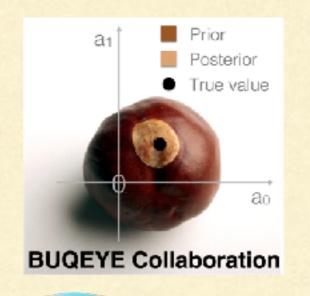
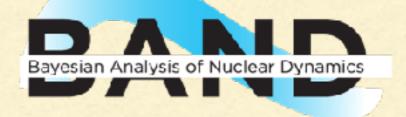
Improving nuclear force inference with correlated models of truncation errors

Daniel Phillips





RESEARCH SUPPORTED BY THE US DOE, THE NSF OFFICE OF ADVANCED CYBERINFRASTRUCTRE, AND THE SWEDISH RESEARCH COUNCIL

Falsifying claims about an EFT expansion for observables

Consider χ EFT, where we have two light scales, p and m_{π}

• General χ EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$:

k

n=0

$$Q = \frac{(p_{\text{typ}}, m_{\pi})}{\Lambda_b}; \quad \Lambda_b \approx 600 \text{ MeV}$$

Then c_n are "order I"

Falsifying claims about an EFT expansion for observables

Consider χ EFT, where we have two light scales, p and m $_{\pi}$

General χ EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$:

k

n=0

$$Q = \frac{(p_{\text{typ}}, m_{\pi})}{\Lambda_b}; \quad \Lambda_b \approx 600 \text{ MeV}$$

Then c_n are "order I"

I will argue that we can:

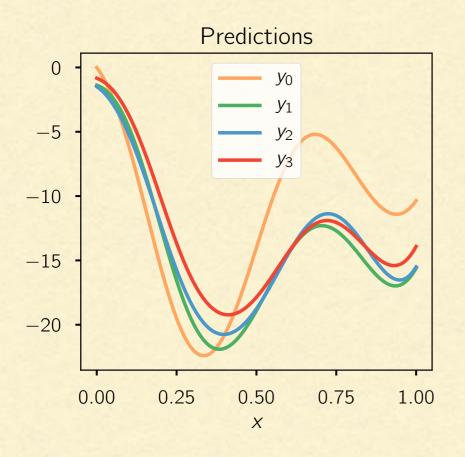
- Make a probabilistic definition of "The cn are order I"
- Falsify claims that all orders behave in the same way
- Estimate the Λ_b that makes the c_n as similar in size as possible
- Check what c_n is a function of (E? p? E and theta? p and q?)
- Test different assumptions for how soft scales appear in Q

• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

n=0

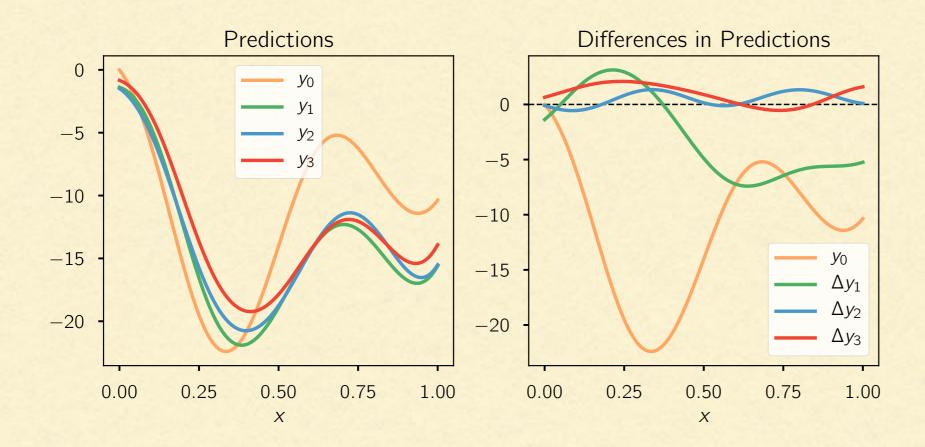
• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

