

The nuclear interaction: Post-modern developments

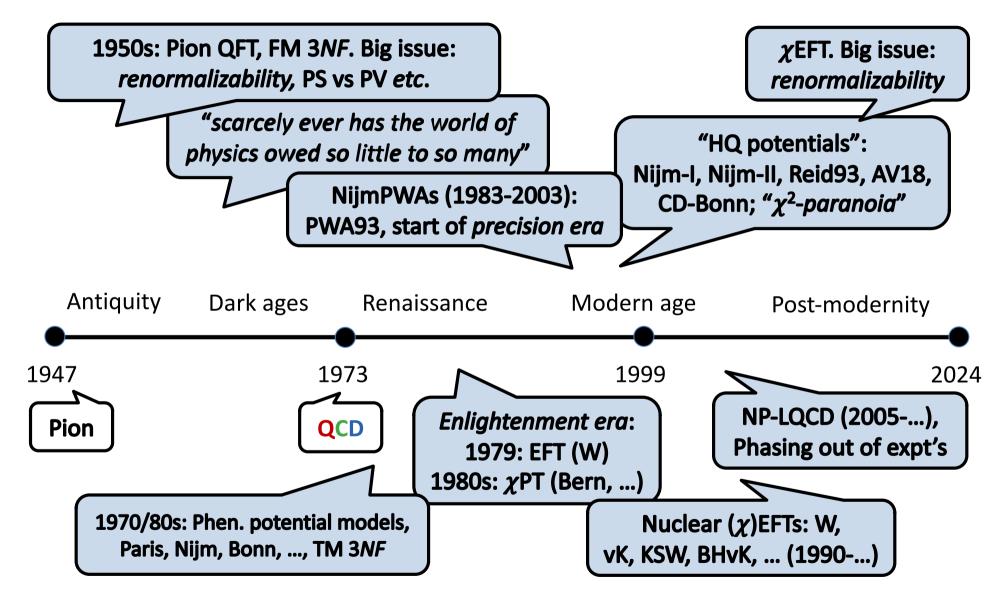
Rob G. E. Timmermans ECT* workshop, August 19, 2024

faculty of science and engineering van swinderen institute for particle physics and gravity

Opinions are my own

The EFT wars (1998-2005)

- ECT*, Trento, 1999: "Nuclear forces: Modern developments"
- INT, Seattle, 2001: "Theories of nuclear forces and few-nucleon systems"
- INT, Seattle, 2003: "Theories of nuclear forces and nuclear systems" (program), with 1-week workshop "Two- and three-nucleon forces"
- ECT*, Trento, 2005: "Nuclear forces and QCD: Never the twain shall meet?"

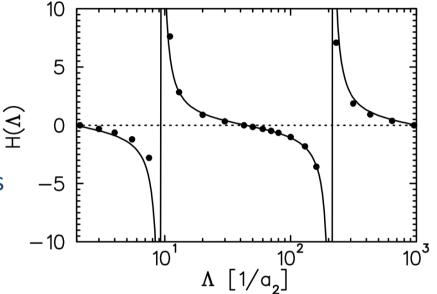

0 ...

✓ Hammer, König, van Kolck, RMP 2020:

- "EFTs have, in fact, revolutionized nuclear physics"

✓ Time to take stock!

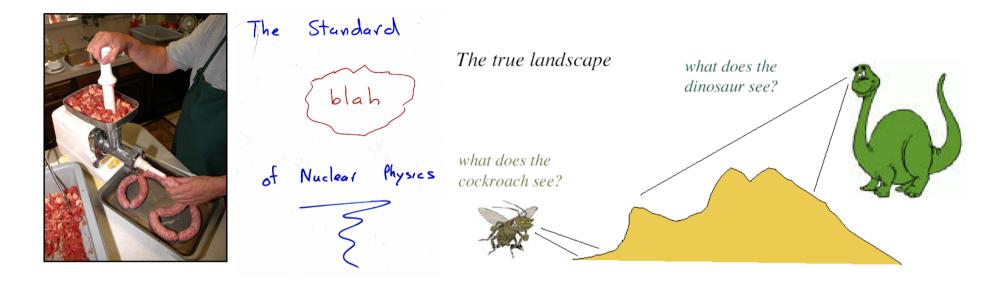
Those who don't know history...



