QCD critical point, fluctuations and hydrodynamics

M. Stephanov

QCD critical point

Where on the QCD phase boundary is the CP?

Motivation for BES at RHIC and BEST topical collaboration.

M. Stephanov

QCD Critical Point Theory

Latest theory developments on locating CP

From Maneesha Pradeep's talk at CPOD 2024:

(universal EOS) critical χ_n :

Bzdak et al review 1906.00936

M. Stephanov

(universal EOS) critical χ_n :

Bzdak et al review 1906.00936

M. Stephanov

(universal EOS) critical χ_n :

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4

(irreducible correlations) FC $_n[N_p] \sim \chi_n$ (Pradeep, MS 2211.09142), $\omega_n \equiv$ FC $_n/$ FC $_1$

 $\mu_{\rm max} < \mu_{\rm CP}$

0

0

0

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and $\omega_3,$ dip then bump in ω_4 for CP at $\mu_B>420~{\rm MeV}$

(universal EOS) critical χ_n :

(irreducible correlations) ${\rm FC}_n[N_p]\sim \chi_n$ (Pradeep, MS 2211.09142), $\omega_n\equiv {\rm FC}_n/{\rm FC}_1$

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and $\omega_3,$ dip then bump in ω_4 for CP at $\mu_B>420~{\rm MeV}$

The goal of BES theory: connect observables to QCD phase diagram.

BEST framework: An et al (40+ authors, 100+ pp, 369 refs) <u>2108.13867</u> BES theory review: Du, Sorensen, MS <u>2402.10183</u>

- $\textbf{ lattice EOS + CP} \rightarrow parametric EOS$
- **9** EOS \rightarrow Hydrodynamics with (non-gaussian) fluctuations.
- Freezeout, including fluctuations. reviewed in <u>2403.03255</u>
- Comparison with experiment. Bayesian analysis (ML).
 Determine/constrain EOS, critical point parameters.

Parametric EOS (now with T'-expansion)

From Maneesha Pradeep's review talk at CPOD 2024:

 $P_{\rm QCD}(\mu, T) = P_{\rm BG}(\mu, T) + A G(r(\mu, T), h(\mu, T))$

Parotto et al <u>1805.05249</u> PRC Kahangirwe et al <u>2402.08636</u> PRD

Critical point and non-trivial hydro trajectories

Pradeep, Sogabe, MS, Yee 2402.09519, PRC

- $\hat{s} \equiv s/n$ is non-monotonic along coexistence (1st order) line
- non-trivial deformation of trajectories

depending on $(\partial P/\partial T)_n$ at CP

explains "lensing", "cusp"

Critical lensing~Dore et al,22, Nonaka&Asakawa, 05

Deterministic approach to non-Gaussian fluctuations

non-Gaussian fluctuations are non-trivial and sensitive signatures of the critical point

Infinite hierarchy of coupled equations
An et al 2009.10742 PRL
for connected hydro correlators $H_n \equiv \langle \underbrace{\delta \breve{\psi} \dots \delta \breve{\psi}}_n \rangle^{\text{connected}}$: $\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi, H, H_3, H_4, \dots];$ $\partial_t H = \mathsf{F}[\psi, H, H_3, H_4, \dots];$ $\partial_t H_3 = \mathsf{F}_3[\psi, H, H_3, H_4, \dots];$

Controlled perturbation theory

An et al 2009.10742 PRL

- *Small* fluctuations are *almost* Gaussian
- Introduce expansion parameter ε , so that $\delta \breve{\psi} \sim \sqrt{\varepsilon}$.

Then $H_n \equiv \varepsilon^{n-1}$ and to leading order in ε :

$$\partial_t \psi = -\nabla \cdot (\mathsf{Flux}[\psi] + \mathcal{O}(\varepsilon));$$

$$\partial_t H = -2\Gamma(H - \bar{H}[\psi]) + \mathcal{O}(\varepsilon^2);$$

 $\partial_t H_n = -n\Gamma(H_n - \bar{H}_n[\psi, H, \dots, H^{n-1}]) + \mathcal{O}(\varepsilon^n);$

To leading order, the equations are iterative and "linear".

■ In hydrodynamics the small parameter is $(q/\Lambda)^3$, i.e., fluctuation wavelength $1/q \gg$ size of hydro cell $1/\Lambda$ (UV cutoff).