n=0

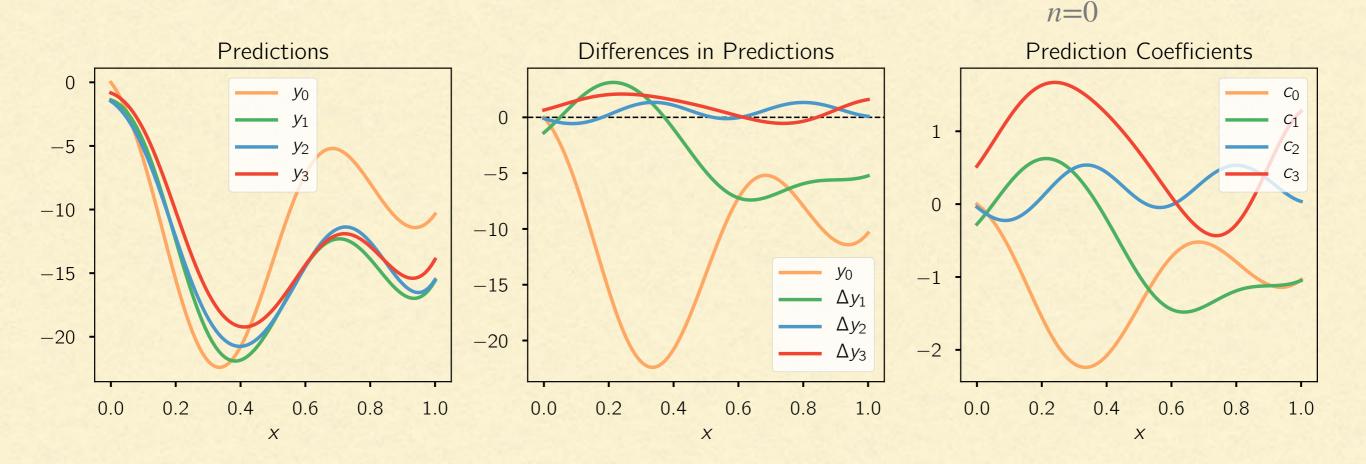


• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

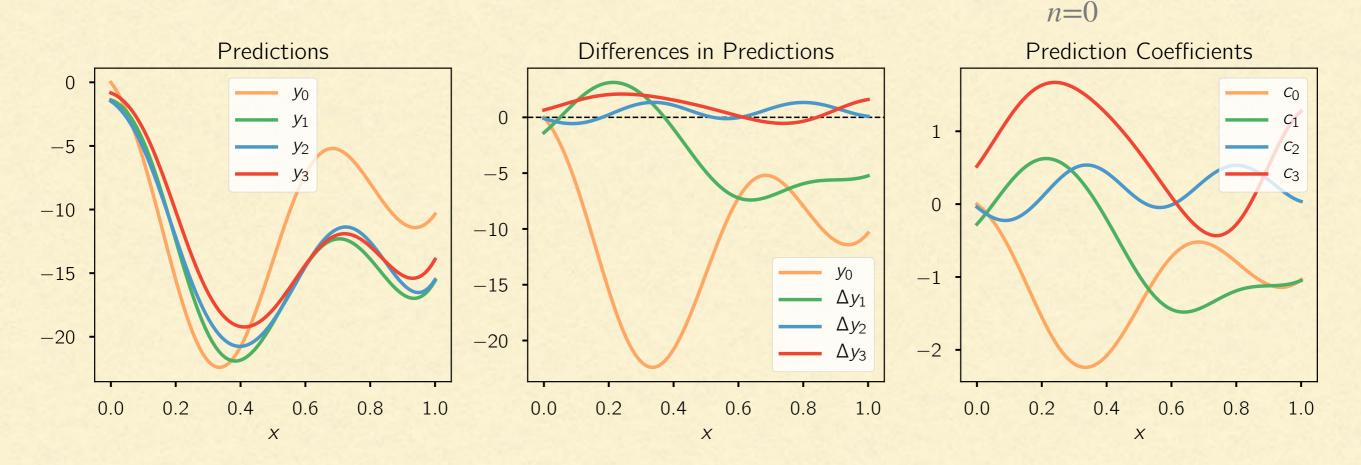
n=0



• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

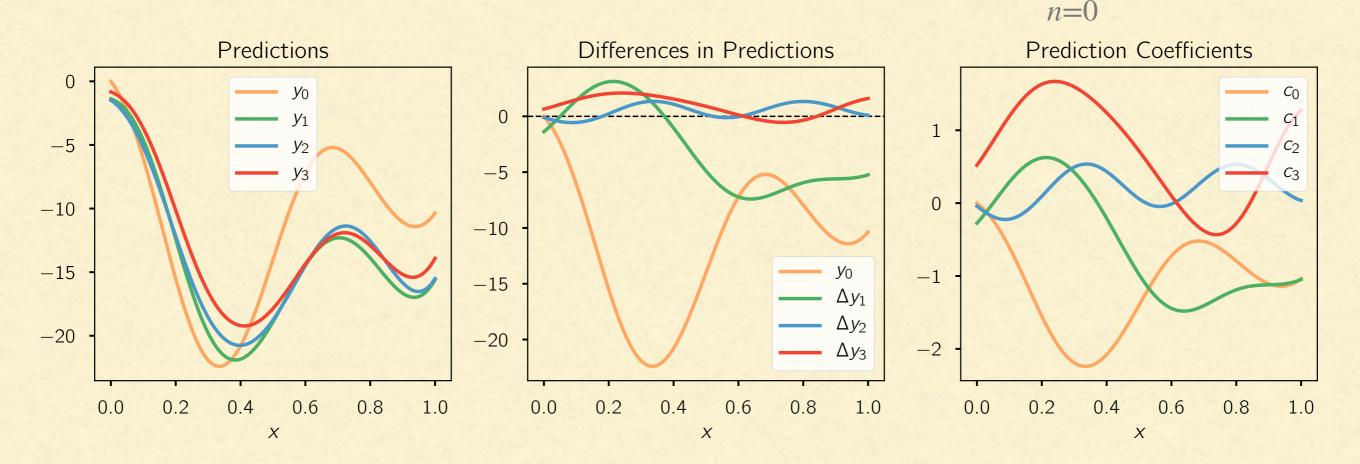


• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$



This is what a healthy observable expansion looks like: bounded coefficients, that do not grow or shrink with order.

• General EFT series for observable to order k: $y = y_{ref} \sum c_n (p_{typ}/m_{\pi})Q^n$

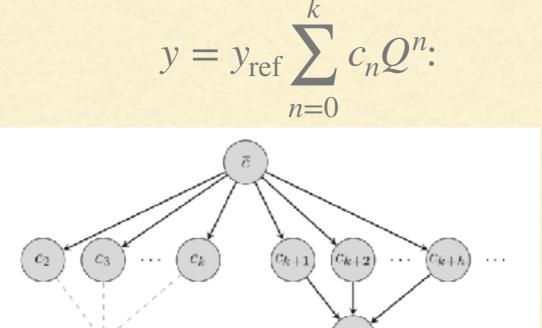


This is what a healthy observable expansion looks like: bounded coefficients, that do not grow or shrink with order.

Data for analysis: EFT predictions at different orders across "input space"

A statistical model for EFT coefficients

Furnstahl, Klco, DP, Wesolowski, PRC (2015); after Cacciari & Houdeau, JHEP (2011)



Extracted

If we know the distribution from which c₀, c₁, ..., c_k are drawn we can predict size of truncation error

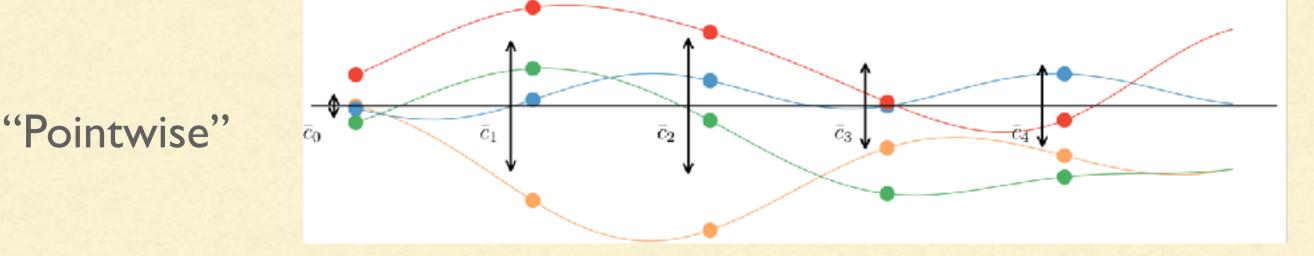
> Parameter \bar{c} sets size of all dimensionless coefficients

A statistical model for EFT coefficients

Furnstahl, Klco, DP, Wesolowski, PRC (2015); after Cacciari & Houdeau, JHEP (2011)

 $y = y_{\text{ref}} \sum_{n=0}^{\infty} c_n Q^n$: $\int_{c_2} c_3 \cdots c_k + \int_{c_{k+1}} c_{k+2} \cdots + \int_{c_{k+k}} \cdots + \int_{c_{k+1}} c_{k+2} \cdots + \int_{c_{k+k}} \cdots + \int_{c_{k+k}} \cdots + \int_{c_{k+k}} c_{k+k} \cdots + \int_{c_{k+k}} \cdots + \int_{c_{k+k}} c_{k+k} \cdots + \int_{c_{k+k}} \cdots + \int_{c_{k+k}} c_{k+k} \cdots + \int_{c_{k+k}} \cdots + \int_{c_{k+k}} \cdots + \int_{c_{k+k}} c_{k+k} \cdots + \int_{c_{k+k}} \cdots + \int$ If we know the distribution from which $c_0, c_1, ..., c_k$ are drawn we can predict size of truncation error

> Parameter \bar{c} sets size of all dimensionless coefficients



A statistical model for EFT coefficients

 $y = y_{\text{ref}} \sum c_n Q^n$:

n=0

 c_{k+2}

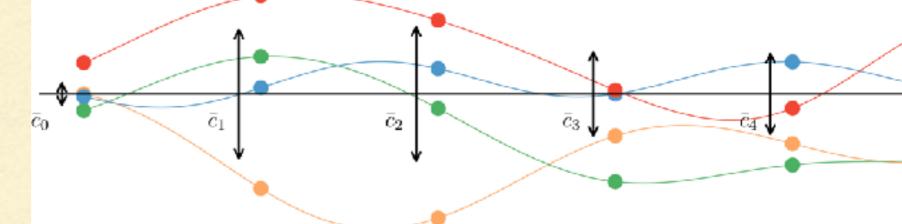
 (c_{k+h})

Furnstahl, Klco, DP, Wesolowski, PRC (2015); after Cacciari & Houdeau, JHEP (2011)

If we know the distribution from which $c_0, c_1, ..., c_k$ are drawn we can predict size of truncation error

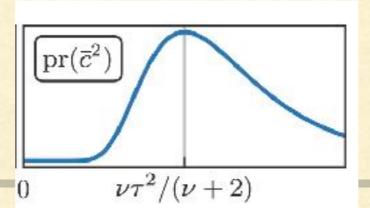
> Parameter \bar{c} sets size of all dimensionless coefficients

Extracted



For this talk $c_n \sim \mathcal{N}(0, \bar{c}^2)$ $\bar{c}^2 \sim \chi^{-2}(\nu, \tau^2)$

 c_k



 $\nu = \nu_0 + n_c;$ $\nu \tau^2 = \nu_0 \tau_0^2 + \vec{c}_k^2$

From pointwise to curvewise

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)

 $y = y_{\text{ref}} \sum_{n=1}^{k} c_n (p/m_\pi) Q^n$ n=0

Function c_n is not a constant. But the c_n 's at different values of p aren't independent random variables either

From pointwise to curvewise

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)

$$y = y_{\text{ref}} \sum_{n=0}^{k} c_n (p/m_\pi) Q^n$$

Function c_n is not a constant. But the c_n 's at different values of p aren't independent random variables either

Our hypothesis:

EFT coefficients at different orders can be modeled as independent draws from a *Gaussian Process* with a stationary kernel

