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Weinberg’s proposal

Chiral EFT has been extensively used to study the NNV system
For me, more than 20 years collaborating with Ruprecht

Evidences of non-perturbative nature: large scattering lengths and a bound state

in NN

Iterative diagrams breaks the Chiral expansion (non-perturbative)
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Compute the potential using xPT and include it in a Lippmann-Schwinger
Equation to account for the non-perturbative contribution

The infinities of perturbative loop diagrams are polynomial in the external
momenta = naive dimensional power counting allows renormalization of the
irreducible terms
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The perturbative amplitude

All amplitudes can be evaluated using dimensional regularization and M S.

The ampitude is organize as

Vio = V(ES) + V}?T)
Vo = Vio+ VétQ) + VST) + Vgr)
VNNLO = Vnro+ VS)T) + Vg(i)

In order to include it in the Lippman-Schwinger equation a regularization is
needed

@ Introduce a regularization with a cut-off V (p’,p) — f(p’,p; AV (p', p)
Renormalization of the EFT implies regularization independence. Two points of
view

i Lepage plots point of view A < A,, works but cutoff artifacts

i Usual prescription in QFT A > A, does not work (with renormalization with
one counter term, substractive renormalization and renormalization with
boundary conditions which are the same)
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The N/D method

We write the 7" matrix as

N(A)

TW=5u)

with A = p? (p the on-shell momentum) and so

2
B N(A) has a left hand cut (LHC) (forus A < — == = L)

B D(A) has a right hand cut (RHC) (A > 0)

[l Unitarity and Analitycal properties are used to get the equations and, if necessary,

substractions
i Unitarity on the RHC Im[D(A)] = —N(A)p(A)

& On the LHC D(A) is real Im[N(A)] = D(A)Im[T(A)] = D(A)A(A)

B Dispersion relations (without substractions)

Ny = L /L L mN@)] _ 1 /

T J_ oo w—A 7y

by = L [Tame) 1

T w— A T

A@D)

NV w)p(w)

ECT*2024-p. 4



The N/D method

The general Equations with 2n substractions and a substraction point C' given in Z.-H.
Guo, J.A. Oller and G. Rios, Phys. Rev. C 89, 014002 (2014)

NS s 4 emei (A=) e . p(wr)N(wr)
D(A) = ;51(/1 C) - /O dwpr on = A)on — O

N Aoy A=Or E L Awp)D(wr)
NA) = > v(A-0) - /_Ood Lo A om — O

i=1
[l We need as input the LHC discontinuity 2iA(A)

[l Usually this is computed perturbatively using yPT

I The contact terms does not give any contribution to A(A)

[l Contacts are taken into account through substraction constants

@ In principle any number of substractions can be used, however for singular
interactions not always a solution exists.

@ To solve the Equations
@ Including the Eq. for IV in D one gets an integral Eq. only for D
& Once D is known in the LHC, D, N and T are known in all the complex plane
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The N/D()1

[l We use the N/D equations with one substraction in D
[l Always needed due to the invariance N — aN and D — aD

B Results for non-singular interactions should be the same as the result of
Lippman-Schwinger Equation

B The usual prescription is D(0) = 1

The Equations are

D(A) = 1——/ dor'y A()“;fj
D(wr)A(wr)

N(A) = ;/_mde (wr, — A)

where p(A) = M g VA4 js the phase space and 2:A(A) is the LHC discontinuity of the
T-matrix.
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The N/D11

[l We perform an additional substraction in N

D(A) = 1——/ dwp N(wr)

(wr — A)wR

/ do D(wr)A(wr)
— 00 (wL—A)(wL—C)

N(A) = —|—

T

[l We use the Effective range expansion to fix the substraction constant and the
substraction point

1 1 .
kcotd = —— + —rk? + L
a 2T ;v

[l We get the Equations

D(A) = 1+4+iaVA+i

My /L o D)AWL A

w
an? |t o A+ Jur
L
N(4) = _47Ta+é/ deD(wL)A(wL)
MN TT — 00 (wL—A)wL

B They are independent of the substraction constant and point
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The N/D12

B We perform an additional substraction now in D
B We fix now the Effective Range parameter r

[l We get the Equations

MnA D(wr)A(w
D(A) = 1—|—za\/Z——A—z 4:2 /_Oode (LQ)JL(L)
[ VA B ]
(VoL + VAo, awr
_ _4ma AT D(wr)A(wr)
N(A) = _M—NJF?/_oode or — Ao

B They are independent of the substraction constant and point

ECT*2024-p. 8



The N/Dnd

Bl We perform n substractions in NV and d in D

B We fix the n + d — 1 first coefficients in the effective range expansion
B We get Equations that only depends on a, 7, v2, ..., V41 q—2.

