Towards a parameter-free determination of QCD critical exponents and chiral phase transition temperature

Sabarnya Mitra

Faculty of Physics, Universität Bielefeld

EcT* workshop, Trento, 9-13 September 2024

Sabarnya Mitra (Uni Bielefeld)

Critical temp and expts

An ongoing work with my collaborators :

Frithjof Karsch , Sipaz Sharma , Christian Schmidt , Mugdha Sarkar

A brief outline of the talk :

- Motivation : Setting up the stage
- What's New in this work ?
- Ingredients and details of the work
- Some New Results
- Conclusions and outlook

Motivation : QCD phase diagram

- Grand aim : Find the QCD critical point $(\mu_{cp}, T_{cp}, m_{phys})$, where crossover $\leftrightarrow 1^{st}$ ord. phase transition (PT) lines.
- One way : Constrain T_{cp} using $\stackrel{3-d \mod el}{\underset{analysis}{\leftarrow}} T_{cp} < T_{tri} < T_c < T_{pc}$.
- Hence, knowledge of $T_c \rightarrow very important$ to determine T_{cp}
- From Lattice QCD $\xrightarrow[BMW]{HotQCD}$ $T_{pc} \approx 157$ MeV, $T_c \approx 133$ MeV
- In this work \rightarrow also estimate T_c on lattice. Then, what's NEW ??

< □ > < 凸

Aim of this work : we try to find

- Chiral phase transition temperature T_c , and
- Critical exponent δ of this phase transition, considering this is 2^{nd} order with a well-defined universality class (UC)

<u>What's new ?</u> \rightarrow All these in a NEW way which is **independent** of **fitting** and **input parameters**. These are

- Critical exponents (CE) of the UC of chiral phase tr.
- Scaling parameters → present in scaling variables appearing in scaling functions (impt. & appear in critical behaviour analysis)

<u>Why is this important ?</u> \rightarrow Because in related previous works and also in a recent paper [Ding et. al. 2403.09390], to get T_c , one used

< □ > < 同 > < 回 > < 回 > < 回 >

What was there before ?

- O(2) CE's β, δ in scaling functions \rightarrow fitting parameters for
- fitting the order parameter *M* vs *T* data (A detailed definition of *M* will be given later). From this, one
- Obtains scaling ansatz \leftarrow using $T_c \pm 3\%$ data for fit range.
- Observes good scaling behaviour ← only in this *T* range.
- \bullet Thus \Rightarrow global fits \rightarrow inconclusive. So, in this work \cdots

We try estimating T_c in a way free of fits. This is done by

- without using at all, any O(2) or O(4) universality class fitting parameter or any other properties of this class, and
- **②** with **no knowledge** of **critical exponents** β , δ at the **input level**
 - Ensuring \Rightarrow fit-independent, "parameter-free" approach
 - The only pre-assumption here is (kind of established)
 chiral PT is a second order PT having a universality class

A quick revision on chiral phase transition · · ·

Universality class, critical exponents and scaling

- Chiral Ph. tr. (cPT) $\rightarrow 2^{nd} \text{ order}$ [Pisarski, Wilczek], where $SU(2)_L \times SU(2)_R [\text{QGP}] \xrightarrow{\text{spontaneous}} SU(2)_V [\text{hadrons}]$
- This $\mathsf{PT} \in O(4)$ univ. class $\xleftarrow{\text{indicated}}{\mathsf{by}} O(4)$ crit. expts. (2 independent CE's : β, δ) \leftarrow hyperscaling relations.
- Order parameter \rightarrow light quark chiral condensate $\langle \bar{\psi}\psi \rangle_{\ell}$, source field / symmetry-breaking field \rightarrow light quark mass m_{ℓ}
- From Scaling relation $o \langle ar{\psi}\psi
 angle_{\ell} \sim m_{\ell}^{1/\delta}$ at $T=T_c$
- We use staggered fermions $\xrightarrow[preserve]{which} O(2)$ rather than full O(4) chiral symmetry for <u>non-zero</u> lattice spacing.