From pointwise to curvewise

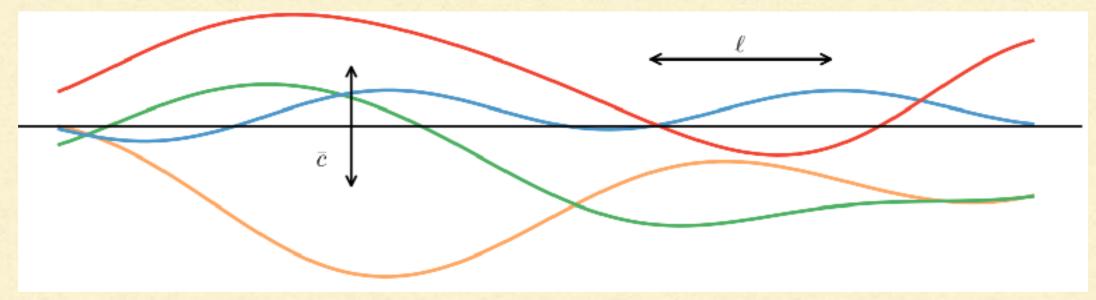
Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)

$$y = y_{\text{ref}} \sum_{n=0}^{k} c_n (p/m_\pi) Q^n$$

Function c_n is not a constant. But the c_n 's at different values of p aren't independent random variables either

Our hypothesis:

EFT coefficients at different orders can be modeled as independent draws from a *Gaussian Process* with a stationary kernel



Gaussian distribution at each point

• With correlation structure parameterized by a single \bar{c}^2 and ℓ at all orders

A bit more on Gaussian Processes

- Non-parametric, probabilistic model for a function
- Suppose we already know f at x1, x2, x3, ..., xn.
- Specify how f(y) is correlated with f(x1), f(x2),; don't specify underlying functional form.
- But value of f(y) is not deterministic: it's given by a (Gaussian) probability distribution.
- Correlation decreases as points get further away from each other.
- Specify correlation matrix of f at x and y, e.g.:

$$\kappa(f(x), f(y)) = \bar{c}^2 \exp\left(-\frac{(x-y)^2}{2\ell^2}\right)$$

Two parameters \bar{c}^2 and ℓ : pr $(\bar{c}^2 | I) \sim \chi^{-2}(\nu_0, \tau_0^2)$; pr $(\ell | I)$ uniform

A bit more on Gaussian Processes

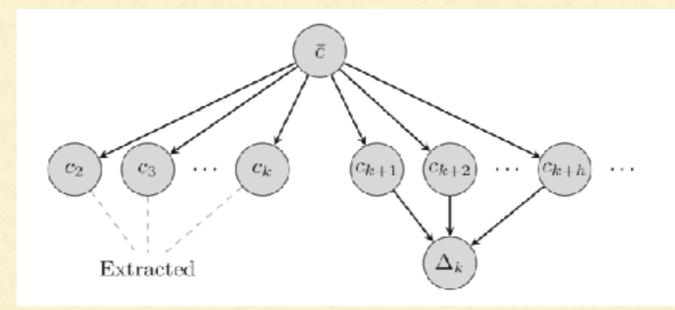
- Non-parametric, probabilistic model for a function
- Suppose we already know f at x1, x2, x3, ..., xn.
- Specify how f(y) is correlated with f(x1), f(x2),; don't specify underlying functional form.
- But value of f(y) is not deterministic: it's given by a (Gaussian) probability distribution.
- Correlation decreases as points get further away from each other.
- Specify correlation matrix of f at x and y, e.g.:

$$k(f(x), f(y)) = \overline{c}^2 \exp\left(-\frac{(x-y)^2}{2\ell^2}\right)$$

Statistical model choices

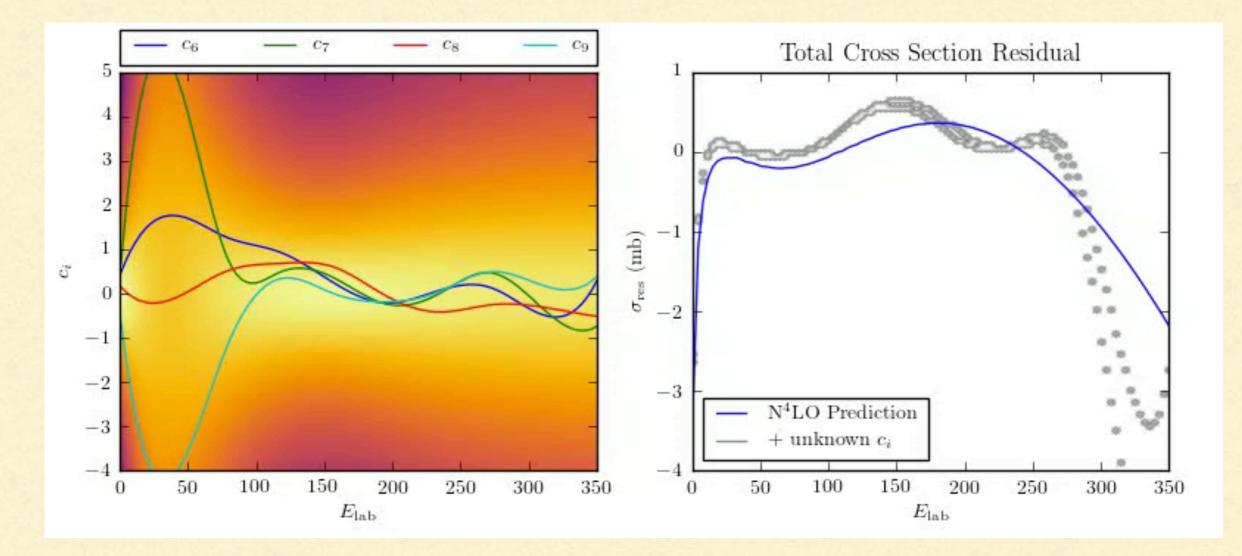
Two parameters \bar{c}^2 and ℓ : pr($\bar{c}^2 | I$) ~ $\chi^{-2}(\nu_0, \tau_0^2)$; pr($\ell | I$) uniform

Inferring the next coefficient(s)



Gaussian process "model" for χ EFT coefficients, trained on c₂ -c₅, can be used to predict distribution of N⁵LO corrections

Inferring the next coefficient(s)

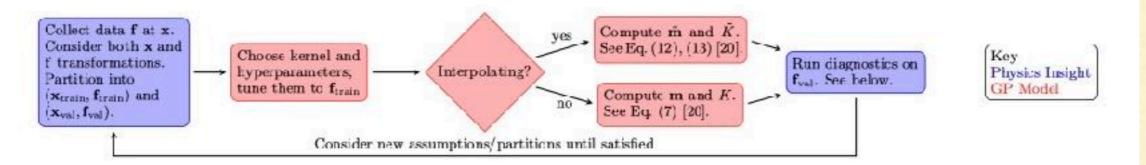


Gaussian process "model" for χ EFT coefficients, trained on c₂ -c₅, can be used to predict distribution of N⁵LO corrections $\Delta\sigma(E) = \sigma_{ref}[c_6(E)Q^6 + c_7(E)Q^7 + c_8(E)Q^8 + c_9(E)Q^9 + c_{10}(E)Q^{10}]$

Model checking

https://github.com/buqeye/gsum

Melendez et al. (2019), Millican et al. (2024), Bastos & O'Hagan (2009)

