Towards a parameter-free determination of QCD critical exponents and chiral phase transition temperature

Sabarnya Mitra

Faculty of Physics, Universität Bielefeld

EcT* workshop, Trento, 9-13 September 2024

 \leftarrow \Box

An ongoing work with my collaborators :

Frithjof Karsch , Sipaz Sharma , Christian Schmidt , Mugdha Sarkar

A brief outline of the talk :

- Motivation : Setting up the stage
- What's New in this work?
- Ingredients and details of the work
- **Some New Results**
- **Conclusions and outlook**

Motivation : QCD phase diagram

- Grand aim : Find the QCD critical point $(\mu_{\rm cb}, T_{\rm cb}, m_{\rm phys})$, where crossover $\longleftrightarrow 1^{\text{st}}$ ord. phase transition (PT) lines.
- One way : Constrain T_{cp} using $\frac{3\textrm{-d model}}{\textrm{analysis}}$ $T_{\text{cp}} < T_{\text{tri}} < T_{\text{c}} < T_{\text{pc}}.$
- Hence, knowledge of $T_c \rightarrow$ very important to determine T_{co}
- From Lattice QCD $\frac{\text{HotQCD}}{\text{BMW}}$ $\mathcal{T}_{\textbf{pc}} \approx 157$ MeV, $\mathcal{T}_{\textbf{c}} \approx 133$ MeV
- In this [w](#page-2-0)ork \rightarrow \rightarrow \rightarrow also estim[at](#page-0-0)e T_c on lattice. [T](#page-1-0)[he](#page-3-0)[n,](#page-1-0) what['s](#page-26-0) [N](#page-0-0)[EW](#page-26-0) [??](#page-26-0)

◂**◻▸ ◂◚▸**

Aim of this work : we try to find

- Chiral phase transition temperature T_c , and
- Critical exponent δ of this phase transition, considering this is 2^{nd} order with a well-defined universality class (UC)

What's new ? \rightarrow All these in a NEW way which is **independent** of fitting and input parameters. These are

- **Critical exponents** (CE) of the UC of chiral phase tr.
- Scaling parameters \rightarrow present in scaling variables appearing in scaling functions (impt. & appear in critical behaviour analysis)

Why is this important ? \rightarrow Because in related previous works and also in a recent paper [Ding et. al. 2403.09390], to get T_c , one used

 QQ

 $\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

What was there before?

- \bullet O(2) CE's β , δ in scaling functions \rightarrow fitting parameters for
- \bullet fitting the order parameter M vs T data (A detailed definition of M will be given later). From this, one
- Obtains scaling ansatz \leftarrow using $T_c \pm 3\%$ data for fit range.
- Observes good scaling behaviour \leftarrow only in this T range.
- Thus \Rightarrow global fits \rightarrow inconclusive. So, in this work \cdots

We try estimating T_c in a way free of fits. This is done by

- \bullet without using at all, any $O(2)$ or $O(4)$ universality class fitting parameter or any other properties of this class, and
- 2 with no knowledge of critical exponents β , δ at the input level
	- Ensuring \Rightarrow fit-independent, "parameter-free" approach
	- The **only** pre-assumption here is (kind of established) chiral PT is a second order PT having a universality class