B They are independent of the substraction constant and point

[l The input of the method is

W A(A) for the finite range interaction
The contact terms don’t give any contribution to A(A)

i The effective range expansion parameters fitted through the substractions in
the N/D method
Substractions are equivalent to contacts
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Leading Order - LO

The potential is

2 — —— —
gp 01°-902-q_, 5 5
A2 5 571 -T2+ Cg + Cro1 - 62
4f2 q= +m=

V(9)

for the singlet 1S, partial wave

2 2
gA ma
Vip',p) = 4 C
(p’,p) if2 2p,on(Z)-|— 0
1 z+1
= =1
o - us(21)
p'? +p* +m3
z =
2p'p

2
The LHC discontinuity is (L = — =%, A=p? ~ —k?, p=ik +¢, k,e > 0)
94 ™Mz

AlW(A) — G(L - A) 4f2 AA

ECT*2024—p. 10



Iterative diagrams

W 27 exchange

2.2 2
gamy M 2k
NAor(A) = —-0(4L—- A —1 — —1
e () ( )<16f7%> = °g<m7r )
B 37 exchange
2,2\ % / afa 2 2k—my 1
Ban(d) = —sor—a) (FAT=) (SR [ g
4fx e ) 4k2 Jom., p1(2k — p1)
0 —2ms) [ d !
p1 — 2my (2
M p2(2k — p2)
B 47 exchange
2. 2\4 3 2k —m
Aan(A) = —6(16L—A) (AT (@> i/ dyin !
41z dm ) 4k? J3m, p1(2k — p1)
O(p1 — 3mr) / T !
g1 — 3my (42
2 w2 (2k — p2)
0(z — 2mr) / T !
H2 — aMey Hn3 .
M p3(2k — p3)
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Iterative diagrams

B n7 exchange (with pg = 2k)

5 g%m2 " M n—1 .
Anr(A = —0 L— A T — —
nr(4) (n '\ a2 ( A ) 152

(-1 — ( +1—.7)m7r)/ dpi;
1;[ T (n—3)max T g (2k — pj)

B This is the formal solution of the integral equation (with A(A) = A(A4, 2k))

- My k2 A-mx A (A)A(A,
AAm = Bunld)— (M) o 2my) [T au SIS

™ M p(2k — )

B When k£ > m,
2 " 2 —~\/k
A(A) - _ AT e%arctanh(l—Tﬂ') - _ AT ( My )
]\4]\7]62 MN]C2 2k — mor
gamz M
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General Case

[l Use the analytical properties of T’
[l Use the analytical properties of V' — Dynamical cuts
[l Dynamical cut for 7" are the same as for VV

[l Make the analytical extension of the Lippmann-Schwinger Eq. to the LHC and look
for A(A).

The general Equation for S waves is

My [k—m= Vi
AT(v,k) = AV(v,k)+0(k—mx)0(k—v —2mz)—— / dvq =
7

AV (v,v1)AT (v1, k)
A(A) = —AT(—k,k)

with (e > § > 0)

2AT (v, k) = lim lim ImT (iv 4+ € — §, ik +€) — ImT (iv + € + 9§, ik + €)
e—06—0
2AV (v,v1) =  lim Iim{ImV (iv +e€—9d,iv1 +€) —ImV (iv + e+ d,iv1 +€)}

e—05—=0
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General Case

For OPE in the 1S, partial wave

_gamz 1
1612 viv

AV (v1,v) = —

sign(vy — v)0|v1 — v| — my))

We get the same Equation with
I For OPE in the 1S, partial wave AV (11, v) = k2A 1, (A)
Bl Making the change u =k — v
B Identifying A(A, u) = K2AT (v =k — p, k)

ECT*2024-p. 14



General Case

For [ > 0 we define

AT (v1,v2) = V%+ZV21+ZAT(V1, o)
AV(vi,v2) = I/%—HV%_HAV(]/LVQ)
we get
AT, k) = AV(v,k) MyO(k mW)HQ(k —v—2mg)
vy
1 1 ) )
(2(1/1 + i€)2l+1 B ) AV (v,v1)AT (v1, k)