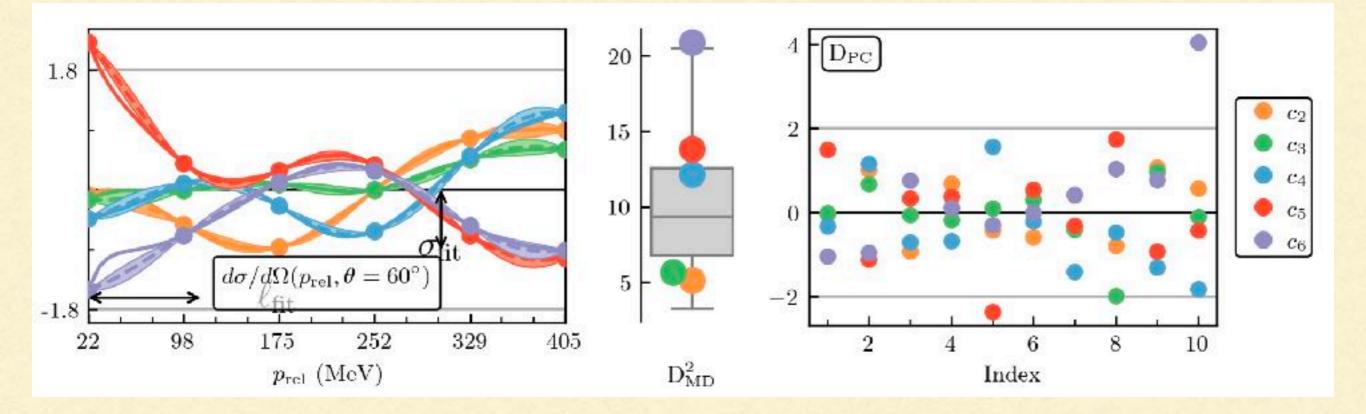


Diagnostic	Formula	Motivation	Success	Failure
Visualize the function		Does \mathbf{f}_{val} look like a draw from a GP? What kind of GP?	f _{val} "looks similar" to draws from a GP	f _{va.} "stands out" compared to GP draws
$\begin{array}{c} \text{Mahalanobis Distance} \\ D_{\text{MD}}^2 \end{array}$	$(\mathbf{f}_{\text{val}} - \mathbf{m})^{\intercal} K^{-1} (\mathbf{f}_{\text{val}} - \mathbf{m})$	Can we quantify how much the f_{val} looks like a GP?	${ m D}_{ m ME}^2$ follows its theoretical distribution (χ^2_M)	${ m D}^2_{ m MD}$ lies too far away from the expected value of M
Proted Cholesky DPC	$G^{-1}(\mathbf{f}_{val}-\mathbf{m})$	Can we understand why D_{10D}^2 is failing?	At each index, points follow standard Gaussian	Many cases (see below)
Credible Interval $D_{CI}(P)$ for $P \in [0, 1]$	$\frac{1}{M}\sum_{i=1}^{M}1[\mathbf{f}_{\text{val},i} \in \text{CL}_{i}(P)]$	Do 100P% credible inter- vals capture data roughly 100P% of the time?	Plot $D_{Cl}(P)$ for $P \in [0, 1]$; the curve should be within errors of $D_{Cl}(P) = P$,	$D_{CI}(P)$ is far from $100P\%$, particularly for large $100P\%$ (e.g., 68% and 95%).

Variance	Length Scale	Observed Pattern in D_{PC}
$\sigma_{\rm ist} = \sigma_{\rm true}$	$\ell_{est} = \ell_{true}$	Points are distributed as a standard Gaussian, with no pattern across index (e.g., only $\approx 5\%$ of points outside 2σ lines)
$\sigma_{\rm sat} = \sigma_{\rm true}$	$\ell_{\rm est} > \ell_{\rm true}$	Points look well distributed at small index but expand to a too-large range at high index.
$\sigma_{\rm sat} = \sigma_{\rm true}$	$\ell_{net} < \ell_{true}$	Points look well distributed at small index but shrink to a too-small range at high index.
$\sigma_{\rm ist} > \sigma_{\rm true}$	$\ell_{est} = \ell_{true}$	Points are distributed in a too-small range at all indices.
$\sigma_{\rm ist} < \sigma_{\rm true}$	$\ell_{est} = \ell_{true}$	Points are distributed in a too-large range at all indices.

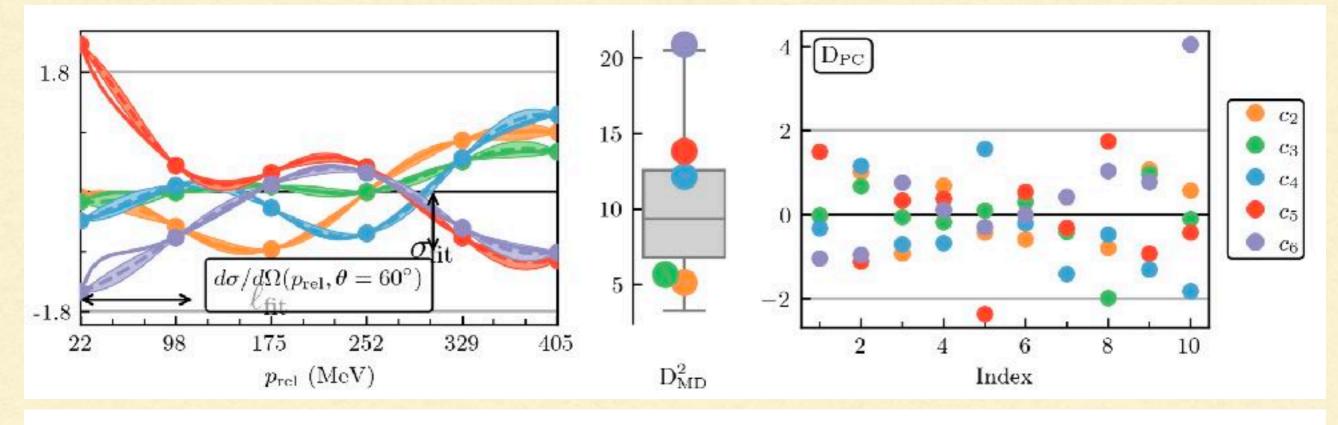
What does success look like?

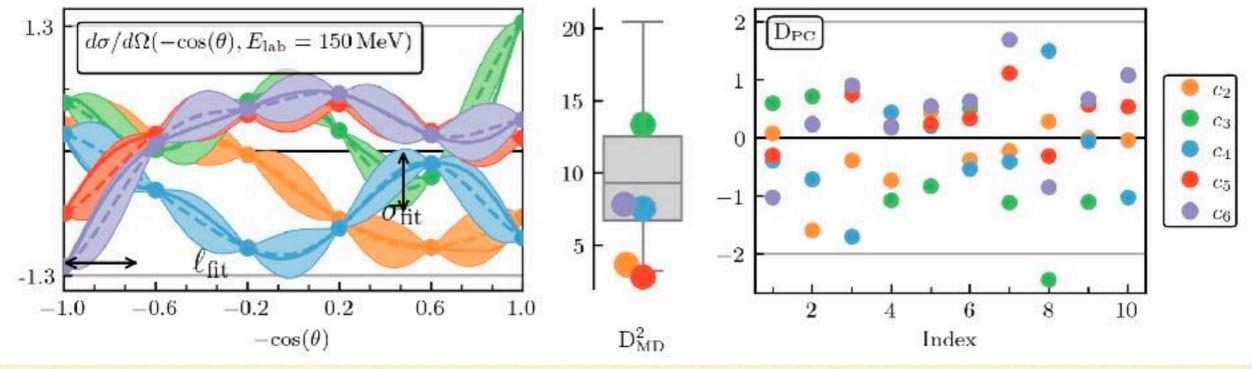
Millican, Furnstahl, Melendez, DP, Pratola (2024)



What does success look like?

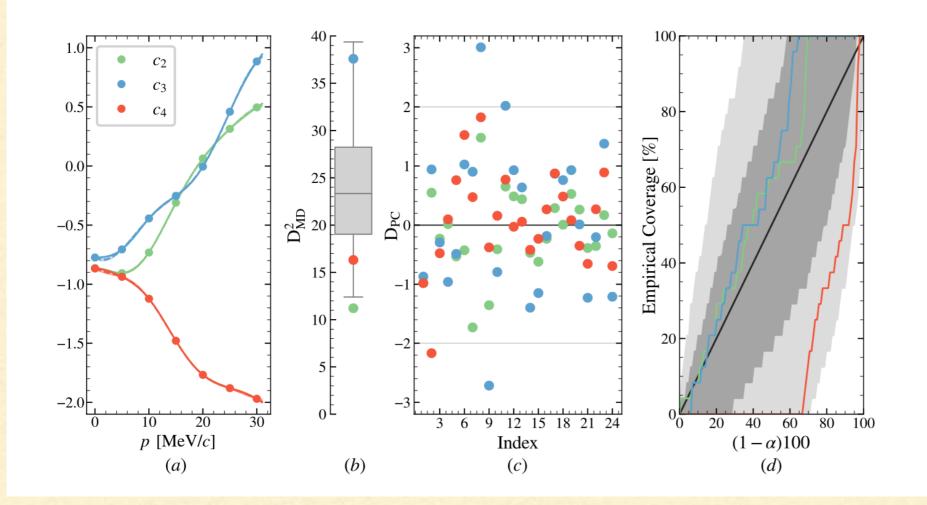
Millican, Furnstahl, Melendez, DP, Pratola (2024)





