The anomalous $U_A(1)$ symmetry

and a second order chiral phase transition

RDP & F. Rennecke, 2401.06130

F. Giacosa, G. Kovacs, P. Kovacs, RDP & F. Rennecke, 2410.?

RDP, 2410.?

or: how being wrong can feel so right...

θ -dependence from instantons, without quarks

Topological susceptibility of QCD, no quarks:

$$S_{\theta} = S + i\theta Q$$
; $S \sim \int d^4 x \operatorname{tr} G_{\mu\nu}^2$; $Q \sim \int d^4 x \operatorname{tr} G_{\mu\nu} \widetilde{G}_{\mu\nu} = \pm \operatorname{integer}$

 $Q = integer \rightarrow periodicity in \theta$:

$$e^{-VE(\theta)} = \int \mathcal{D}A_{\mu} e^{-\mathcal{S}_{\theta}} ; E(\theta + 2\pi) = E(\theta)$$

 $Q = \pm 1$: $S_{\text{inst}} = \frac{8\pi^2}{g^2}$ 't Hooft: dilute instanton gas with $Q = \pm 1, \pm 2...$

$$E(\theta) - E(0) \sim \cos(\theta) e^{-8\pi^2/g^2} + \#\cos(2\theta) e^{-16\pi^2/g^2} + \dots$$

Jing-Yuan Chen, 2406.06673: "Instanton Density Operator in Lattice QCD from Higher Category Theory"

instanton # at *non*-zero lattice spacing! ~ generalized Villian transformation

θ -dependence from instantons, with quarks

With N_f flavors of massless quarks, *no* θ dependence:

 $\theta_{\rm eff} = \theta + \log \det m$

Adler-Bell-Jackiw anomaly and Atiyah-Singer index theorem.

For N_f flavors, generate terms invariant under global flavor of $SU_L(N_f) \times SU_R(N_f)$, but *not* the anomalous axial $U_A(1)$ symmetry.

 $\Phi = \overline{q}_L q_R$

 $\mathcal{L}_{\text{eff}} \sim \#(e^{i\theta} \det \Phi + \text{c.c.})e^{-8\pi^2/g^2} + \#'(e^{2i\theta} (\det \Phi)^2 + \text{c.c.})e^{-16\pi^2/g^2} + \dots$

Infinite series of terms which violate $U_A(1)$. For all such terms, eliminate θ just by $U_A(1)$ rotation, $\Phi \to e^{-i\theta/N_f} \Phi$

det $\Phi \sim \Phi^{N_f}$ *Cubic* for 3 flavors $\rightarrow 1st$ order chiral trans. RDP & Wilczek '84. (det Φ)² : RDP & Rennecke, 1910.14052

θ -dependence at large N_c, without quarks

Two flavors:

 $\Phi = (\sigma + i\eta)\mathbf{1} \; ; \; \mathrm{tr} \, \Phi^{\dagger} \Phi = \sigma^2 + \eta^2 \; ; \; -(\det \Phi + \det \Phi^{\dagger}) \sim -\sigma^2 + \eta^2$

~ det Φ makes the η heavy. For N_f = 3, the η ' is heavy.

't Hooft: QCD ~ large N_c. But instantons vanish as $N_c \rightarrow \infty$!

Keeping $\lambda = g^2 N_c$ fixed, a single instanton ~ exp(- 8 $\pi^2/\lambda N_c$)

Witten & Veneziano '79: at large N_c, small N_f, $E(\theta)$ periodic in 2 π/N_c :

$$E(\theta) = N_c^2 \,\widetilde{E}(\theta/N_c) = \# \,\theta^2$$

Like fractional instantons with $Q = \pm 1/N_c$. RDP & V.P. Nair, 2206.11284

Witten '79: at large N_c, small N_f, η ' is light: $\widetilde{f}_{\pi} \sim 1 \text{ as } N_c \to \infty$ $m_{\eta'}^2 = \frac{4}{\widetilde{f}_{\pi}^2} \frac{N_f}{N_c} \left(\frac{d^2 E}{d\theta^2}\right)_{\theta=0}^{\text{no qks}}$

θ -dependence at large N_c, without quarks: lattice @ T=0

Bonanno, Bonati & D'Elia, 2012.14000 $SU(N_c)$, $N_c = 3, 4, 6$, without quarks

$$E(\theta) - E(0) = \frac{\chi}{2} \theta^2 \left(1 + b_2 \theta^2 + \ldots \right)$$

θ -dependence in QCD: lattice, T $\neq 0$

Petreczky, Schadler & Sharma, 1606.03145: QCD, N_c=3, N_f = 2+1. $E(\theta) - E(0) = \frac{\chi}{2} \theta^2 + \dots$

Three regimes: $T < T_{ch} \sim 155$ MeV: $\chi(T) \approx \text{const.}$ "Veneziano-Witten" (VW)

