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SIGN PROBLEM for finite density Lattice QCD:
we miss a properly defined (positive) measure in the path integral! ... no MC simulation

. (... but everything is fine on the imaginary axis)

Mainly two working solutions:

« Compute Taylor expansions at up =0

:  Compute on the imaginary axis pp = 1y

The two solutions are obviously related ... and
! both imply (strictly speaking) an ANALYTIC
CONTINUATION ... and in the end this is what we

will be concerned in ...

A few tensions in between differente results for Taylor coefficients in the literature...



Agenda

- An invitation (sign problem...)

- Something to compare to: analytic continuation from
mula-point Padé

— The sign problem as an inverse problem ...

- ... and what you can learn from the latter in a broader
sense...

- Comparing results with different methods
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A few words on multi-point PADE,

Suppose you know the values of a function (and of its derivatives) at a number of points

L f e, ) FET Y (), k=1...N

If you want to approximate the function with a rational function

Pulz)  Pulz) M7

=1
the obvious requirement is that

R™U)(z) = fY9)(z) k=1...N, j=0...s—1

This is the starting point for a multi-point Pade approximation: solve the linear system

from which we want to get the unknown

{a;|i=0...m} {bj|7=1...n} n+m-+1=Ns
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Yes! LATTICE QCD at IMAGINARY values of the baryonic chemical potential

PHYSICAL REVIEW D 105, 034513 (2022)

Contribution to understanding the phase structure of strong interaction
matter: Lee-Yang edge singularities from lattice QCD

P. Dimopoulos ,1 L. Dini,2 F. D1 Renzo ,1 J. Goswami ,2 G. Nicotra ,2 C. Schmidt ,2
S. Singh ,1’ K. Zambello ,1 and F. Ziesché®

... Where we computed and “multi-point Pade approximated” ;(ff (T, V,//tB)
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In principle you should require that

A few words on multi-point PADE,

~

#20 : Pn(z0) = Qn(z0) =0

... but we will need to give up with this ...

Why a rational approximation instead of a polynomial? Because you have POLES that can

mimic the SINGULARITIES of your function! (at least the nearest ones ...)
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FIG. 4. Scaling fits for the LYE singularities related to the
CEP. Green data come from a [4,4] Padé from Ref. [7]. Blue
data come from the multi-point Padé. 7Top: Scaling of the
real part. Bottom: Scaling of the imaginary part. The ellipses
shown in the top panel represent the 68% confidence region
deduced from the covariance matrix of the fit. The orange
box indicates the AIC weighted estimate (6).
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T = 157.5 (~ 155) MeV

... which is pretty simple (we will be

4r concerned with the number density):
31 » you take vyour rational function,
o & which also provides a description of
2 s i /EROS and POLES at complex ui5
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...here we are concerned with analytic continuation of our PADE approximant

T = 157.5 (~ 155) MeV

0.8 . . . . , , ... which is pretty simple (we will be
e concerned with the number density):

you take vyour rational function,
Y which describes very well data at
IMAGINARY VALUES of u5

... and you simply compute it for
REAL VALUES of up

You can compare the result with
HotQCD results

m PHYSICAL REVIEW D 105, 074511 (2022)

Taylor expansions and Padé approximants for cumulants of conserved
_0 1 | | | I | | charge fluctuations at nonvanishing chemical potentials

0 0 : 5 1 1 : 5 2 2 s 5 3 3 : 5 D. Bollweg ,1 J. Goswami ,2 0. Kaczmalrek,2 F. Karsch,2 Swagato Mukherjee,3 P. Petreczky,3 C. Schmidt ,2 and P. Scior’

1B

(HotQCD Collaboration)

CAVEAT: no error shown as for now ... here we are concerned with 7zends... FIXED CUTOFE!
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Finite density QCD as an inverse problem

... aka How 1o trade a difficult problem for another ( even more?) difficult one ...
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One simple way of thinking of it is that you can perfectly know such functions from an apparently limited amount of information.
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What does ANALYTICITY mean? ... (analytic functions aka olomorphic...)

CAUCHY FORMULA

f(zg) = 1 ) dz

211 Jo 2 — 20

If you know the function on the contour, you can compute it at any point inside... sounds good!

... at any point, including the (only) ones we can compute (on the imaginary axis) in our case...
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Remember: we take our input on the imaginary axis and we want to compute on the real axis!



With your favourite (QUADRATURE method ... you can go numeric!

De facto, you would like to think of L.egendre quadrature

27 i6 29 10 i6
f(Re")Re Z f(Re"Yr ) R ek
27T wk

21 o Re? — 2z —

... and then you are ready for your (BRAVE) INVERSE PROBLEM!

Ax=Db for the fkl

... but when you have an idea you often get excited ... so let’s try with the sin function.
Radius (ca 4 ) and number of points (/3') chosen having in mind what we have to live with in finite density QCD!
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1.5

0.5

-1.5

Reconstructing e () [t looks like it works ... but it should not!

i ©o®@ q ... and it should not for a combination of
® i (a) bad condition number of the linear system
® (b) the quadrature formula being NO'l" exact

... and as a matter of fact the solution you get
. has nothing to do with the sin function evaluated
» at the expected (quadrature) points

Nevertheless, you get information out of this machinery,
can this be thought of as an eflective formula,
, . 1 , . 1 as il you had found a quadrature formula of your own?

