Reaching conformality in neutron stars

Michał Marczenko

MM, McLerran, Redlich, Sasaki, *PRC* 107 (2023) 2, 025802 MM, Redlich, Sasaki, *PRD 109 (2024) 4, L041302 MM, arXiv:2407.15486*

New developments in studies of the QCD phase diagram ECT*, Trento, 10.09.2024

Incubator of Scientific Excellence – Centre for Simulations of Superdense Fluids University of Wrocław

Lattice Quantum Chromodynamics

Pressure in the HRG model

$$P^{\mathrm{HRG}} = \sum_{i \in \mathrm{had}} P^{\mathrm{id}} \left(T, \mu_i; m_i \right)$$

Agreement with LQCD EoS up to $\simeq T_c$

Quark Matter in Neutron Stars?

Solid Constraints

- Low density: χ EFT ($n \leq 1.1n_0$) Tews et al, 2013
- High density pQCD ($n \gtrsim 40n_0$) Gorda et al, 2018

Interpolation methods

• Polytropes, CSS, Linear Speed of Sound eg. Annala et al, 2018, 2020; Alford et al 2013, 2017, Li et al 2021

Deconfinement by polytropic index

$\gamma = \frac{d \log p}{d \log \epsilon} \to \begin{cases} \gamma > 1.75 \to \text{Hadrons} \\ \gamma < 1.75 \to \text{Quarks} \end{cases}$

Quark Matter in Neutron Stars?

Solid Constraints

- Low density: χ EFT ($n \leq 1.1n_0$) Tews et al, 2013
- High density pQCD ($n \gtrsim 40n_0$) Gorda et al, 2018

Interpolation methods

• Polytropes, CSS, Linear Speed of Sound eg. Annala et al, 2018, 2020; Alford et al 2013, 2017, Li et al 2021

Deconfinement by polytropic index

$\gamma = \frac{d \log p}{d \log \epsilon} \to \begin{cases} \gamma > 1.75 \to \text{Hadrons} \\ \gamma < 1.75 \to \text{Quarks} \end{cases}$

 6×10^5 viable Equations of State

General Structure of Speed of Sound

 ${}^{C}_{s}$

• General peak-dip structure Altiparmak et al, 2022

• Peak similar to quarkyonic matter McLerran, Reddy, 2019; Pang et al, 2023

Local maximum at $\epsilon_{\text{peak}} = 0.56^{+0.11}_{-0.09}$ GeV/fm³ with $c_s^2 = 0.82 \pm 0.08$

- Attractive interactions with resonance formation
- Chiral symmetry restoration and deconfinement

Non-monotonicity

- Dominance of repulsive interactions
- Onset of quark or quarkyonic, or baryquark matter?

Change of phase

Percolation theory vs speed of sound

see e.g. Satz, 1998; Castorina et al, 2009; Fukushima, 2020

Percolation theory: $n_c = 1.22/V_0$

Avg. proton radius: $R_0 = 0.80 \pm 0.05$ fm Wang et al 2022 Pb-Pb collisions at $\sqrt{s} = 2.76$ TeV Andronic et al 2018

Speed of Sound as Trace Anomaly Fujimoto et al 2022

Trace anomaly more informative than speed of sound

Measure of conformality

Δ monotonic up to $\simeq \epsilon_{\text{TOV}}$

 $c_{s}^{2} = -$

 $-\frac{d\Delta}{\epsilon}$

Maximum in c_s^2 Fast approach to comformality

 $\Delta \simeq 0$ at $\epsilon \simeq 1$ GeV/fm³

Conformality:

$$c_s^2 = \frac{1}{3} \text{ and } \Delta = 0$$
 $c_s^2 = 0.28 \pm 0.16 \simeq \frac{1}{3}$
 $c_{0.4}^{0.4}$
 $c_{0.2}^{0.4} = -0.01 \pm 0.03 \simeq 0$

Matter almost conformal in the cores of maximally massive NSs

$c_{\rm s}^2$ and Δ in Heavy Neutron Stars

Measures of conformality

Fujimoto et al 2022

Measures of conformality 2

$$d_c = \sqrt{\Delta^2 + (\epsilon \Delta')^2} \lesssim 0.2$$

Annala et al 2023

Curvature of the energy per particle

Pressure from $\frac{\epsilon}{n} \rightarrow p = n^2 \frac{d\epsilon/n}{dn}$

$$c_s^2 = \frac{1}{\mu} \frac{dp}{dn} = \alpha + \beta$$

$$\alpha = 2\frac{n}{\mu}\frac{d\epsilon/n}{dn} = 2\frac{1/3 - \Delta}{4/3 - \Delta}$$

 $\beta = \frac{n^2}{\mu} \frac{d^2 \epsilon / n}{dn^2} = c_s^2 - \alpha$

 $\beta = 0 \rightarrow$ changeover to conformal regime

Changeover consistent other measures

 $\frac{p}{\epsilon} = \frac{1}{\epsilon} \int d\epsilon' \frac{dp}{d\epsilon'} = \langle c_s^2 \rangle$ $\Delta = \frac{1}{2} - \langle c_s^2 \rangle \quad \epsilon \Delta' = \langle c_s^2 \rangle - c_s^2$

 $\gamma = \frac{c_s^2}{\langle c_s^2 \rangle}$

Conformality : $\Delta \simeq 0 \Leftrightarrow c_s^2 \simeq 1/3$ and $\epsilon \Delta' \simeq 0 \Leftrightarrow c_s^2 \simeq \langle c_s^2 \rangle$

Average Speed of Sound

Implications of vanishing trace anomaly

 $\Delta_{\rm TOV} = -0.01 \pm 0.03 \simeq 0$

Ansatz 1: $\Delta_{\text{TOV}} = 0 \Leftrightarrow \langle c_s^2 \rangle_{\text{TOV}} = 1/3$

- c_s^2 must exceed 1/3
- c_s^2 features maximum

Implications of vanishing trace anomaly

 $\Delta_{\rm TOV} = -0.01 \pm 0.03 \simeq 0$

Ansatz 1: $\Delta_{\text{TOV}} = 0 \Leftrightarrow \langle c_s^2 \rangle_{\text{TOV}} = 1/3$ Ansatz 2: $\Delta \ge 0 \Leftrightarrow \langle c_s^2 \rangle \le 1/3$

- c_s^2 must exceed 1/3
- c_s^2 features maximum at $\epsilon \leq \epsilon_{TOV}$
- consequences for NS phenomenology

 $\epsilon_c = \epsilon_{\text{TOV}} \simeq 1 \text{ GeV/fm}^3 \longrightarrow \alpha \simeq 0.4 - 0.5 \longrightarrow c_{s,\text{max}}^2 > \alpha$

Implications of vanishing trace anomaly 2

Summary

Maximum of c_s^2 consistent with percolation threshold

Matter seems to be conformal in the cores of massive NSs

Curvature of ϵ/n can quantify restoration of conformal symmetry

Thank You

היישוב לימוזות הי אמני אים ליב הבים

Station Sel Rog States

Summary

Equation of State

Net-baryon number susceptibility