Application to $np \rightarrow d\gamma$

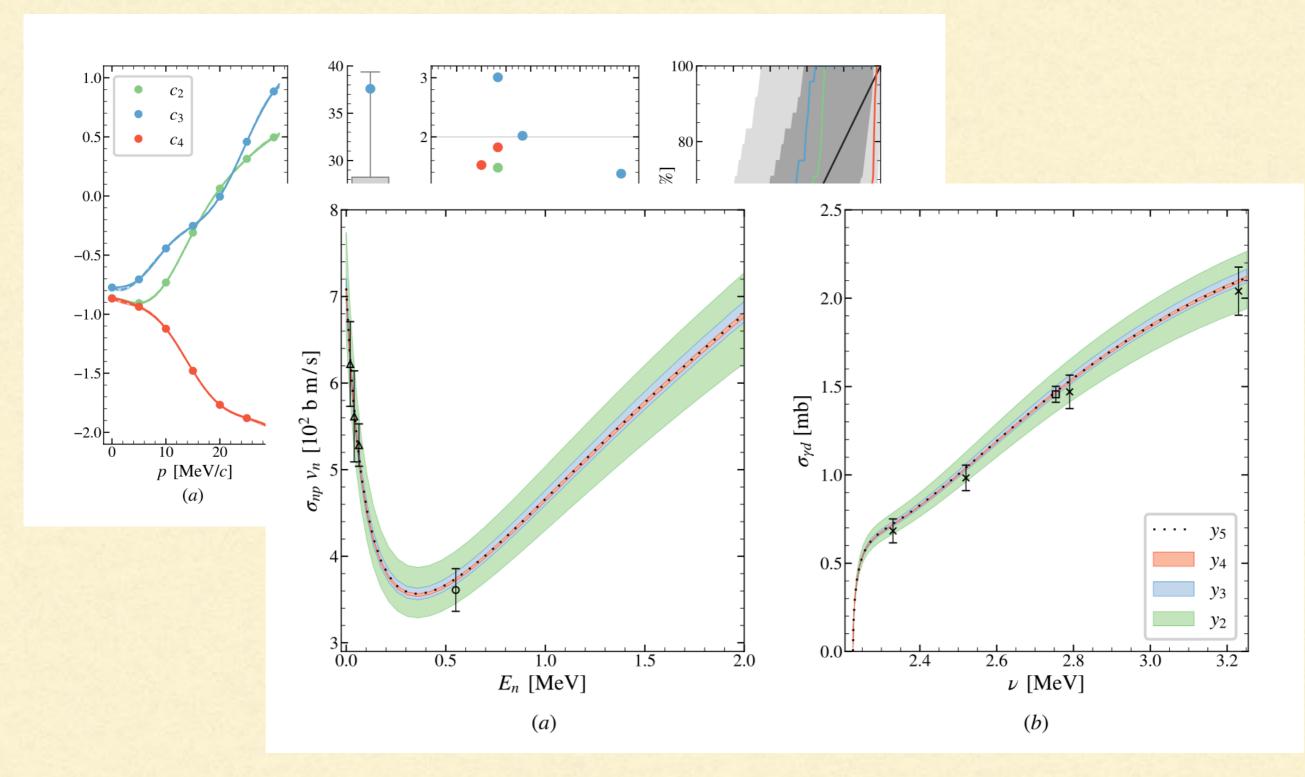
Acharya, Bacca, PLB 2022



Publicly available package: https://github.com/buqeye/gsum

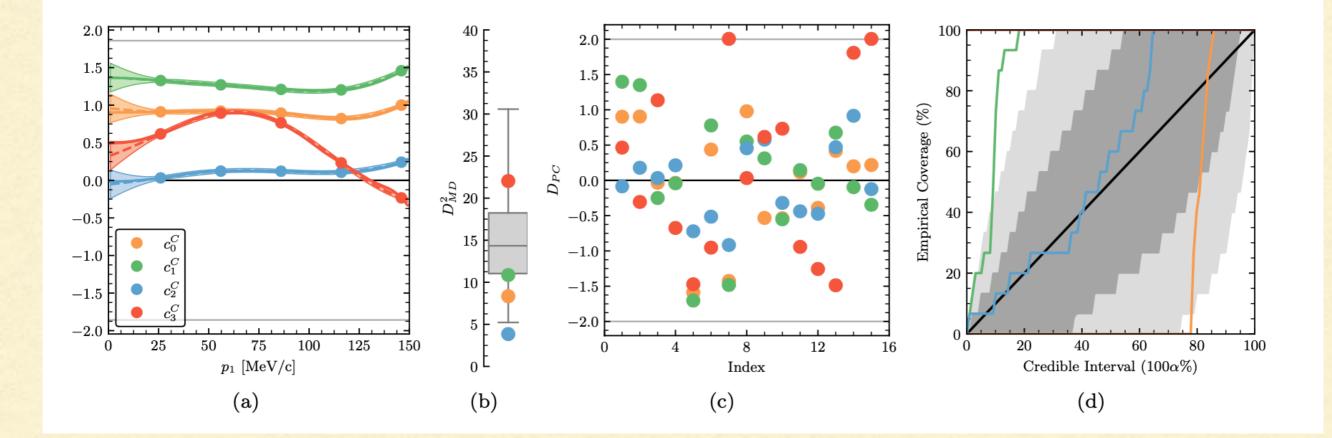
Application to $np \rightarrow d\gamma$

Acharya, Bacca, PLB 2022

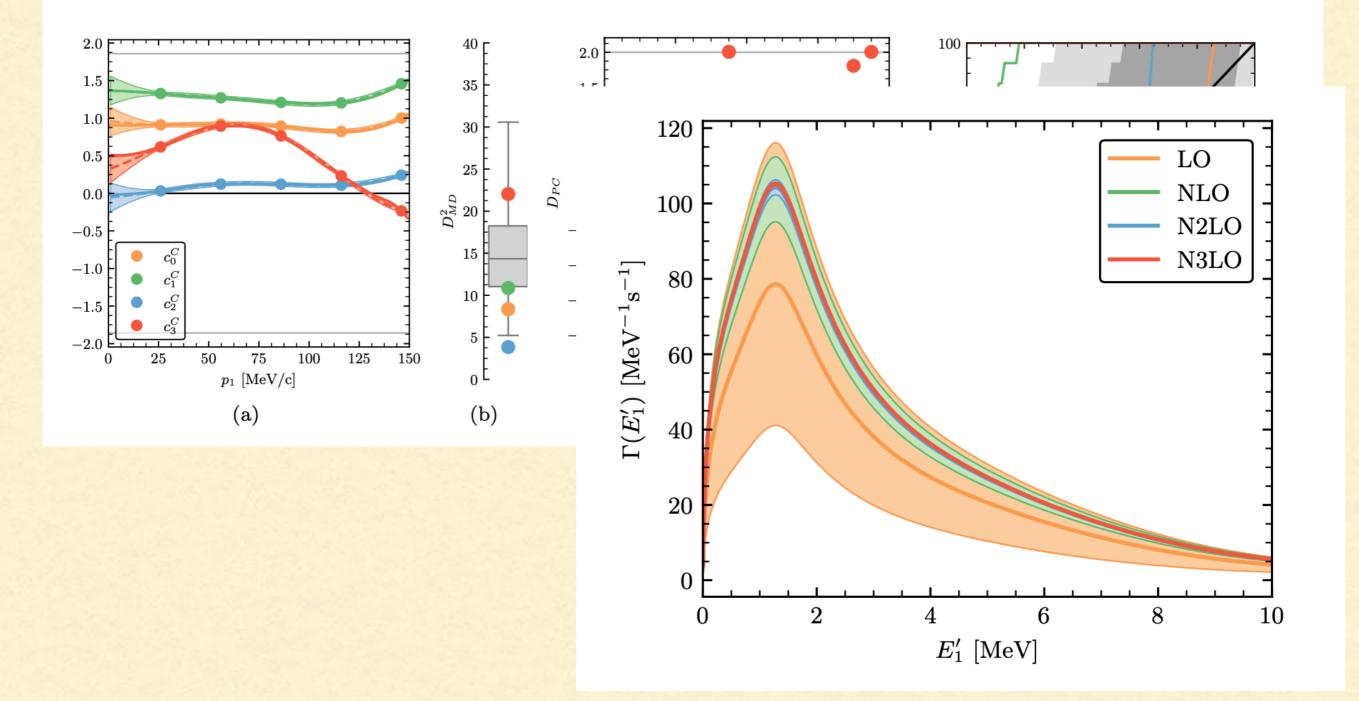


Publicly available package: https://github.com/buqeye/gsum

Application to μ -d \rightarrow nn ν_{μ}

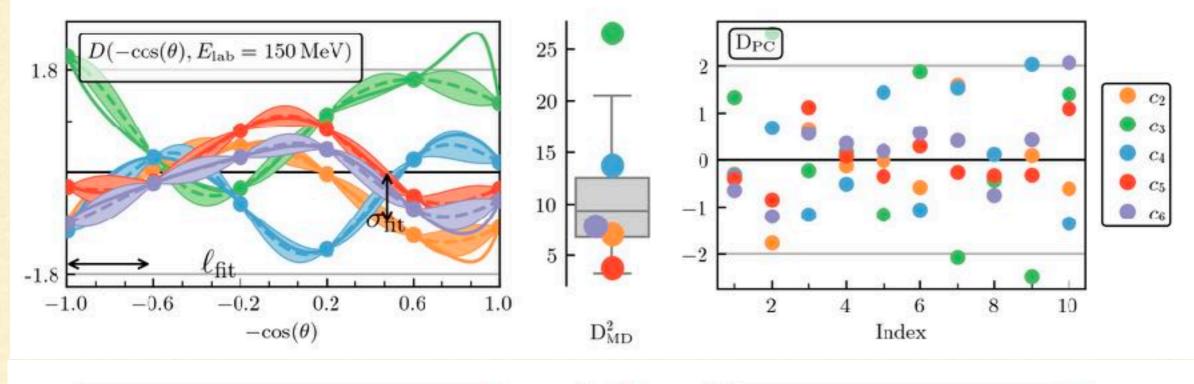


Application to μ -d \rightarrow nn ν_{μ}