The clash of 1999

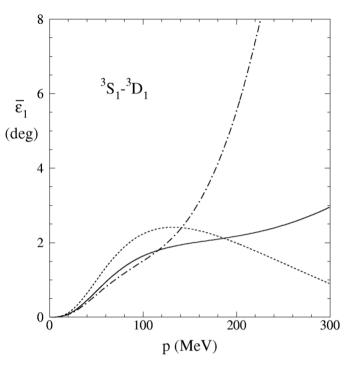
- ✓ Casus belli :
 - "Phenomenology" vs EFT

- Model and definition dependence
 - Off-shell NN versus 3N in triton
- Need? for precision
 - Use of "HQ" NN potential models
- Need? for "full relativity"



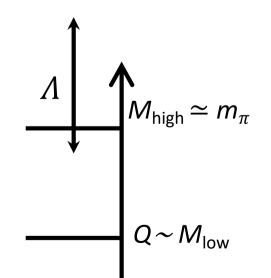
- ✓ BHvK 1998/00: 3-body system with short-range interactions
 - 3BF required at LO for renormalization
 - Discovery of the limit cycle of RG flow
 - "Is this math or physics?"
 - "This is just Russian zero-range theory"

 ✓ "Within 1-2 years we will all be using χPT-designed products (3rd-generation forces, "standard" 3NF)"
 ✓ "EFT is like Antarctica, cold and barren, freeze out everything!"


The evolutionary landscape in 1999

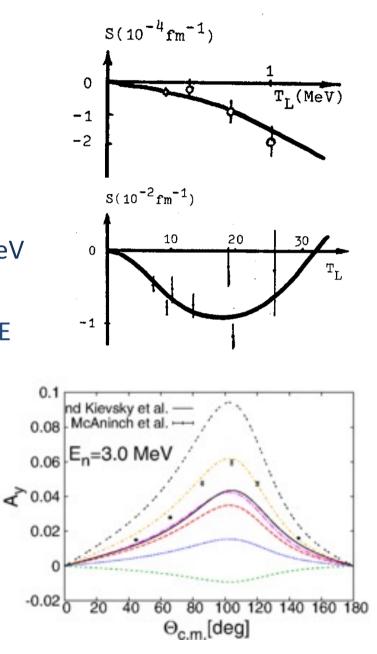
- "Cockroaches can't do much, but they *feel good* about it, because it is connected to QCD (well, sort of...)
- Dinosaurs can do a lot, but they should *feel bad* about it, because there is only a tenuous connection to QCD"
 - Tom Cohen
- ✓ However, "One does not applaud the tenor for clearing his throat "
 - Isabelle de Merteuil

*χ*EFT: no rose garden?


- ✓ Plan A: χ EFT
 - KSW, 1996/8; K, 2020: "perturbative pions"
 - "This is just effective-range expansion"
 - CH, 1998/9; FMS, 2000: "PC not effective"
- ✓ → Plan B: "pionful" EFT" → "pionless" EFT
- ✓ "It won't work, not enough separation of scales"
- ✓ Noblesse oblige: An EFT should deliver
 - Controlled expansions with systematic error estimates
 - Consistent with the symmetries & scales of QCD \rightarrow power counting
 - Renormalizable = "cutoff independence" of observables
 - → Requires a sufficient # counterterms at each order

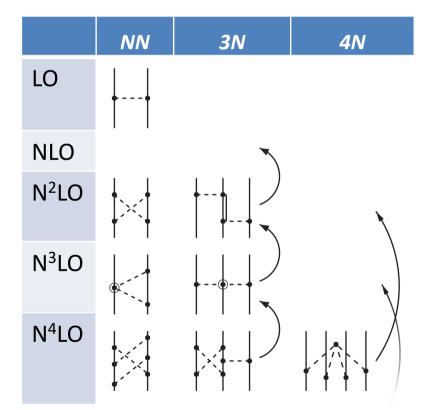
Pionless (nucleons-only, contact, ...) EFT