A quick revision on chiral phase transition \cdots

Universality class, critical exponents and scaling

- Chiral Ph. tr. (cPT) \rightarrow 2nd order [Pisarski, Wilczek], where $SU(2)_L\times SU(2)_R\ [\mathsf{QGP}] \xrightarrow[\mathsf{breaking}]{\text{spontaneous}} SU(2)_V\ [\mathsf{hadrons}]$
- This PT \in **O(4)** univ. class $\frac{\sqrt{3} \text{ indicated}}{\text{by}}$ O(4) crit. expts. (2 independent CE's : β , δ) \leftarrow hyperscaling relations.
- Order parameter \to light quark chiral condensate $\langle \bar\psi \psi \rangle_\ell$, source field / symmetry-breaking field \rightarrow light quark mass m_ℓ
- From Scaling relation $\to \langle\bar{\psi}\psi\rangle_{\bm{\ell}} \sim m_{\bm{\ell}}^{1/\delta}$ $\langle \bar{\psi}\psi\rangle_{\bm{\ell}}\sim m_{\bm{\ell}}^{1/\delta}$ at $\bm{\mathcal{T}}=\bm{\mathcal{T}}_c$
- We use $\mathsf{staggered}$ fermions $\xrightarrow{\text{which}}$ $\mathsf{O}(2)$ rather than full $\mathsf{O}(4)$ preserve chiral symmetry for non-zero lattice spacing.

Ingredients and Formulae · · ·

In scaling region

As $T \approx T_c \Rightarrow$ scaling region (SR), we can write bare quantities as :

$$
\langle \bar{\psi}\psi \rangle_{\ell} = M_{\ell} = h^{\frac{1}{\delta}} f_G(z) + M_{\ell, \text{regular}}
$$

$$
\chi_{\ell} = \frac{\partial \langle \bar{\psi}\psi \rangle_{\ell}}{\partial m_{\ell}} = \frac{1}{\delta} h^{\frac{1}{\delta} - 1} f_{\chi}(z) + \chi_{\ell, \text{regular}}, \text{ where}
$$
 (1)

$$
z = t h^{-1/\beta\delta}, \quad t = \frac{1}{t_0} \left[\frac{T}{T_c} - 1 \right], \quad h = \frac{1}{h_0} \left[\frac{m_\ell}{m_s} \right] \tag{2}
$$

- Here, scaling variable \rightarrow z ; non-universal parameters $\rightarrow t_0$, h_0
- $\langle \bar\psi \psi \rangle_\ell, \, \chi_\ell \to$ dimensionless (in lattice spacing units)
- $f_G(z)$, $f_\chi(z) \to$ scaling functions. However, one finds $\langle \bar{\psi}\psi \rangle_\ell$ has additive (UV) and multiplicative (log) divergences.
- \bullet So, we use an *improved* order parameter in our work. But \cdots

Before showing the improved parameter, some details about the present setup of our work. In this work, we use the following :

- The same values of main parameters and statistics, as was collected for [H.-T. Ding et al, 2403.09390]
- $\mathcal{O}(a^2)$ improved staggered fermions (HISQ)
- $\mathcal{O}(\mathsf{a}^{2})$ Symanzik improved gauge action
- quark masses m_ℓ, m_s and $H = m_\ell/m_\text{s}$. We consider $1/20 < H < 1/160$, corresponding to $m_{\pi} \in [55:160]$ (MeV)
- $N_s^3 \times 8$ lattices with $N_s = 32, 56$ varying with H, such that,

$$
m_\pi \cdot N_{\mathsf{s}} \, > \, 3.8 \ \, \text{for} \ \, 20 \leq H^{-1} < 160 \, , \, \text{and}
$$

$$
m_{\pi} \cdot N_s = 2.7
$$
 for $H^{-1} = 160$.

Improved order parameter

The $\boldsymbol{\mathsf{Improved}}$ order param. M is given: $($ Used by $[$ Unger, <code>PhD</code> thesis Bielefeld, 2010], [Kotov et.al., 2105.09842], [Dini et.al. 2111.12599]

$$
M = M_{\ell} - H_{\chi_{\ell}} \quad \text{where}
$$
\n
$$
M_{\ell} = \frac{m_s}{f_K^4} \langle \bar{\psi} \psi \rangle_{\ell}, \quad \chi_{\ell} = m_s \frac{\partial M_{\ell}}{\partial m_{\ell}} \quad \text{which makes}
$$
\n
$$
M = h^{\frac{1}{\delta}} f_{G\chi}(z) \quad \text{with} \quad f_{G\chi}(z) = f_G(z) - f_{\chi}(z) \tag{4}
$$

