Dense QCD Matter constrained by astrophysical observation

ALAR ALARA ALARA ALARAR ALARAR ALARAR ALARAR ALARAR ALARAR ALARAR ALARAR ALARAR

Kenji Fukushima The University of Tokyo

— New developments in studies of the QCD phase diagram —

1

Nuclear Matter

ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

Convenient unit to measure the energy density

Heavy nuclei have an almost constant density.

 $n_{\rm sat} = 0.16$ (nucleon) fm⁻³

saturation density

[Nuclei from Wikipedia]

In astrophysics, the rest-mass density is used:

$$\rho_{\rm sat} = 2.6 \times 10^{14} {\rm g \, cm^{-3}}$$

Nuclear Matter

How dense (dilute) is nuclear/quark matter?

Interaction Cloud Size $r_{\rm soft} \sim 1/(2m_{\pi}) \sim 0.7 \, {\rm fm}$

Baryon Number Distribution Size $r_{hard} \sim 0.5 \text{ fm}$

Closest Packed State (hcp/fcc) Filling rate ~ 74%

$$0.74 \times \left(\frac{4\pi}{3}r_{\text{hard}}^3\right)^{-1} \approx 1.4 \text{ fm}^{-3} \approx 8.3 n_{\text{sat}}$$

 $r_{\rm soft}$

 $r_{\rm hard}$

Nuclear matter cannot exist at this density!

Nuclear Matter

ಜನ್ ಸರ್ಕೆಷ್ ಸರ್ಕಟನ್ ಸರ್ಕಟನ್ ಸರ್ಕಟ್

More realistic bound?

Percolation transition?

/ .

3D critical filling density $\sim 34\%$

Interaction-mediated Percolation

 \mathbf{N}

(From Wikipedia)

$$0.34 \times \left(\frac{4\pi}{3}r_{\text{soft}}^3\right)^{-1} \approx 0.24 \text{ fm}^{-3} \approx 1.5 n_{\text{sat}}$$

Standard nuclear-physics calculations may break down at this density due to the lack of multi-body interactions.

For even more realistic arguments on quantum percolation, see: Fukushima-Kojo-Weise (2020) for more details.

September 10, 2024 @ ect*

Phase Diagram

ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA

Fukushima-Hatsuda (2010); see also 50 Years of QCD Chap.7 (2023)

Nuclear vs. Neutron Matter

HERRE, HERRE

Neutron Star

Force Balance

Gravitational force is supported by the pressure from inside.

Hydrostatic condition for $r \sim r + dr$

$$\frac{dp(r)}{dr} = -G\frac{M(r)}{r^2}\varepsilon(r)$$

M(r) represents the integrated mass in r-sphere.

$$\frac{dM(r)}{dr} = 4\pi r^2 \varepsilon(r)$$
(In Newtonian gravity)

Neutron Star

A relation between p and $\varepsilon \longrightarrow Equation of State (EOS)$

Neutron Star

》,如果你会说,你是你会说,你是你的你是你会说,你是你会说,你是你会说,你

Compilation of the observed data (68% Credible) Fujimoto-Fukushima-Kamata-Murase (2024)

EOS Basics

Mathematically proven:

$$p = p(\varepsilon) \longrightarrow M = M(R)$$

One-to-one correspondence through TOV eq. Lindblom (1992)

> This is the case even with the 1st-order phase transition.

September 10, 2024 @ ect*

 \mathcal{E}

EOS Basics

Pressure $p(\varepsilon)$ Stiff — large c_s dp $d\varepsilon$ Soft – small c_{s}

Mass-density ρ or Energy-density ε

EOS Basics

Structures of pQCD on ε -p LO: $p \sim \#\mu_B^4$ (massless case) $\rightarrow \varepsilon = \frac{1}{2}p$ NLO: $p \sim (\# + \alpha_s \#) \mu_B^4 \rightarrow \varepsilon = \frac{1}{3} p$ (unchanged!) N²LO: $p \sim (\# + \alpha_s \# + \alpha_s^2 \# + \# \alpha_s^2 \ln \mu_B^2 / \mu_0^2) \mu_B^4$ **Conformality broken Running Coupling** $\sim \ln(X^2 \mu_a^2 / \Lambda_{\overline{MS}}^2)$

EOS Inference Program

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

September 10, 2024 @ ect*

EOS Inference Program

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

Proof of principle

EOS Inference Program Fujimoto-Fukushima-Kamata-Murase (2018-2024) Machine learning shows amazing performance!