W The input is AV (v, 1)

[l The integral equation has finite integration limits (but depending on v)
B The result AT (v, ) is always finite even for singular interactions

B AT (—k, k) = —k2+2A(A)
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Regular case

At LO only OPE is present which is a non-singular interaction

Results for the physical g4
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Regular case N/D;

At LO only OPE is present which is a non-singular interaction
Results for the physical g4
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Ac(A) Aop(A)  Ase(A)  As(A)  A(A)  eLS
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Regular case

Results for the unphysical g4 = 6,80

Now the problem is non-perturbative
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Regular case N/D;

Results for the unphysical g4 = 6,80
Now the problem is non-perturbative
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Regular case N/D;

Results for the unphysical g4 = 6,80
Now the problem is non-perturbative but it looks perturbative

a fitted to the value given by LS

60
40 |¥
20 |
0+
-20 +
40 +
-60
-80
-100 |
-120 |
-140

6130

0 50 100 150 200 250 300 350 400
k (MeV)

Solution of N/D1
A1r(A) Aor(A) Aszr(A) Ayr(A) A(A) o LS

ECT*2024— p. 20



Regular case N/D;

Results for the unphysical g4 = 6,80
Now the problem is non-perturbative but it looks perturbative

a fitted to the value given by LS

60
40 |
20
0 ¢
_20 L
-40 |
_60 L
-80 L
-100 |
-120 |
-140

6130

0 50 100 150 200 250 300 350 400
k (MeV)

Solution of N/D1
A1r(A) Aor(A) Aszr(A) Ayr(A) A(A) o LS

ECT*2024— p. 20



Regular case N/D;

Results for the unphysical g4 = 6,80
Now the problem is non-perturbative but it looks perturbative

a fitted to the value given by LS

60
40 |
20
O .
_20 L
-40 |
_60 L
-80 L
-100 |
-120 |
-140

6130

0 50 100 150 200 250 300 350 400
k (MeV)

Solution of N/D1
A1r(A) Aor(A) Aszr(A) Ayr(A) A(A) o LS

ECT*2024— p. 20



Regular case N/D;

Results for the unphysical g4 = 6,80
Now the problem is non-perturbative but it looks perturbative

a fitted to the value given by LS

60
40 |
20
O -
_20 L
-40 |
_60 L
-80 L
-100 |
-120 |
-140

6130

0 50 100 150 200 250 300 350 400
k (MeV)

Solution of N/D1
A1r(A) Aor(A) Aszr(A) Ayr(A) A(A) o LS

ECT*2024— p. 20



Regular case N/D;

Results for the unphysical g4 = 6,80
Now the problem is non-perturbative but it looks perturbative

a fitted to the value given by LS

60
40 1
20
0t
-20 +
40
-60
-80
-100 |
-120
-140

6130

0 50 100 150 200 250 300 350 400
k (MeV)

Solution of N/D1
A1r(A) Aor(A) Aszr(A) Ayr(A) A(A) o LS

ECT*2024— p. 20



Regular case N/D;

Results for the unphysical g4 = 6,80
Now the problem is non-perturbative but it looks perturbative

a fitted to the value given by LS

60
40 |
20
0t
_20 L
-40 |
_60 L
-80 L
-100 |
-120 |
-140

6130

0 50 100 150 200 250 300 350 400
k (MeV)

Solution of N/D1
A1r(A) Aor(A) Aszr(A) Ayr(A) A(A) o LS

ECT*2024— p. 20



Regular case

Results for the unphysical g4 = 6,80

as (fm)  r (fm) vg (fm3) vz (fm®) vy fm7) o5 (tm?)  vg (fmlh)
N/Dg1
Aq 1.66 0.714 -0.168 0.847 -5.35 35.5 -241
Ao 3.53 2.03 -5.70 10 2 3.38 -27.4 234 -1.99 103
Ag 1.80 1.15 -8.7110 2 0.924 -5.69 36.9 -247
Ay -6.89 13.7 47.5 356 2.63 103 1.97 104 1.46 10°
Non Perturbative -23.75 8.90 18.7 89.8 411 2.00 103 8.98 103
N/Dq1
Aq -23.75 8.56 15.3 60.5 221 906 3.08 103
Ao -23.75 8.80 17.7 80.4 346 1.60 103 6.71 103
Ag. -23.75 8.88 18.4 87.5 395 1.90 103 8.40 103
Ay -23.75 8.90 18.6 89.3 408 1.98 103 8.87 103
Non-perturbative -23.75 8.90 18.7 89.8 411 2.00 103 8.98 103
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Regular case