Eqn.[\(4\)](#page-9-0) only, is \rightarrow universal scaling part of M. In this improved M

- No $\mathcal{O}(a^{-2})$ add. div. → well-defined in continuum limit
- Mult. renorm. by $m_s \rightarrow$ no log div. \rightarrow well-def. in chiral limit
- **No** $\mathcal{O}(H)$ regular terms in $M \Rightarrow$ <code>reduced</code> $\big(M_{reg} < M_{\ell,reg}\big)$
- Also directly related to scal. func. $f_{G\chi}(z)$. Its properties :

Plot of the scaling function

- Inflection pt. of $f_{G_Y}(z)$ closer to $z = 0$ than $f_G(z)$. For O(2) UC, $z_{t,G_Y} = 0.629 (10) < z_{t,G} = 0.7991 (96)$ [Ding. et. al., 2403.09390].
- So, $f_{G_Y}(z) \to$ weaker H, m_ℓ dependence of T_c . We observe :
- a unique intersection point in f_{G_Y} -T plane $\forall H \neq 0$. This pt.

precisely $\mathbf{at}\;\mathbf{z}=\mathbf{0}\equiv\mathcal{T}=\mathcal{T}_{\mathbf{c}}$ with co-ords. $(x,y)=\left(1,\left[1-\frac{1}{\delta}\right]\right)$ $\frac{1}{\delta}$] $\Big)$

• Using this property of $f_{G_Y}(z)$, we find \cdots

Re-scaled order parameter

 \bullet If we have a

 $\mathsf{re\text{-}scaled}$ order parameter $\boldsymbol{\mathcal{M}} = H^{-1/\delta}\,M\,,\,$ given by

$$
\mathcal{M}\left(T,H\right) = h_0^{-1/\delta} f_{G\chi}\big(z\left(T,H\right)\big) + \mathcal{M}_{reg}\left(T,H\right) \tag{5}
$$

• then at $T = T_c$, this reduces to

$$
\mathcal{M} \left(\mathcal{T} = \mathcal{T}_c, H \right) = h_0^{-1/\delta} \left(1 - 1/\delta \right) + \mathcal{M}_{reg} \left(\mathcal{T}_c, H \right) \tag{6}
$$

This clearly indicates that in the M vs T plot (next slide)

- For some H , if $\mathcal{M}_{\mathsf{reg}} \ll h_0^{-1/\delta}$ $\mathcal{M}_{\mathsf{reg}} \ll h_0^{-1/\delta} \left(1 - 1/\delta \right)$, then \rightarrow these $\mathrm{differential}$ H lines intersect at a unique common point at $T = T_c$.
- **.** Otherwise they shift away, with no common pt. of intersection. Evidence using Lattice QCD · · ·

Sabarnya Mitra (Uni Bielefeld) [Critical temp and expts](#page-0-0) 10 September, 2024 12 / 27

Plots of re-scaled order parameter

• unique crossing point for $1/H = 40, 80, 160$ data (within errors)

- clear remnant H-dependence at T_c for $1/H = 20$ (regular or correction-to-scaling contribution?).
- For $1/H = 27 \rightarrow$ it is marginal (needs better resolution in T)
- Reproduce $\mathcal{T}_c, h_0^{-\frac{1}{\delta}}$ $\xleftarrow{\text{obtained}}$ scal. fits in *T* ∈ [140:146] MeV
- **Quantify** reg. cont. at $T_c \xrightarrow{\text{presently}} \mathcal{M}_{reg} < 2\%$ for $H = 1/20$.