Overfitting is miraculously avoided!

EOS Inference Program

ĦĨŢĿŴĿŢŔĨŢĿŴĿŢŔĬŢĿŴĿŢŔĬŢĿŴĿŢŔĬŢĿŔĬŢĿŴĿŢŔĬŢĿŴĿŢŔĬŢĿŴĿŢŔĬŢĿŴĿŢŔĬŢĿŴĿŢŔĬŢĿŴĿŢŔĬŢĿ

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

EOS Inference Program

Fujimoto-Fukushima-Kamata-Murase (2018-2024)

[1st-order-like EoS]

Phase transition is manifested by a minimum in the speed of sound.

[High-Temperature QCD — QGP Crossover]

Fujimoto-Fukushima-McLerran-Praszalowicz (2022)

Measure of conformality:
$$\Delta = \frac{1}{3} - \frac{p}{\varepsilon}$$

$$c_s^2 = \frac{dp}{d\varepsilon} = c_{s, \text{ deriv}}^2 + c_{s, \text{ non-deriv}}^2$$

$$c_{s, \text{ deriv}}^2 = -\varepsilon \frac{d\Delta}{d\varepsilon} \qquad c_{s, \text{ non-deriv}}^2 = \frac{1}{3} - \Delta$$

Derivative Non-Derivative
Dominant at high density to make a peak!
September 10, 2024 @ ect* 21

Brandes-Fukushima-Iida-Yu (2024)

Newer analysis suggests that the trace anomaly goes negative!

Derivative contribution makes a peak structure!

ARDA, ARDA

Interesting question... $\Delta < 0$???

Negative trace anomaly implies the presence of "condensates"!?

September 10, 2024 @ ect*

$$\propto \varepsilon - 3p$$

$$\propto \frac{d}{d\mu} \left(\frac{p}{\mu^4}\right)$$

Thermodynamic degrees of freedom

ARDA, ARDA

Lesson from high-isospin matter Abbott+ (2023)

[Speed of sound peak]

[Negative trace anomaly]

Tree level without loop!

Brandes-Fukushima-Iida-Yu (2024)

Assume a general Ginzburg-Landau potential for "some" bosonic condensates to fit the NS trace anomaly behavior.

cf. Kurkela-Rajagopal-Steinhorst (2024) / Fujimoto (2024) indicating small gap...

Can we see the phase transition with the GW signal? Most-Papenfort-Dexheimer-Hanauske-Schramm-Stocker-Rezzolla (2018)

CMF_Q : EOS with a strong-1st PT to Quark Matter (3~4 times n_{sat}) CMF_H : EOS without quarks

Quark matter shortens the lifetime of post-merger supramassive/hypermassive (uniform / differential) neutron star.

What if the transition is only a smooth crossover?

Caution: 1st-order phase transition is NOT excluded...

ML inferred EoSs: Fujimoto-Fukushima-Murase (2021)

HERE STREES HERE STREES

ನಿಯಲ್ಲಿ ಸಚಿವಿದಲ್ಲಿ ಸಚಿವಿದಲ್ಲಿ ಸಚಿವರ ಸಚಿವರಲ್ಲಿ ಸಚಿವರಲ್ಲಿ ಸಚಿವರಲ್ಲಿ ಸಚಿವರಲ್ಲಿ ಸಚಿವರಲ್ಲಿ ಸಚಿವರಲ್ಲಿ ಸಚಿವ

September 10, 2024 @ ect*

Electromagnetic Counterpart

nder fölgt vir stölligt vir stölli

Kilonova brightness: ejected mass $> 0.05M_{\odot}$

AT 2017 gfo

Brightness and "color" depend on the EOS and the total mass.

Electromagnetic Counterpart

ALENAL, ALEN

is already ruled out.

Asymmetric mass system can still be consistent.

Consistency with the kilonova tells us a lot!

Summary

Speed of sound at high density may increase above the conformal value. It would be interesting to confirm this by the heavy-ion collision.

Trace anomaly is going negative and it implies the presence of "some" condensates. Color-super?

QCD phase transition is detectable through the GW signal/kilonova even if it is a smooth crossover.

GW170817 was such a fine-tuned event. Mass distribution will be determined in the near future.