NN physics choices 0 & I: yref & angular space

- $y_{ref}=y_0$ or y_k . Don't choose something that goes to zero
- Is it $c_n(cos(\theta))$ or $c_n(q)$ that has a single length scale?

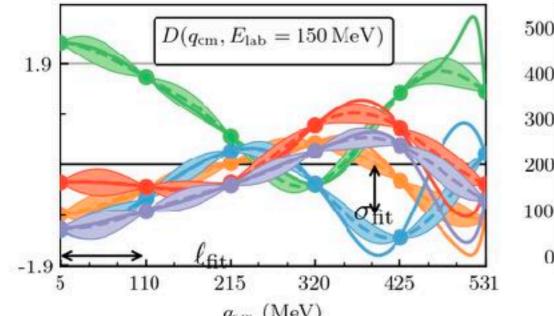


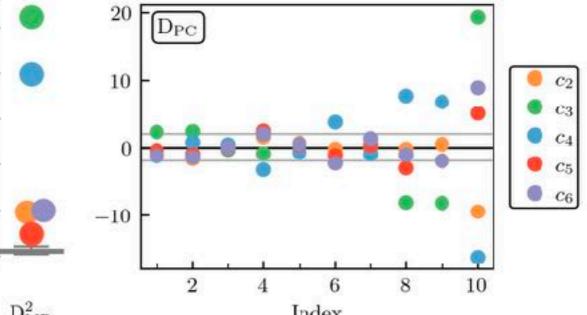
500

400

300

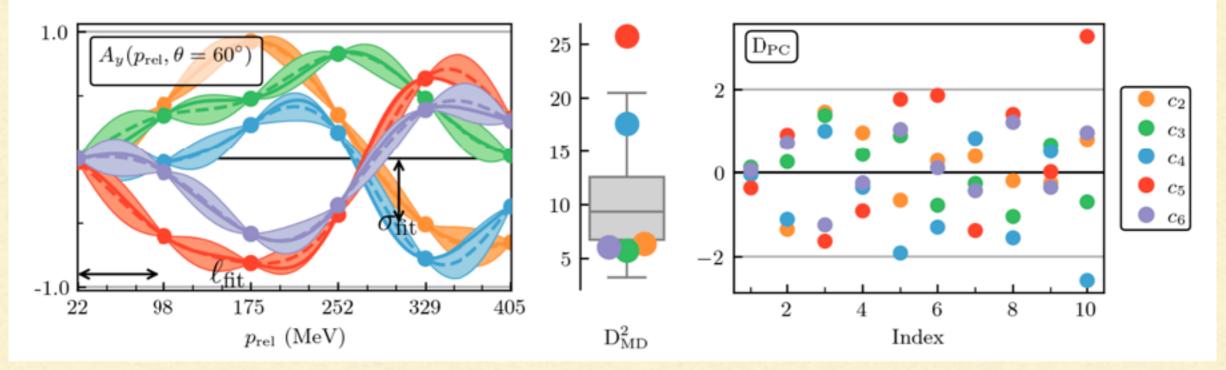
200





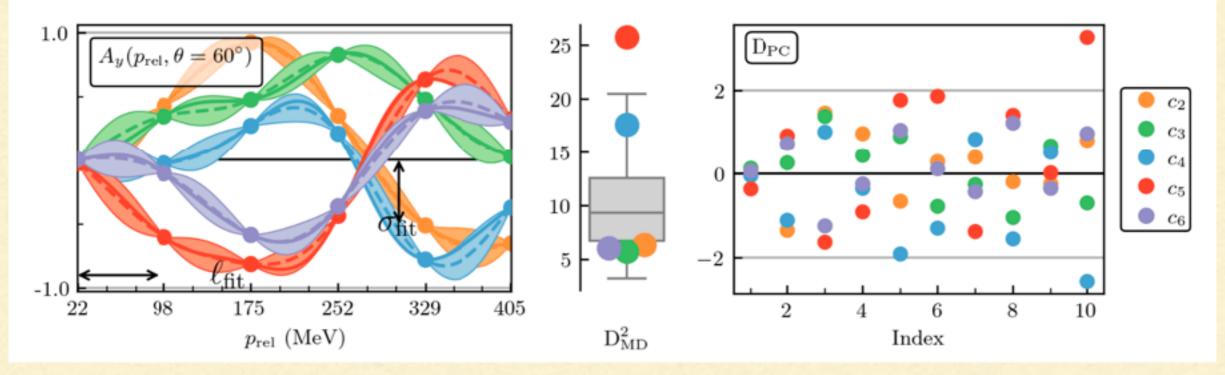
NN physics choice II: energy/momentum?

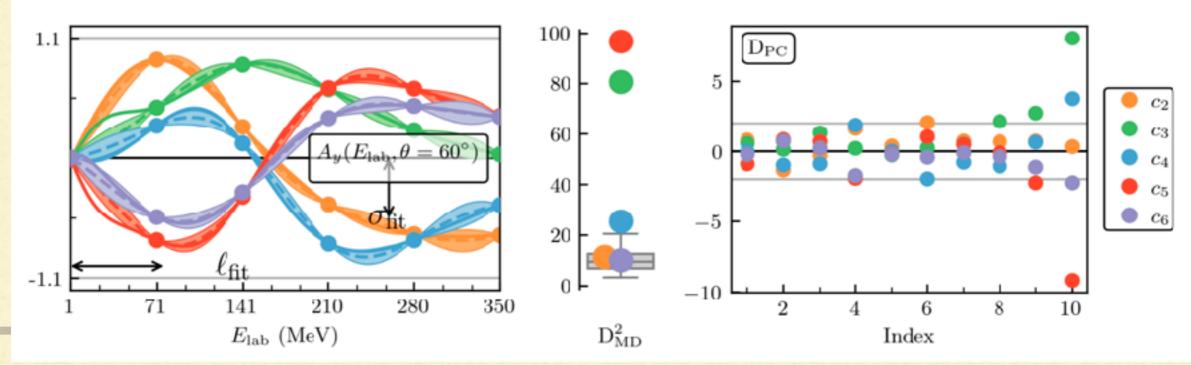
Is it $c_n(p)$ or $c_n(E)$ that has a single length scale?