Ingredients and Formulae · · ·

In scaling region

As $T \approx T_c \Rightarrow$ scaling region (SR), we can write bare quantities as :

$$\begin{split} \langle \bar{\psi}\psi \rangle_{\ell} &= M_{\ell} = h^{\frac{1}{\delta}} f_{G}(z) + M_{\ell, regular} \\ \chi_{\ell} &= \frac{\partial \langle \bar{\psi}\psi \rangle_{\ell}}{\partial m_{\ell}} = \frac{1}{\delta} h^{\frac{1}{\delta}-1} f_{\chi}(z) + \chi_{\ell, regular} , \text{ where} \end{split}$$
(1)

$$z = t h^{-1/\beta\delta}, \quad t = \frac{1}{t_0} \left[\frac{T}{T_c} - 1 \right], \quad h = \frac{1}{h_0} \left[\frac{m_\ell}{m_s} \right]$$
 (2)

- Here, scaling variable $\rightarrow z$; non-universal parameters $\rightarrow t_0, h_0$
- $\langle \bar{\psi}\psi \rangle_{\ell}, \, \chi_{\ell} \rightarrow \text{dimensionless}$ (in lattice spacing units)
- $f_G(z), f_{\chi}(z) \rightarrow$ scaling functions. However, one finds $\langle \bar{\psi}\psi \rangle_{\ell}$ has additive (UV) and multiplicative (log) divergences.
- So, we use an **improved** order parameter in our work. But ····

Before showing the improved parameter, some details about the present setup of our work. In this work, we use the following :

- The same values of main parameters and statistics, as was collected for [H.-T. Ding et al, 2403.09390]
- $\mathcal{O}(a^2)$ improved staggered fermions (HISQ)
- $\mathcal{O}(a^2)$ Symanzik improved gauge action
- quark masses m_ℓ, m_s and $H = m_\ell/m_s$. We consider $1/20 \le H \le 1/160$, corresponding to $m_\pi \in [55:160]$ (MeV)
- $N_s^3 \times 8$ lattices with $N_s = 32$, 56 varying with H, such that,

$$m_\pi \cdot \mathit{N_s}\,>\,3.8\,$$
 for $\,20 \leq H^{-1} < 160$, and

$$m_{\pi} \cdot \textit{N}_{s} \, = \, 2.7$$
 for $H^{-1} = 160.$

Improved order parameter

The **Improved** order param. *M* is given: (Used by [Unger, PhD thesis Bielefeld, 2010], [Kotov et.al., 2105.09842], [Dini et.al. 2111.12599])

$$M = M_{\ell} - H \chi_{\ell} \quad \text{where}$$
(3)
$$M_{\ell} = \frac{m_s}{f_K^4} \langle \bar{\psi}\psi \rangle_{\ell}, \quad \chi_{\ell} = m_s \frac{\partial M_{\ell}}{\partial m_{\ell}} \quad \text{which makes}$$
$$M = h^{\frac{1}{\delta}} f_{G\chi}(z) \quad \text{with} \quad f_{G\chi}(z) = f_G(z) - f_{\chi}(z)$$
(4)

Eqn.(4) only, is \rightarrow universal scaling part of *M*. In this improved *M*

- No $\mathcal{O}(a^{-2})$ add. div. \rightarrow well-defined in continuum limit
- Mult. renorm. by $m_s \rightarrow \mathbf{no} \log \operatorname{div} \rightarrow \mathbf{well-def.}$ in chiral limit
- No $\mathcal{O}(H)$ regular terms in $M \Rightarrow$ reduced $(M_{reg} < M_{\ell, reg})$
- Also directly related to scal. func. $f_{G\chi}(z)$. Its properties :

Plot of the scaling function

- Inflection pt. of $f_{G\chi}(z)$ closer to z = 0 than $f_G(z)$. For O(2) UC, $z_{t,G\chi} = 0.629 (10) < z_{t,G} = 0.7991 (96)$ [Ding. et. al., 2403.09390].
- So, $f_{G\chi}(z) \rightarrow$ weaker H, m_{ℓ} dependence of T_c . We observe :
- a unique intersection point in $f_{G_{\chi}}$ -T plane $\forall H \neq 0$. This pt.