We encrease g4 = 7,45 to have a near threshold bound state

N/ DO 1 N/D 11 Schrédinger

17 2.02
27 2.18
3 2.21
41 0.89 2.22

Non-perturbative 2.22 2.22 2.22
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Renormalization procedures

[l Three equivalent methods for A — oo
& Renormalization with boundary conditions
i Renormalization with counter terms
i Substractive renormalization
The methods gives the same result
i Only one renormalization condition for singular attractive case

& No renormalization condition for singular repulsive case

B The N/D method is equivalent
& N/Di; for singular attractive case

& N/Do; for singular repulsive case

Bl The N/D method with more substractions can go further
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Singular atractive case - NNLO

N/Di2> does not converge
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Toy model

Bl V(r) regular interaction

lim V(r)

r—0

Vi(r) + Va(r) + Va(r) + Va(r)

—
r
6—2mﬂ-r
]
rr.3
e—mir
—a1(mg — 2my) 5
r
e—mar
7“3

Bl Vi(r) long range regular interaction
B V>(r) middle range singular interaction («; > 0 repulsive, oy < 0 atractive)

B V3(r) and V4 (r) short range singular interaction (m; = 1 GeV mg = 1,2 GeV)

200 + a1 (2my — ma)(2my — 2m1 + m2)

1 —
2

r
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Toy model

Consider we only know V7 (r) and V2 (r), Can we describe low energy results of the full
V(r)?

With renormalization with one counter term (or substractive renormalization) and
renormalization with boundary conditions (which are equivalent):

[l If we only consider Vi (r) the interaction is regular and can be renormalized

[l If we consider V> (r) the interaction is singular
& a1 < 0 we can fix only one low energy data (scattering length a)

& a1 > 0 we can not fix any low energy data

This is the main limitation of these renormalization procedures, main criticism of this
way to renormalize

Can the exact N/D method with multiple
substractions do it better?

The N/D,, converges but,
has it a physical meaning?
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Only one or none renormalization conditions
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Problem of Renormalization

B V regular
B V) regular
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Only one or none renormalization conditions
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Problem of Renormalization

B V regular
B V) regular
=

-30

0 50 100 150 200 250 300 350 400
k (MeV)

Only one or none renormalization conditions

Renormalization allow to get the correct low energy behavior
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Problem of Renormalization

B V regular

B V) regular

=

B V; + V5 singular repulsive

-30

0 50 100 150 200 250 300 350 400
k (MeV)

Only one or none renormalization conditions
Renormalization allow to get the correct low energy behavior

Including singular repulsive interactions does not allow to
renormalize and even the low energy behavior is wrong
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Problem of Renormalization

B V regular

B V) regular

=

B V; + V5 singular repulsive

B V; + V2 + V3 singular repulsive

-30 R
0 50 100 150 200 250 300 350 400

k (MeV)

Only one or none renormalization conditions
Renormalization allow to get the correct low energy behavior

Including singular repulsive interactions does not allow to
renormalize and even the low energy behavior is wrong
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Only V; (non-singular)

B V regular
B V) regular
@ Dash ERE at k27, , n = 1,

n—=2mn==06

0 50 100 150 200 250 300 350 400
k (MeV)
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Only V| (non-singular)

B V regular
B V) regular
W N/Di
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Only V; (non-singular)

B V regular
B V) regular
=

B N/Dio

0 50 100 150 200 250 300 350 400
k (MeV)

Including more substractions allow to go to higher energies
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Only V; (non-singular)

B V regular
B V) regular
=

B N/Dio

B N/Dso

0 50 100 150 200 250 300 350 400
k (MeV)

Including more substractions allow to go to higher energies
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Vi 4+ V5 (singular repulsive)

B V regular
B Vi + V2 N/Do1

E N/Dp; and N/ D12 does not
converge

0 50 100 150 200 250 300 350 400
k (MeV)

For singular repulsive case we can not fix only a or ¢ and r
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Vi 4+ V5 (singular repulsive)

| B V regular
10 | | BV, + Vo N/Dg;