An et al 2009.10742, 2212.14029, An's talk at CPOD 2024

1-pt equation including leading loop

J Leading order in $\varepsilon \Leftrightarrow$ tree diagrams.

Loops describe feedback of fluctuations (renormalization and long-time tails).

one loop (renormalization & long-time tails)

An et al 2009.10742 PRL

Definition:
$$W_n(\boldsymbol{x}; \boldsymbol{q}_1, \dots, \boldsymbol{q}_n) \equiv \int d\boldsymbol{y}_1^3 \dots \int d\boldsymbol{y}_n^3 H_n\left(\boldsymbol{x} + \boldsymbol{y}_1, \dots, \boldsymbol{x} + \boldsymbol{y}_n\right)$$

$$\delta^{(3)}\left(\frac{\boldsymbol{y}_1 + \dots + \boldsymbol{y}_n}{n}\right) e^{-i(\boldsymbol{q}_1 \cdot \boldsymbol{y}_1 + \dots + \boldsymbol{q}_n \cdot \boldsymbol{y}_n)};$$

Example: expansion through a critical region

- Two main features:
 - Lag, "memory".
 - Smaller Q slower evolution. Conservation laws.

Freezeout of fluctuations

Freezeout: translation of correlators of hydrodynamic fluctuations (ψ = ϵ, n_B, u)

$$\langle \delta \psi \dots \delta \psi \rangle = H_n(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

to particle correlators

$$\langle \delta f \dots \delta f \rangle = G_n(\boldsymbol{x}_1, \boldsymbol{p}_1, \dots, \boldsymbol{x}_n, \boldsymbol{p}_n).$$

- **D** Conservation laws relate p integrals of G_n to H_n .
- But the *p* dependence in *G_n* is not constrained. There are ∞ many possibilities/solutions (*G_n*) satisfying conservation laws.

Pradeep, MS, <u>2211.09142</u>, PRL

There is a unique solution which maximizes the entropy!

J for n = 1 equivalent to Cooper-Frye

 \blacksquare for critical fluctuations similar to the σ field coupling

but applies much more generally

correlations

model independent, i.e., determined by QCD EOS

$$\underbrace{\hat{\Delta}G_{ABC}}_{\text{irreducible particle}} = \underbrace{\hat{\Delta}H_{abc}}_{\text{hydrodynamic}} \underbrace{(\bar{H}^{-1}P\bar{G})^a_A(\bar{H}^{-1}P\bar{G})^b_B(\bar{H}^{-1}P\bar{G})^c_C}_{\text{kinematic factors}}$$

Work in progress – implement in a hydro model and estimate nonequilibrium expectations for multiplicity cumulants in BES

Karthein, Pradeep, MS, Rajagopal, Yin

correlations (FC)

BES-II data is in.

Qualitatively agrees with non-monotonic expectations from CP. Not only in n = 4 factorial cumulant, but in n = 3 and n = 2.

- To produce such signatures the CP has to be at μ_B > 420 MeV. Agreement with recent theory estimates by different approaches.
- To convert these qualitative statements into quantitative ones, i.e., provide constraints on the QCD EOS from BES-II data more work is needed and is underway.

More

Factorial Cumulants are better experimental measures

Three reasons:

 Normal cumulants (NC) measure non-gaussianity; Factorial cumulants (FC) measure non-poissonianity, (*irreducible* particle correlations).

NCs are for densities (continuous); FCs are for multiplicities (discrete).

Factorial Cumulants are better experimental measures

Three reasons:

 Normal cumulants (NC) measure non-gaussianity; Factorial cumulants (FC) measure non-poissonianity, (*irreducible* particle correlations).

NCs are for densities (continuous); FCs are for multiplicities (discrete).

Acceptance dependence:

FCs are powers of Δy for small Δy ; NCs are polynomials.

Three reasons:

 Normal cumulants (NC) measure non-gaussianity; Factorial cumulants (FC) measure non-poissonianity, (*irreducible* particle correlations).

NCs are for densities (continuous); FCs are for multiplicities (discrete).

Acceptance dependence:

FCs are powers of Δy for small Δy ; NCs are polynomials.

Maximum Entropy freezeout (Pradeep, MS <u>2211.09142</u>):

FCs of multiplicities are directly related to hydrodynamic correlators (or susceptibilities in thermodynamics).

BES-I data

M. Stephanov