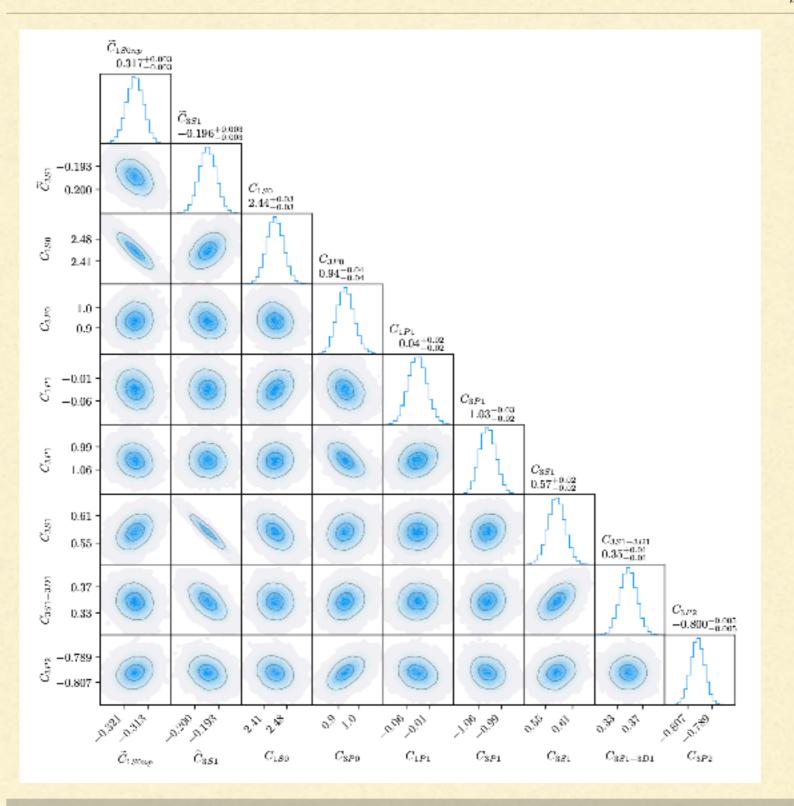
NN physics choice II: energy/momentum?

Is it $c_n(p)$ or $c_n(E)$ that has a single length scale?





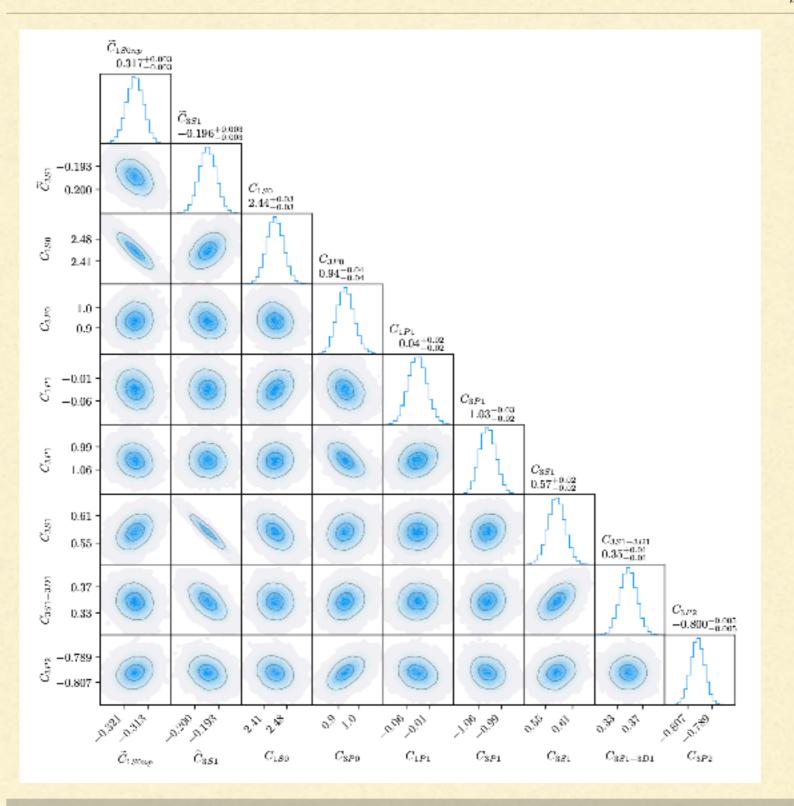
Svennson, Ekstróm, Forssén, PRC (2024)



Svennson, Ekstróm, Forssén, PRC (2024)

Notation	n Definition		Acronym	$N_{d,y}$	$N_{T_{\mathbf{lab}},y}$	$n_{ m eff}$	$\widehat{\ell_{T_{\text{lab}}}}$ (MeV)		\hat{c}^2
$\sigma_{ m tot}$	total cross section		SGT	119	113	30.8	49		0.56^{2}
σ_T	$\sigma_{ m tot}(\uparrow\downarrow)-\sigma_{ m tot}(\uparrow\uparrow)$		SGTT	3	3				
σ_L	$\sigma_{ m tot}(\leftrightarrows) - \sigma_{ m tot}(\rightrightarrows)$		SGTL	4	4	3.8	47		1.95^{2}
Notation	Tensor	Illustration	Acronym	$N_{d,y}$	$N_{T_{\mathrm{lab}},y}$	$n_{ m eff}$	$\widehat{\ell_{T_{\mathrm{lab}}}}$ (MeV)	$\widehat{\ell_{ heta}}$ (deg)	$\widehat{\vec{c}}^2$
$\sigma(\theta)$	I_{0000}	\rightarrow	\mathbf{DSG}	1207	68	352.9	73	39	0.61 ²
$A(\theta)$	D_{s0k0}	\rightarrow	А	5	1	5.0	68	37	0.65^{2}
S = -0.06 - 0.99 - 0.99 - 0.99 - 0.99 - 0.99 - 0.99 - 0.99 - 0.97 - 0.			C _{1P1} C _{3P1} 1.03 ^{-0.03} 0 0 0 0 0 0 0 0 0 0 0 0 0	C_{321} $57^{+0.02}_{-0.02}$ $C_{331}^{-3.01}_{-3.01}$ $C_{333}^{-4.01}_{-4.01}$ $0.35^{+6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$ $0.35^{-6.01}_{-6.01}$	C3P2 -0.800-0.005				

Svennson, Ekstróm, Forssén, PRC (2024)



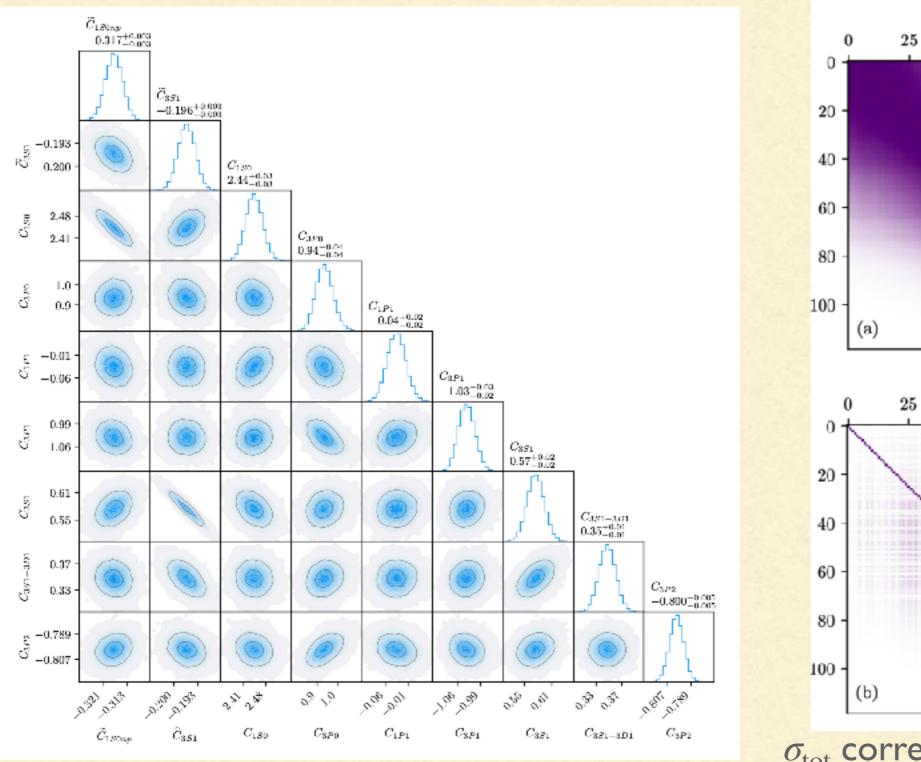
Svennson, Ekstróm, Forssén, PRC (2024)