- ✓ "Sir, [pionless EFT] is like a dog's walking on his hind legs. It is not done well; but you are surprised to find it done at all."
 - Samuel Johnson
- ✓ "It won't work for nuclear matter, not even for ⁴He"
- ✓ PHM 2004/5: 4-body system with short-range interactions
 - No 4BF required at LO for renormalization!
 - Explanation of "Tjon line": $B(^{3}H)$ vs $B(^{4}He)$
- ✓ A post-modern success story!
 - Universality of QM few-body system, "Efimov physics"
 - Working nuclear EFT for $Q \ll m_{\pi}$
 - Consensus on power counting
 - 3BF at LO, N²LO; 4BF at NLO
 - KGHvK, 2017: Expansion around the unitary limit



The shape of things to come

- ✓ How far can this be pushed?
 - How many nucleons? \geq ¹⁶O, ⁴⁰Ca \leftrightarrow 4 α
 - Expected accuracy?
- ✓ For *NN*, EFT ≡ ERE, breaks down for $T_L \simeq 10$ MeV
 - ER parameters are highly correlated
 - Curved "shape" for $T_L < 10$ MeV due to OPE
 - pp PWA 0-30 MeV: OPE + 10 parameters - ${}^{1}S_{0}$ (3), ${}^{3}P_{0}$ (2), ${}^{3}P_{1}$ (2), ${}^{3}PF_{2}$ (2), ${}^{1}D_{2}$ (1)
- ✓ A_y puzzle in *n-d* scattering at 3 MeV
 MSV, 2016: N³LO, vary ³P_{0,1,2} LECs by 15%



Chiral (pionful) EFT

- ✓ Weinberg proposal (1990/2):
 - IR-enhancement in reducible diagrams, requires resummation
 - Truncate potential, solve QM scatt. eq. \rightarrow "nonperturbative pions"
 - Power counting: χ PT for long range, NDA for short range
 - Pioneered by ORvK, 1992/6

✓ Quantitative " χ EFT-inspired potentials"

- Epelbaum *et al.,* 1998-...;
- Entem & Machleidt, 2003-...;
- Piarulli *et al.*, 2015-...; ...
- Totally awesome!
- ✓ Early questions:
 - Friar "amendment" to PC (1997)
 - PC more effective with Δ -isobar?

The demise of Weinberg PC

✓ Weinberg PC inconsistent (\rightarrow cutoff dependence):

- KSW 1996: $C_0 \rightarrow C_0 + m_{\pi}^2 D_2$ in 1S_0
- NTvK, 2005: $\sim -1/r^3$ tensor force \rightarrow promote counterterms (#= ∞)
- P-VR-A, 2006, ...: ditto for higher-order potentials (TPE) $\sim -1/r^{3-6}$
- P-VP, 2015; external currents

- ...

#=29	Long range	¹ S ₀	³ S ₁	<i>ε</i> ₁	¹ P ₁	³ P ₀	³ P ₁	³ P ₂	E2	¹ D ₂	³ D ₁	³ D ₂	³ D ₃
LO	OPE	\checkmark	\checkmark			\checkmark		\checkmark				\checkmark	\checkmark
NLO		\checkmark											
N ² LO	LO TPE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark
N ³ LO	NLO TPE	\checkmark											
N ⁴ LO	N ² LO TPE, LO ThPE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Partly perturbative pions

✓ Diagnosis: Nonpertubative renormalization of singular potentials

- Dangerous (*wrong*) to iterate subleading singular potentals
- Risk to include only a subset of higher-order counterterms needed
 - \rightarrow Too strong cutoff dependence too far below M_{high}
 - Cf. potential models regulated with short-range "form factors"
- ✓ Post-modern proposal: NTvK, 2005; LY, 2011/12; P-V, 2011
 - LO = nonperturbative, include promoted counterterms
 - OPE perturbative for high L, say $L > L_{critical} = 2, 3$
 - NTvK, 2005; B, 2006
 - Subleading potentials in DW perturbation

✓ Is a perturbative approach practical for the community?!