T: $T_{ch} \rightarrow T_{deconf} \sim 300 \text{ MeV}$: $\chi(T)$ *not* DIG, falls slower with T

 $T > T_{deconf}$: Dilute Instanton Gas (DIG)

Veneziano-Witten: large $N_c \gg N_f$, T=0

Under global axial U_A(1) transformation $q_{L,R} \to e^{\mp i\phi_A/2}$, $\Phi = \overline{q}_L q_R \to e^{i\phi_A}$

With massless quarks, can *always* eliminate θ by At large N_c \gg N_f, *uniquely* fixes effective Lag. $\Phi \rightarrow e^{-i\theta/N_f} \Phi$

$$\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_{0}(\Phi) + i(\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))Q \quad , \quad Q \sim \int d^{4}x \operatorname{tr} G_{\mu\nu} \widetilde{G}^{\mu\nu}$$

Introduce Abelian "ghost", $Q \sim \epsilon_{\mu\nu\alpha\beta} F^{\mu\nu\alpha\beta}$ and a term ~ Q². Int.'g out Q,

$$\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_{0}(\Phi) + \tilde{f}_{\pi}^{2} m_{\eta'}^{2} (\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))^{2} + \dots$$

First term in a low energy expansion. Veneziano, diVecchia, Luscher, Witten...'79-'82

$$m_{\eta'}^2 = \frac{4}{\tilde{f}_{\pi}^2} \frac{N_f}{N_c} \left(\frac{d^2 E}{d\theta^2}\right)_{\theta=0}^{\text{no qks}}$$

Corrections power series in ~ Q^2 and $(\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))^2$

Veneziano-Witten: $N_f \sim N_c$, first try

At large $N_c \gg N_f$ the η ' is light, $m^2_{\eta'} \sim N_f/N_c$.

When $N_c \sim N_f$ the η' is heavy, $m^2_{\eta'} \sim N_f/N_c \sim 1$. Includes QCD.

Assume: for massless quarks, θ -independence implies for $N_c \sim N_f$, L_{eff} is constructed from powers of:

 $(\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))^2$

Need the log to ensure an axial rotation can eliminate θ .

First such term is a mass for the η ':

 $\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_{0}(\Phi) + M^{4}(\theta - i/2\operatorname{tr}\log(\Phi/\Phi^{\dagger}))^{2} + \dots$

What is M⁴? For Nc $\rightarrow \infty \gg N_f$, M⁴ ~ d² E(θ)/d θ ².

But in general, $E(\theta)$ is independent of θ with massless quarks, $d^2 E(\theta)/d\theta^2 = 0!$ Can M⁴ ~ constant? But then $(\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger}))^2$ is singular as $\Phi \rightarrow 0!$

Veneziano-Witten: $N_f \sim N_c$, improved

Second guess:

 $\mathcal{L}_{\theta}(\Phi, Q) = \mathcal{L}_{0}(\Phi) + M^{2} \operatorname{tr}(\Phi^{\dagger}\Phi) \left(\theta - i/2 \operatorname{tr} \log(\Phi/\Phi^{\dagger})\right)^{2} + \dots$

Regular as $\Phi \rightarrow 0$. Usual chiral Lagrangian:

 $\mathcal{L}_0(\Phi) = \mathrm{tr} |\partial_\mu \Phi|^2 + m^2 \mathrm{tr} \Phi^{\dagger} \Phi + \lambda_1 (\mathrm{tr} \Phi^{\dagger} \Phi)^2 + \lambda_2 \mathrm{tr} (\Phi^{\dagger} \Phi)^2$

Can also add (θ =0):

 $(\xi_1(\operatorname{tr}(\Phi^{\dagger}\Phi))^2 + \xi_2\operatorname{tr}(\Phi^{\dagger}\Phi)^2)|\operatorname{tr}\log(\Phi/\Phi^{\dagger})|^2 + \dots$ $(\kappa_1(\operatorname{tr}(\Phi^{\dagger}\Phi))^2 + \kappa_2\operatorname{tr}(\Phi^{\dagger}\Phi)^2)(|\operatorname{tr}\log(\Phi/\Phi^{\dagger})|^2)^2 + \dots$

2nd order chiral transition possible for *all* $N_f = 1, 2, 3, 4$..

Only invariant under $SU_L(N_f) \ge SU_R(N_f)$, not $U_A(1)$.

New universality class with *non*-polynomial interactions?

Going up in T, without quarks

 θ -dependence for $SU(N_c)$ without quarks.

T=0: $E(\theta)$ not just simple quadratic form:

cusps @ integer * π/N_c .