E N/Dp; and N/ D12 does not
converge

H N/Do

0 50 100 150 200 250 300 350 400
k (MeV)

For singular repulsive case we can not fix only a or ¢ and r

But we can fix a, » and v, and the result agrees with the full theory
upto 400 MeV
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Vi + V5 (singular attractive)

60

B V regular
50 | — .
20 | , [l N/D;i2 does not converge
30 |
20 |
10
0

0 50 100 150 200 250 300 350 400
k (MeV)

For singular atractive case we can fix a but not ¢ and r
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Vi + V5 (singular attractive)

60

B V regular

50 r 1 I

20 | , [l N/D;i2 does not converge
B N/Doso

w30

20 |

10

0

0 50 100 150 200 250 300 350 400
k (MeV)

For singular atractive case we can fix a but not ¢ and r

But we can fix a, » and v, and the result agrees with the full theory
upto 400 MeV
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LS with dimensional Reg.

We follow J. Nieves, Physics Letters B 568, 109 (2003)

Distorted Wave Theory from T. Barford and M.C. Birse, Phys. Rev. C 67, 064006

(2003) is used

We consider the finite range regular OPE in the ' S, partial wave

Va(p',p) = —ar————log
2w p'p

We add zero range contact interactions in the 1S, partial wave

Vs(p',p)

The full potential is

V(p',p)

My 1 ((p’+p)

n

Z Z gm,s_mp/2mp2(s—m)

S

s=0m=0

goo + go1(p® +p*) + ...

Ve(',p) + Vs(p',p)
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LS with dimensional Reg.

The solution from DWT (which is exact) is
T = Tr+{U+TxGo)Ts(I+ GoTx)
The solution for the regular OPE potential is needed
T, = Ve+ViGoTx
And T is given by
Ts = Vs+4+ VsGrTs

with G = Go + GoT=Go

Since V; is separable, the equation for 7’5 can be solved algebraically with the
ansatz

n 3
T, (p’,p; k) — Z Z asmp/2sp2m
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LS with dimensional Reg.

[ Since V; is singular, divergent integrals appear and they are treated using
dimensional regularization
I All divergent integrals are written in terms of two (using dimensional
regularization)
& One convergent

/°° p *Tr(k,q; k)
q
0

Lo (k) K2 2 1 i

& One logarithmically divergent
oo o0 /12 2T7r /7 ;k
do) = [T dg [T gL
0 o  (k*—q?+ie)(k? — q* +ie)

@ We evaluate Jy(k) = Jo(k) — Jo(0) which is convergent
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LS with dimensional Reg.

The solution is

(1+ Lo(k))?

T(k = Tr(k)+ —
= Y
Vol = [goo + 2901 (K2 —77)-|-...}_1

with n = Mymrar and JE = J(0)
For |k| < “5* it is straight forward to do the analytical continuation to complex k

Original work gog = go and ggo1 = g1 and the case with only one contact is
included

We have generalized upto n = 3 (contacts~ Q%)
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Only one contact

[l We only have one free parameter jg =

1

JR

0

Bl We can fit §( to the scattering length « and we get

80

70

60 |

50 ¢

W 40 +

30

20

10 |

0

®

0

50 100 150 200 250 300 350 400

k (MeV)

i Dimensional regularization
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Only one contact

I We only have one free parameter §; = ﬁ — J&

Bl We can fit §( to the scattering length « and we get
80

70 | . . .
i Dimensional regularization

01 B N/Du

50 |
W 40
30 j
20

10 |

O I I I I I I I
0O 50 100 150 200 250 300 350 400

k (MeV)

[l Previous works (Pavon-Valderrama and Ruiz-Arriola in coordinate space and
Nogga, Timmermans and van Kolck in momentum space) given by N/D;; agree
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Two contacts

[l Three parameters gom = —0,2762, gym?> = 0,3470 and Jé%/m = —3,207 from
original calculation

80 |
& Nijmegen pwa

60 ¢ & Dimensional regularization

10 ™~ kcotéz—%+%rk2+v2k4
e

20

0 ¢
-20 —

0 50 100 150 200 250 300 350 400
k (MeV)
a (fm) r (fm) vs (FM3) vs (fm®) vs (FM") vs (fm?) ve (fm'1)