Note $\mathcal{M}(T)$ not parameter-free, still depends on δ value. So, \cdots

The new observables

• Construct observables $\mathbf{R}(\mathcal{T}, H_1, H_2)$, $\mathbf{B}(\mathcal{T}, H_1, H_2)$, where

$$
R(T, H_1, H_2) = \frac{M(T, H_2)}{M(T, H_1)}, \quad B(T, H_1, H_2) = \frac{\ln R(T, H_1, H_2)}{\ln [H_2/H_1]}
$$
(7)

• In SR, with $M_{sing} \gg M_{reg}$, $c = H_2/H_1$, Eqn. (6) \rightarrow

$$
R \to R_s(t, H_1, c) = c^{1/\delta} \left(f_{G\chi}(z_2) / f_{G\chi}(z_1) \right) \tag{8}
$$

$$
B \to B_{s}(t, H_{1}, c) = \frac{1}{\delta} + \frac{\ln[f_{G\chi}(z_{2})/f_{G\chi}(z_{1})]}{\ln(c)}
$$
(9)

4 ロ ▶ (母

Eqns. $(8),(9)\rightarrow R$ $(8),(9)\rightarrow R$ $(8),(9)\rightarrow R$ $(8),(9)\rightarrow R$ ($\bm{T_c},H_1,c) = c^{1/\delta},~~B$ ($\bm{T_c},H_1,c) = 1/\delta \Rightarrow~$ find

• unique int. pt. at $T = T_c$ in R -T and B -T planes. With

 \bullet No input parameters (New parameter-free feature). Like \cdots

B vs T plot : In ideal case

Int. pt. exactly at $\int x = 1, y = \frac{1}{\delta}$ $\left\{\frac{1}{\delta}\right\}\rightarrow$ $\mathsf{indepth.}$ of params. $\mathsf{z_0},\, \beta$ $(z_0 = 1.42$ is only to compare with earlier work.). But note, one

- finds this common pt. $\frac{0.00 \text{ m/s}}{0.00 \text{ m/s}}$ *M* $\gg M_{reg}$, making *M* $\approx M_{sing}$.
- Larger H, $m_\ell \to$ more $M_{\text{reg}} \longrightarrow$ deviations from this point. These
- appear in Lattice QCD calc.. We cannot isolate M_{sing} only \cdots

For the new Lattice QCD results (will show now), we have :

- Worked on $N_\tau = 8$ lattices only
- Considered mass ratios $H^{-1} = 20, 27, 40, 80, 160$

$R =$ Ratio of M

- Calculate $M(H_1), M(H_2), R$. Observe R as a function of T
- For $H \le 1/40$ (red, blue) \rightarrow intersect at $y = 1$ within T_c [HotQCD] \rightarrow agreement within T_c , $\delta_{[O(2)]}$ error bars
- $(H = 1/27, c = 2.96)$ black line deviate; intersect later beyond T_c range. Because, one gets
- **Appreciable** $\mathcal{O}(H^3)$ M_{reg} for $H = 1/27$, over $1/\{40, 80, 160\}$.

Plots for $B \cdots$

- For $H\leq 1/40\rightarrow$ unique int. pt. $\left({\rm \,}T_c,{\rm \frac{1}{\delta}}\right)$ $\left(\frac{1}{\delta}\right) \leftarrow$ blue , red , green
- Find deviations for $H = 1/20$, 1/27 (more for 1/20). However,
- Present calculations, based on existing data $\frac{\text{allow}}{\text{to}}$ estimate δ , already with 6% accuracy
- \bullet So to do better, improve accuracy \cdots

Where we are and where we plan to go?

What do we need to do?

- We need to scan **more closely** $T \rightarrow T_c$
- Add additional masses to quantify regular contributions better

So, work is going on \rightarrow in which

- We are generating more statistics for T close to T_c
- We are adding **more** T-data points near T_c
- We are adding $\mathsf{more}\ \mathsf{m}_\ell$ values (points). And all these $\xrightarrow[]{\mathsf{so}}$ we that
- Understand systematics, H-dependence of M near T_c better
- Thereby, helping to understand if the deviations
- Come from the regular terms or the corrections-to-scaling terms

 QQ

Conclusions and Outlook

- Constructed an estimator for T_c , δ based on ratios of improved order parameter evaluated at different values of light quark masses.
- At least in principle, this allows determining T_c , δ without relying on fits in the extended T, H ranges
- Within scaling region, one obtains a unique intersection point for lighter quark masses, also from lattice QCD
- This point agrees with predicted T_c results obtained from fits explicitly using δ of O(2) universality class.
- Understand systematics, behaviour of correction terms near T_c
- More precise calculations to resolve the δ 's of $O(2)$ and $O(4)$ are on the way, but may be challenging
- Proceed towards continuum limit.