Periodic in $\theta \rightarrow \theta + 2\pi/N_c$.

$$E(\theta) - E(0) = \frac{\chi}{2} \ \theta^2 \ , \ \theta < \frac{\pi}{N_c}$$

 $T > T_{deconf}$: dilute instanton gas

periodic in $\theta \rightarrow \theta + 2\pi$

$$E(\theta) - E(0) \sim \cos(\theta) e^{-8\pi^2/\lambda N_c} + \dots$$

CP^{N} in 1+1 dim.'s: $VW \rightarrow DIG$ smoothly

Like QCD, CP^N has one dimensionless coupling, asymptotically free, θ -vacua $z^i = \text{complex scalar}, i=1...N$. Soluble as N $\rightarrow \infty$. mass m dynamically generated. Dynamically generated Abelian gauge field, A_{μ} , has θ -parameter.

 $S_{\theta} = \frac{1}{g^2} \int d^2 x \, |D_{\mu} z^i|^2 + i\theta \, Q \quad ; \quad \sum_i |z^i|^2 = 1 \quad ; \quad Q \sim \int d^2 x \, \epsilon_{\mu\nu} F^{\mu\nu}$ Affleck, '79 & '80: T=0: $E(\theta) - E(0) = \chi \theta^2 / 2 \, , \, \chi = 6\pi m^2 / N$ Smooth evolution
from VW to DIG! $T \neq 0$: $\sim -\cos(\theta) e^{-Nf(T)}$

T(VW \rightarrow DIG) ~ m/log(N): *no* phase transition. $f(T \rightarrow 0) \sim e^{-m/T}$

Davis & Mathison '85,'86,'89, CP^{N} + fermions @ $N \rightarrow \infty$

 η ' massive at T = 0, *massless* at T = T_{chiral}.

 $U_A(1)$ restored at $T_{chiral}!$ But no 2nd order trans. in 1+1 dim's.; special to N $\rightarrow \infty$

Veneziano-Witten to Dilute Instanton Gas: chiral limit

Three regimes: $T < T_{ch} \sim 155$ MeV: $\chi(T) \approx$ constant, Veneziano-Witten

T: $T_{ch} \rightarrow T_{deconf} \sim 300 \text{ MeV}$: $\chi(T)$ not DIG, falls slower with T

 $T > T_{deconf}$: Dilute Instanton Gas (DIG)

Effective Lagrangian in the chiral limit:

 $T \ll T_{ch}$: Veneziano-Witten

$$\mathcal{L}(\Phi) = \mathcal{L}_0(\Phi) + m_{\eta'}^2 \eta'^2 + \lambda_{\eta'} \eta'^4 + \dots , \ m_{\eta'}^2 \sim \Lambda_{\text{QCD}}^2$$

T>T_{deconf} : DIG; RDP & Wilczek

$$\mathcal{L}(\Phi) = \mathcal{L}_0(\Phi) + \# e^{-8\pi^2/g^2(T)} (\det(\Phi) + \text{c.c.}) + \dots$$

T ~ T_{chiral} : *non*-polynomial effective Lagrangian?

 $\mathcal{L}(\Phi) = \ldots + \xi_1 (\operatorname{tr}(\Phi^{\dagger}\Phi))^2 \eta'^{\gamma_1} + \xi_2 \operatorname{tr}(\Phi^{\dagger}\Phi)^2 \eta'^{\gamma_2} + \ldots ;$

 $\eta' = |\mathrm{tr}\log(\Phi/\Phi^{\dagger})|^2$

Veneziano-Witten to Dilute Instanton Gas: QCD

- The "middle" regime, T: $T_{ch} \sim 155 \rightarrow T_{deconf} \sim 300$ MeV.
- A middling, boring crossover? *No: VW* → *DIG! Very* interesting!
- Unrealistically: measure $m^2_{\eta'}(T)$ as $T \rightarrow T_{chiral}$, generally $V(\eta')$
- Generally: different m_{quark} ? *Or*: $\rho(\lambda,m)$? (Horvath, Kovacs, Huang, Kotov...)
- Non-polynomial terms in $L(\Phi) \rightarrow \text{novel terms in } \rho(\lambda,m) \sim (\log \lambda)^{\gamma_1} \lambda^{\gamma_2}$?
- Vacuum: $m_{\eta'}^2 > 0 \rightarrow \langle \sigma \rangle \neq 0$, $\langle \eta' \rangle = 0$, Surely true for all $T \neq 0$ iff $\mu = 0$.
- Vafa-Witten '83,'84: in vacuum (& $T \neq 0$), QCD does *not* spontaneously break CP
- Vafa-Witten theorem *fails* at $\mu \neq 0$: quark determinant complex
- *Perhaps:* at low T, large $\mu \neq 0$, $m_{\eta'}^2 < 0$: condense $\langle \eta' \rangle \neq 0$, $\langle \sigma \rangle = 0$.
- -> spontaneous CP violation in some (*limited*) region of μ & T

Lee & Wick, '74; Kharzeev, RDP, Tytgat '98,'99