• precisely at $z = 0 \equiv T = T_c$ with co-ords. $(x, y) = \left(1, \left[1 - \frac{1}{\delta}\right]\right)$

• Using this property of $f_{G\chi}(z)$, we find \cdots

Re-scaled order parameter

If we have a

re-scaled order parameter $\mathcal{M} = H^{-1/\delta} M$, given by

$$\mathcal{M}(T,H) = h_0^{-1/\delta} f_{G\chi}(z(T,H)) + \mathcal{M}_{reg}(T,H)$$
(5)

• then at $\underline{T = T_c}$, this reduces to

$$\mathcal{M} (T = T_{c}, H) = h_{0}^{-1/\delta} (1 - 1/\delta) + \mathcal{M}_{reg} (T_{c}, H)$$
(6)

This clearly indicates that in the M vs T plot (next slide)

- For some *H*, if $\mathcal{M}_{reg} \ll h_0^{-1/\delta} (1 1/\delta)$, then \rightarrow these different *H* lines intersect at a unique common point at $T = T_c$.
- **Otherwise** they **shift away**, with **no common** pt. of intersection. Evidence using Lattice QCD ···

Sabarnya Mitra (Uni Bielefeld)

Plots of re-scaled order parameter

• unique crossing point for 1/H = 40, 80, 160 data (within errors)

- clear remnant *H*-dependence at *T_c* for 1/*H* = 20 (regular or correction-to-scaling contribution?).
- For $1/H = 27 \rightarrow$ it is marginal (needs better resolution in T)
- **Reproduce** $T_c, h_0^{-\frac{1}{\delta}} \xleftarrow[before from]{before from} \text{scal. fits in } T \in [140:146] \text{ MeV}$

• Quantify reg. cont. at $T_c \xrightarrow{\text{presently}} \mathcal{M}_{reg} < 2\%$ for H = 1/20.

Note $\mathcal{M}(\mathcal{T})$ not parameter-free, still depends on δ value. So, \cdots

The new observables

• Construct observables $R(T, H_1, H_2)$, $B(T, H_1, H_2)$, where

$$R(T, H_1, H_2) = \frac{M(T, H_2)}{M(T, H_1)}, \quad B(T, H_1, H_2) = \frac{\ln R(T, H_1, H_2)}{\ln [H_2/H_1]}$$
(7)

• In SR, with $\underline{M_{sing} \gg M_{reg}}$, $c = H_2/H_1$, Eqn. (6) \rightarrow

$$R \to R_{s}(t, H_{1}, c) = c^{1/\delta} \left(f_{G\chi}(z_{2}) / f_{G\chi}(z_{1}) \right)$$
(8)

$$B \to B_{s}(t, H_{1}, c) = \frac{1}{\delta} + \frac{\ln[f_{G\chi}(z_{2})/f_{G\chi}(z_{1})]}{\ln(c)}$$
(9)

< □ > < 凸

• Eqns.(8),(9) $\rightarrow R(\mathbf{T_c}, H_1, c) = c^{1/\delta}, B(\mathbf{T_c}, H_1, c) = 1/\delta \Rightarrow \text{ find}$

- unique int. pt. at $T = T_c$ in R T and B T planes. With
- No input parameters (New parameter-free feature). Like · · ·

B vs T plot : In ideal case

• Int. pt. exactly at $\left[x = 1, y = \frac{1}{\delta}\right] \rightarrow \text{indept.}$ of params. z_0, β $(z_0 = 1.42 \text{ is only to compare with earlier work.})$. But note, one

- finds this common pt. $\leftarrow \frac{\text{only}}{\text{when}} M \gg M_{reg}$, making $M \approx M_{sing}$.
- Larger $H, m_{\ell} \rightarrow \text{more } M_{reg} \longrightarrow \text{deviations}$ from this point. These
- appear in Lattice QCD calc.. We cannot isolate M_{sing} only \cdots

For the new Lattice QCD results (will show now), we have :

- Worked on $N_{\tau} = 8$ lattices only
- Considered mass ratios $H^{-1} = 20, 27, 40, 80, 160$

$\mathsf{R}=\mathsf{Ratio} \text{ of }\mathsf{M}$

- Calculate $M(H_1), M(H_2), R$. Observe R as a function of T
- For $H \leq 1/40 \text{ (red , blue)} \rightarrow \text{intersect at } y = 1 \text{ within } T_c$ [HotQCD] \rightarrow agreement within T_c , $\delta_{[O(2)]}$ error bars
- (H = 1/27, c = 2.96) black line deviate ; intersect later beyond T_c range. Because, one gets
- Appreciable $\mathcal{O}(H^3) M_{reg}$ for H = 1/27, over $1/\{40, 80, 160\}$.