 $M_{OCD} \simeq 4\pi f_{\pi}$

Λ

χ -symmetry vs χ^2 -paranoia vs χ^2 -by-eye

✓ Reign of Terror: Big colorful error bands to pretend that the EFT works

- ✓ Cool EFT-adapted tools:
 - "Lepage plots" (1997)
 - G 2016: Residual cutoff dependence of EFT results
 - SP, 2009; FKPW, 2015-; ...: Bayesian inference
- ✓ For serious tests of EFT, need *quantitative work, with errors*
 - Extract parameters, LECs etc., in an unbiased way
 - Also requires *consensus on the database*
 - Test predicted EFT hierachy of NN, 3N, 4N, ... forces → small effects
 RTFdS, 1999: OPE and TPE (N³LO) in pp χPWA
 - Nothing remotely similar to this exists for 3N, 4N scattering

✓ What actually *are* the "accuracy requirements of the nuclear community"?

"You're entering a world of pain"...

- ✓ KVGG, 2017: Promote 3NF to LO?
 - NTvK, 2005; SLvK, 2017; YEFH, 2021: Not required for cutoff independence

✓ Promote two-pion exchange to LO?!

Two-pion exchange as a leading-order contribution in chiral effective field theory

Chinmay Mishra⁽⁰⁾, ¹ A. Ekström, ² G. Hagen⁽⁰⁾, ^{3,1} T. Papenbrock⁽⁰⁾, ^{1,3} and L. Platter⁽⁰⁾, ^{1,3,4}

¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

²Department of Physics, Chalme

³Physics Division, Oak Ridge 1 A comparison of two possible nuclear effective field theory expansions ⁴Institut für Kernphysik, Techni. around the one- and two-pion exchange potentials

(Received 1 December 2021; revised

Manuel Pavon Valderrama^{1,*} ¹School of Physics, Beihang University, Beijing 100191, China (Dated: December 6, 2021)

arXiv:2112.02076v1 [nucl-th] 3 Dec 2021

✓ But what about QCD...?

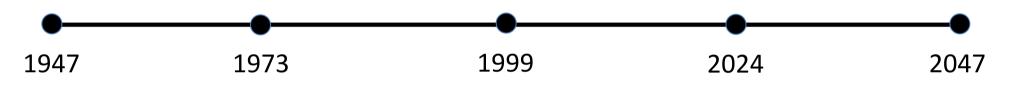
- Departures from NDA: Fine-tunings in **QCD**?
- Pious hope: $M_{high} \simeq M_{QCD}$, but maybe "not enough scale separation"?!

The evolutionary landscape in 2024

How one of the world's most successful indoor pests took over the planet

By Amanda Schupak, CNN

③ 3 minute read · Updated 12:15 PM EDT, Tue May 28, 2024



Quo vadis, EFT?

- ✓ Dystopia:
 - No more experiments
 - LQCD fails
 - χ EFT fails

- Pionless EFT still practized by some people in isolated villages

✓ Utopia: Consensus on renormalizable χ EFT that

- Works for few-nucleon systems & light nuclei
- Works for nuclear matter
- Is understood within (L)QCD
- Dedicated EFTs for specific aspects of nuclear structure
- I **PIONS**
- ✓ Realpolitik: LQCD takes the place of experiment, no "nuclear theory" needed

Workshop questions

- 1. Have chiral-EFT-inspired potentials fully replaced phenomenological approaches?
- 2. What are the limitations of these potentials, and how can they be improved?
- 3. Are chiral potentials converging appropriately, and is leading-order physics adequately captured?
- 4. What is the role and scope of power counting?
- 5. How significant is relativity in these models?
- 6. Do we fully understand the dynamical implications of QCD?
- 7. What are the prospects of EFTs (pionless, halo/cluster, chiral) for light & heavier nuclei?
- 8. How have simpler EFTs, such as pionless and halo/cluster EFTs, influenced chiral EFT?
- 9. How do EFTs help us to quantify uncertainties?