 QQ

THANK YOU ALL FOR YOUR ATTENTION

造

∢ ロ ▶ ィ 何 ▶ ィ

Þ \triangleright \rightarrow \equiv

BACKUP SLIDES

Ξ \mathcal{A} . B

 \mathcal{A} \sim

K ロ ▶ K 倒 ▶

重

- No common and unique intersection point
- Depends on the value of δ used for re-scaling $\rightarrow \delta$ dependent
- Hence, parameter dependent
- Depends on if $\epsilon = \frac{1}{s'}$ $\frac{1}{\delta'}-\frac{1}{\delta}$ $\frac{1}{\delta}$, varies as $H^{-\epsilon}$
- Determines if intersection points lie below or above $f_{G\chi}(t=0)=\big(1-\frac{1}{\delta}\big)$ $\frac{1}{\delta}$

 \leftarrow \Box

How the yellow box has been constructed

4 D F

Þ

Important formulae

$$
f_{\chi}(z) = \frac{1}{\delta} f_G(z) - \frac{z}{\beta \delta} f'_{G}(z)
$$
\n(10)

$$
f_{G\chi}(z) = \left(1 - \frac{1}{\delta}\right) f_G(z) + \frac{z}{\beta \delta} f'_G(z) \tag{11}
$$

$$
M = h^{1/\delta} f_{G\chi}(z) + M_{reg}
$$
 (12)

K ロ ▶ K 母 ▶ K

Þ \mathbf{K} \mathcal{A} . 重

$$
H^{-1/\delta} M = h_0^{-1/\delta} f_{G\chi}(z) + H^{-1/\delta} M_{reg}
$$
 (13)

重

$$
t = \frac{T - T_c}{t_0 T_c} = \frac{\tau}{t_0}, \qquad h = \frac{m_{\ell}}{h_0 m_s} = \frac{H}{h_0}, \qquad \ell = \frac{\ell_0}{L} \tag{14}
$$

where t_0 , h_0 , ℓ_0 are non-universal scaling parameters.

$$
z = z_0 z_b , \t z_L = z_{L,0} z_{L,b} \t where
$$

\n
$$
z_0 = \frac{h_0^{1/\beta\delta}}{t_0} , \t z_{L,0} = h_0^{\nu/\beta\delta} \ell_0 \t (fitting param.)
$$

\n
$$
z_b = \tau H^{-1/\beta\delta} , \t z_{L,b} = \frac{1}{L} H^{-\nu/\beta\delta}
$$

4 D F

 QQ

$$
M_{\ell} = h^{\frac{1}{\delta}} f_G(z) + f_{sub}(T, H)
$$

\n
$$
\chi_{\ell} = h_0^{-1} h^{\frac{1}{\delta}-1} f_{\chi}(z) + g_{sub}(T, H)
$$

\n
$$
M = h^{\frac{1}{\delta}} f_{G\chi}(z) + p_{sub}(T, H)
$$

where

$$
\mathcal{O}_{\mathsf{sub}} = \mathcal{O}_{\mathsf{cts}} + \mathcal{O}_{\mathsf{reg}}, \qquad \left\{\mathcal{O} \equiv M_{\ell}, \ \chi_{\mathsf{ell}}, \ M\right\}
$$

4 ロ ▶ 4 母 ▶ 4

Þ $|b| = 4$ 重 重