{CP}^N in 1+1 dim.'s: $VW \rightarrow DIG$ smoothly

Like QCD, CP^N has one dimensionless coupling, asymptotically free, θ -vacua z^i = complex scalar, i=1...N. Soluble as $N \rightarrow \infty$. mass m dynamically generated. Dynamically generated Abelian gauge field, A_{μ} , has θ -parameter.

 $S_{\theta} = \frac{1}{q^2} \int d^2x |D_{\mu} z^{i}|^2 + i \theta Q \quad ; \quad \sum |z^{i}|^2 = 1 \quad ; \quad Q \sim \int d^2x \, \epsilon_{\mu\nu} F^{\mu\nu}$ Affleck, '79 & '80: $T=0$: $E(\theta) - E(0) = \chi \theta^2/2$, $\chi = 6\pi m^2/N$ *Smooth evolution from VW to DIG!* $T \neq 0$: $\sim -\cos(\theta) e^{-Nf(T)}$

 $f(T \to 0) \sim e^{-m/T}$ T(VW→ DIG) ~ m/log(N): *no* phase transition.

Davis & Mathison '85,'86,'89, CP^N + fermions ω N $\rightarrow \infty$

 $η'$ massive at $T = 0$, massless at $T = T_{\text{chiral}}$.

 $U_A(1)$ *restored* at T_{chiral}! But no 2nd order trans. in 1+1 dim's.; special to N $\rightarrow \infty$

Veneziano-Witten to Dilute Instanton Gas: chiral limit

Three regimes: $T \leq T_{ch} \sim 155$ MeV: $\chi(T) \approx$ constant, Veneziano-Witten

T: T_{ch} \rightarrow T_{deconf} \sim 300 MeV: $\chi(T)$ *not* DIG, falls slower with T

 $T > T_{deconf}$: Dilute Instanton Gas (DIG)

Effective Lagrangian in the chiral limit:

 $T \ll T_{ch}$: Veneziano-Witten

$$
\mathcal{L}(\Phi) = \mathcal{L}_0(\Phi) + m_{\eta'}^2 \, \eta'^2 + \lambda_{\eta'} \, \eta'^4 + \dots \, , \, m_{\eta'}^2 \sim \Lambda_{\rm QCD}^2
$$

 $T>T_{deconf}$: DIG; RDP & Wilczek

$$
\mathcal{L}(\Phi) = \mathcal{L}_0(\Phi) + \# e^{-8\pi^2/g^2(T)} (\det(\Phi) + \text{c.c.}) + \dots
$$

T ~ Tchiral : *non*-polynomial effective Lagrangian?

 $\mathcal{L}(\Phi) = \ldots + \xi_1 (\text{tr}(\Phi^\dagger \Phi))^2 \eta^{\prime \gamma_1} + \xi_2 \text{tr}(\Phi^\dagger \Phi)^2 \eta^{\prime \gamma_2} + \ldots ;$

 $\eta' = |\text{tr} \log(\Phi/\Phi^{\dagger})|^2$

Veneziano-Witten to Dilute Instanton Gas: QCD

- The "middle" regime, T: $T_{ch} \sim 155 \rightarrow T_{deconf} \sim 300$ MeV.
- A middling, boring crossover? *No: VW → DIG! Very* interesting!
- Unrealistically: measure $m_{\eta}^2(T)$ as $T \rightarrow T_{chiral}$, generally $V(\eta')$
- Generally: different mquark? *Or:* ρ(λ,m)? (Horvath, Kovacs, Huang, Kotov…)
- Non-polynomial terms in $L(\Phi) \rightarrow$ novel terms in $\rho(\lambda,m) \sim (\log \lambda)^{y_1} \lambda^{y_2}$?
- Vacuum: $m_{\eta}^2 > 0 \rightarrow \langle \sigma \rangle \neq 0$, $\langle \eta \rangle \rangle = 0$, Surely true for *all* T $\neq 0$ *iff* $\mu = 0$.
- Vafa-Witten '83,'84: in vacuum (&T≠0), QCD does *not* spontaneously break CP
- Vafa-Witten theorem *fails* at μ≠0: quark determinant complex
- *Perhaps:* at low T, large $\mu \neq 0$, $m_{\eta'}^2 < 0$: condense $\langle \eta' \rangle \neq 0$, $\langle \sigma \rangle = 0$.
- -> spontaneous CP violation in some (*limited*) region of μ & T

Lee & Wick, '74; Kharzeev, RDP, Tytgat '98,'99