DR -23.7588  2.67286  -0.571399  5.00026 -29.2871 185.602 -1224.71
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Two contacts

@ Three parameters gom = —0,2762, g1m3 = 0,3470 and J/m = —3,207 from

original calculation

80 |
& Nijmegen pwa

60 ¢ & Dimensional regularization

20 | ™~ kcotéz—%+%rk2+v2k4
© B N/Dp

20

0 ¢

-20 S —

0 50 100 150 200 250 300 350 400
k (MeV)
a (fm) r (fm) vo (fm?) vs fm®)  vs fM7) w5 (fm?)  wve (fm'h)
DR -23.7588 2.67286 -0.571399 5.00026 -29.2871 185.602 -1224.71

N/D1o -23.7588  2.67286 -0.838494

4.57628

-27.7419  177.298 -1176.81
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Two contacts

[l Three parameters gom = —0,2762, gym?> = 0,3470 and J(?/m = —3,207 from
original calculation

80 |
& Nijmegen pwa
60 ¢ & Dimensional regularization
10 ™~ kcotéz—%+%rk2+v2k4
© B N/Dp
20 W N/Doo
0 ¢
-20 —
0 50 100 150 200 250 300 350 400
k (MeV)
a (fm) r (fm) va (fm?) vz (fm®) vy fm") w5 (fm®)  ve (fm'?!)
DR -23.7588 2.67286 -0.571399 5.00026 -29.2871 185.602 -1224.71

N/D1o -23.7588  2.67286  -0.838494  4.57628 -27.7419  177.298 -1176.81
N/Dso -23.7588  2.67286 -0.571399  5.00026 -29.2871 185.602 -1224.71

ECT*2024- p. 36



Two contacts

@ If we consider JI* — oo we can fix a and r with go and ¢,

80 |

i Dimensional regularization
fixing @ and r and J&* — oo

-20

0O 50 100 150 200 250 300 350 400
k (MeV)
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Two contacts

@ If we consider JI* — oo we can fix a and r with go and ¢,

80 |
i Dimensional regularization

60 | ] fixing @ and r and J&* — oo
W N/Dio

40 |

Ko
20 1
0e¢
-20

0O 50 100 150 200 250 300 350 400
k (MeV)

The low energy constants in both calculations perfectly agree
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n =23

E We use J!'/m = —3,207 and fix a, 7, v2 and v
i Dimensional regularization
80
a = —23,7588fm
r = 2,67286fm
ve = —0,571399 fm”
vs = 5,02179 fm®
o va = —29,2442fm"
vs = 185,489 fm®
ve = —1224,08fm"!
| v; = 8328,23fm"’
. vs = —57993,3fm"°
0 260 460 660 860 1000 vg = 411258fm'’

k (MeV)
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n =23

E We use J!'/m = —3,207 and fix a, 7, v2 and v
i Dimensional regularization
80
a = —23,7588fm
r = 2,67286fm
vy = —0,571399 fm”
vs = 5,02179 fm®
© vy = —29,2442fm"
vs = 185,489 fm®
ve = —1224,08fm"!
| vy = 8328,23fm'>
. vs = —57993,3fm"°
0 200 400 600 800 1000 vg = 411258 fm'’
k (MeV)
B N/Dyy

The low energy constants in both calculations perfectly agree
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Summary

[l Renormalization methods for singular interactions were limited to one or none
renormalization conditions
[l The exact N/D method

& The N/Dg; method with an exact A(A) is equivalent to the
Lippmann-Schwinger Eq. for regular interactions. For singualar interactions
@ Singular attractive N/D1;
@ Singular repulsive N/Dg;

@ A(A) has only contributions from finite range interactions and the effect of
contact terms is taken through substractions in the N/D equations

i The IE for A(A) is always finite and no regularization is needed even for
singular interactions

& For singular interactions the N/D method with more substractions improves
the low energy behavior for the toy model

& The integral equation for D does not fulfill the Fredholm conditions and we
don’t know a priori if a solution exist.
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Questions

In the toy model a, » and v2 were known
In the real case these are not known
Let’s say that we generate pseudo-data with the full-model

The question is: What should be the priori for the fit? considering that V; and V5
are exactly known and we want to extract a, » and v, from the data

For the regular OPE potential the N/D method is equivalent to the LS equation
with singular contact terms treated with DR

Can we obtain similar relations for the singular case?
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