Plots for $B \cdots$

- For $H \leq 1/40 \rightarrow \underline{\text{unique int. pt.}} \left(\mathcal{T}_{c}, \frac{1}{\delta} \right) \leftarrow \underline{\text{blue}}$, red, green
- Find deviations for H = 1/20, 1/27 (more for 1/20). However,
- Present calculations, based on existing data $\xrightarrow[to]{\text{allow}}$ estimate δ , already with **6**% accuracy
- So to do better, improve accuracy · · ·

Where we are and where we plan to go ?

What do we need to do ?

- \bullet We need to scan more closely $T \to T_{\rm c}$
- Add additional masses to quantify regular contributions <u>better</u>

So, work is going on \rightarrow in which

- We are generating more statistics for T close to T_c
- We are adding more T-data points near T_c
- We are adding more $\underline{m_{\ell}}$ values (points). And all these \xrightarrow{so}_{that} we
- Understand systematics, H-dependence of \mathcal{M} near \mathcal{T}_c better
- Thereby, helping to understand if the deviations
- Come from the regular terms or the corrections-to-scaling terms

Conclusions and Outlook

- Constructed an estimator for T_c , δ based on ratios of improved order parameter evaluated at different values of light quark masses.
- At least in principle, this allows determining T_c , δ without relying on fits in the extended T, H ranges
- Within scaling region, one obtains a unique intersection point for lighter quark masses, also from lattice QCD
- This point agrees with predicted T_c results obtained from fits explicitly using δ of O(2) universality class.
- Understand systematics, behaviour of correction terms near T_c
- More precise calculations to resolve the δ 's of O(2) and O(4) are on the way, but may be challenging
- Proceed towards continuum limit.

THANK YOU ALL FOR YOUR ATTENTION

æ

3 > 4 3

BACKUP SLIDES

2

- No common and unique intersection point
- Depends on the value of δ used for re-scaling $\rightarrow \delta$ dependent
- Hence, parameter dependent
- Depends on if $\epsilon = \frac{1}{\delta'} \frac{1}{\delta}$, varies as $H^{-\epsilon}$
- Determines if intersection points lie below or above $f_{G\chi}(t=0)=\left(1-rac{1}{\delta}
 ight)$

How the yellow box has been constructed

Sabarnya Mitra (Uni Bielefeld)

Critical temp and expts

10 September, 2024 24 / 27

Important formulae

$$f_{\chi}(z) = \frac{1}{\delta} f_G(z) - \frac{z}{\beta\delta} f'_G(z)$$
(10)

$$f_{G\chi}(z) = \left(1 - \frac{1}{\delta}\right) f_G(z) + \frac{z}{\beta\delta} f'_G(z)$$
(11)

$$M = h^{1/\delta} f_{G\chi}(z) + M_{reg}$$
⁽¹²⁾

• • • • • • • •

$$H^{-1/\delta} M = h_0^{-1/\delta} f_{G\chi}(z) + H^{-1/\delta} M_{reg}$$
(13)

2

$$t = \frac{T - T_c}{t_0 T_c} = \frac{\tau}{t_0}, \qquad h = \frac{m_\ell}{h_0 m_s} = \frac{H}{h_0}, \qquad \ell = \frac{\ell_0}{L}$$
(14)

where t_0, h_0, ℓ_0 are non-universal scaling parameters.

 $Z = Z_0 Z_b$, $Z_l = Z_l \circ Z_l b$

$$z_0 = \frac{h_0^{1/\beta\delta}}{t_0} , \qquad z_{L,0} = h_0^{\nu/\beta\delta} \ell_0 \qquad \text{(fitting param.)}$$
$$z_b = \tau H^{-1/\beta\delta} , \qquad z_{L,b} = \frac{1}{L} H^{-\nu/\beta\delta}$$

Sabarnya Mitra (Uni Bielefeld)

э

where

$$M_{\ell} = h^{\frac{1}{\delta}} f_{G}(z) + f_{sub} (T, H)$$

$$\chi_{\ell} = h_{0}^{-1} h^{\frac{1}{\delta}-1} f_{\chi}(z) + g_{sub} (T, H)$$

$$M = h^{\frac{1}{\delta}} f_{G\chi}(z) + p_{sub} (T, H)$$

where

$$\mathcal{O}_{\textit{sub}} = \mathcal{O}_{\textit{cts}} + \mathcal{O}_{\textit{reg}}, \qquad \left\{ \mathcal{O} \, \equiv \, \textit{M}_{\ell}, \, \chi_{\textit{ell}}, \, \textit{M}
ight\}$$

æ