Notice the barrier (vertical line) you cannot overcome. For an analytic function, you will get zero if you do...
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Now, forget about the inverse problem, and remember Cauchy formula for derivatives

271 B

(), Nl f(2) ! [*7 f(R exp(if)) R exp(if)
f7(z0) = ,753 (z — zop)nt1 4z = 211 Jo (R exp16 — zg)" 1 40

[ took quite some quadrature points (50) on a much shorter contour, closer to

the origin. We will now compute derivatives of our function in zg = 0

dn 1.5
dx—nsm(:v) | =0

05

With a quite large number of
quadrature points, we expect
a reliable result...

-0.5 |

-1.5
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Now, | do something different: | use our inverse problem solution (our
effective quadrature formula, as we called it) to evaluate our function at
the quadrature points on the smaller contour.

Does 1t work?

Let me plot (on the complex plane) the values I have to get
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Now, | do something different: | use our inverse problem solution (our
effective quadrature formula, as we called it) to evaluate our function at
the quadrature points on the smaller contour.

Does it work?
... and this 1s what | get!
200
6 5 0
2 -
o o

1:Di= o o

1 o
0.5 F ‘ ’

' o, o

o 0

0 , QM X 5

-05 é)@ 9
o
1 O
o
A5} @
0 o
-2 @
5 o

_25 | | | | | | | |
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via our effective quadrature into the quadrature formula for derivatives in
zero, | will get the correct results
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Next task 1s the obvious one: | expect that if | put the points | generated
via our effective quadrature into the quadrature formula for derivatives in
zero, | will get the correct results

It must work ...
... and indeed 1t does!
CZE—:Sfm(:zt) |5,;:01.5
1 o o -
D= i
0 @ ® ® ® a
05 s
1 @ 9 —
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Next task 1s the obvious one: | expect that if | put the points | generated
via our effective quadrature into the quadrature formula for derivatives in
zero, | will get the correct results
[t must work ...
... and indeed it does!
1.5
d’n,
dx—nsm(x) | =0
1 @ @ T
0.5 g
0 @ @ & @ i
...but here comes the point! This is
exactly the same result I getif I directly 05| -
use our original effective quadrature! ...
so, everything is consistent! ! o o -
-15 ' ' ' ' ' ' ' '
-1 0 1 2 3 = 5 6 7 8
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(see talk by M. Aliberda on Friday)
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... OK!...butthen ... WHAT ABOUT QCD?

...we can compare TAYLOR COEFFICIENTS ATZERO

with what we get from a “DIRECT™ ESTIMATION!
(see talk by M. Aliberda on Friday)

... ata same, fixed amount of information provided!
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They are de facto the SAME!!
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...so WE DID NOT LEARN ANYTHING NEW with this funny inverse problem ... NOT TRUE!

SOMETHING ELSE you can do with the inverse problem machinery:
we can play the same game for inverse Laplace transform ...

f(s) = /OOO e " F(t)dt f(s) = /OOO e te = Bt dt

f(s) = /0 e te MV @) dt ~ Z w; e T P ()

J

This time, Laguerre quadratures ...

lor afew test functions, we could play effectively with some tricks and reconstruct the inverse Laplace transform....



In the end ... Did we get any 1nsight in
analytic continuation in finite density QCD?

We want to compare methods
and possibly cross check results
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analytic continuation in finite density QCGD?

We saw we can go via Pad¢ analytic
continuaton.

We could compare with
HotQCD results.

CAVEAT: FIXED CUTOFF!

N, =6
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T = 157.5 (~ 155) MeV

In the end ... Did we get any 1nsight in
09 , . . . , . analytic continuation in finite density QGD?
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0.6 We saw we can go via Cauchy formula

8 (inverse problem).
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And remember: other applications possible ... f(5) = /O e~ e TV R(t)dt = /O e e TV R @) dt ~ ) wyen T ()

J



T = 157.5 (~ 155) MeV

In the end ... Did we get any 1nsight in

s 0 , ' ' ' ' — analytic continuation in finite density QGD?
JE. 0.8 - o
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0.6 & i In general, beyond a given value of the
| 0 6 I chemical potental, quite a sensitivity

50 to the input (imaginary) region!
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T = 157.5 (~ 155) MeV
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In the end ... Did we get any 1nsight in
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analytic continuation in finite density QCGD?
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- 3 We saw the inverse problem (Cauchy
. 5 formula) provides the same results as
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T = 157.5 (~ 155) MeV

In the end ... Did we get any 1nsight in

e 09 . . . . . — analytic continuation in finite density QCD?
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SOMETHING ELSE you can do with the inverse problem machinery,
i.c. playing the same game for inverse Laplace transform ... a TEST

fs)= [ et F(t)dt f(s) = / et e=t=1) F(p) gt
0 0
f(s) = / et o t(s—1) F(t)dt ~ Z w; e ti(s—1) F(tj) This tume, LLaguerre quadratures ...
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SOMETHING ELSE you can do with the inverse problem machinery,
i.c. playing the same game for inverse Laplace transform ... a TEST

/ e te =) P (1) dt
0

This time, Laguerre quadratures ...
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