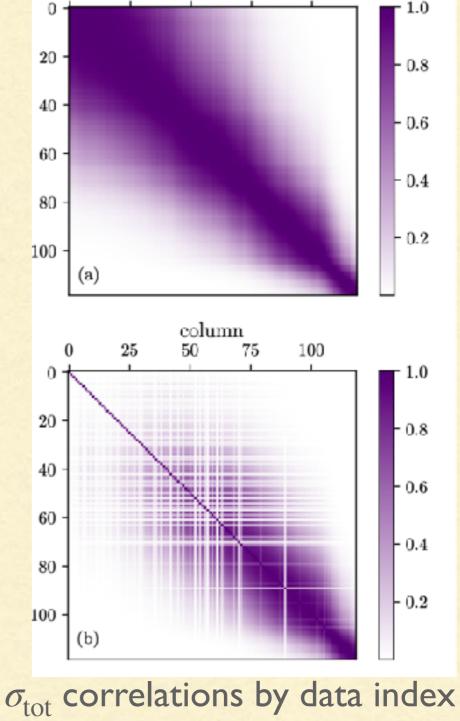
75

100

column

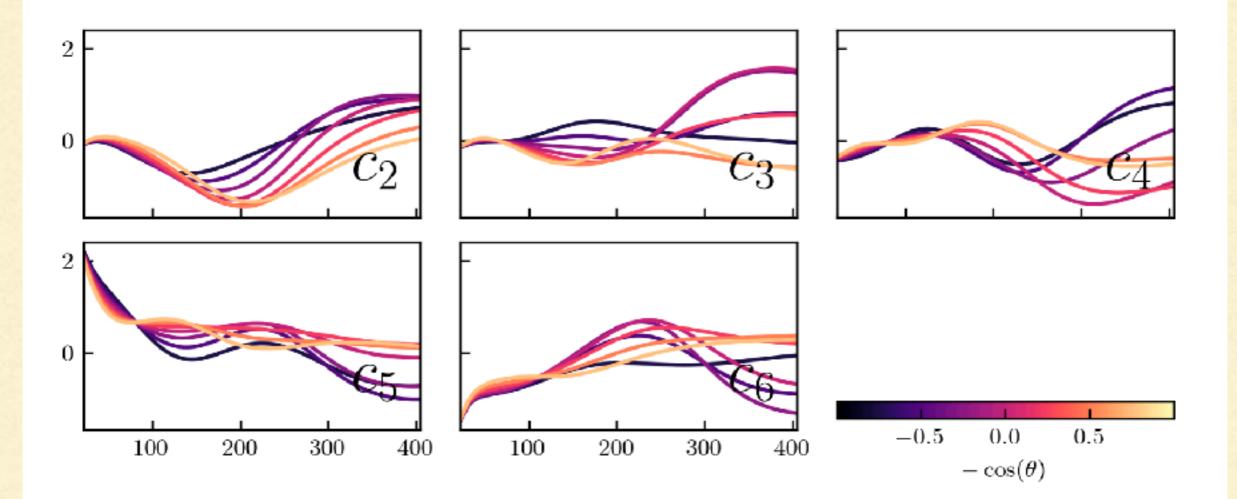
50





So what do coefficients look like for SMS potentials?

Millican et al. (2024B)

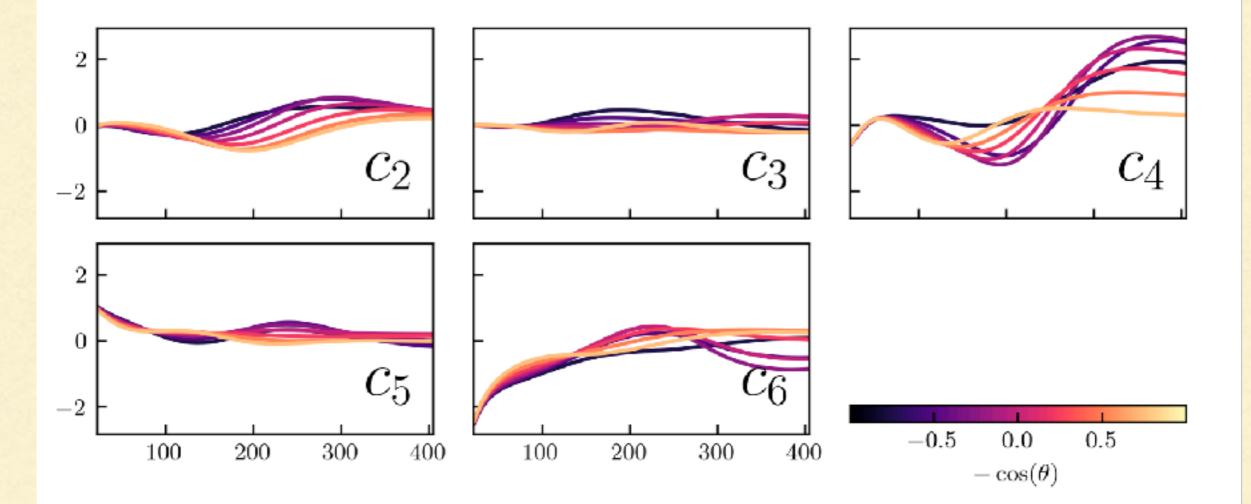


 p_{rel}

SMS 500 MeV

So what do coefficients look like for SMS potentials?

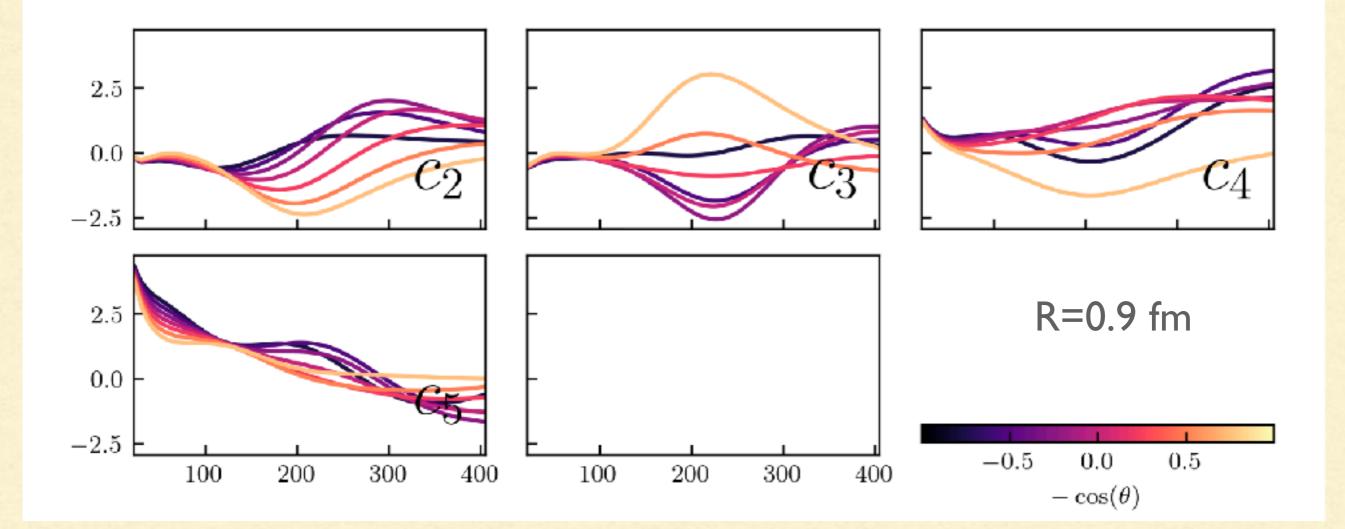
Millican et al. (2024B)



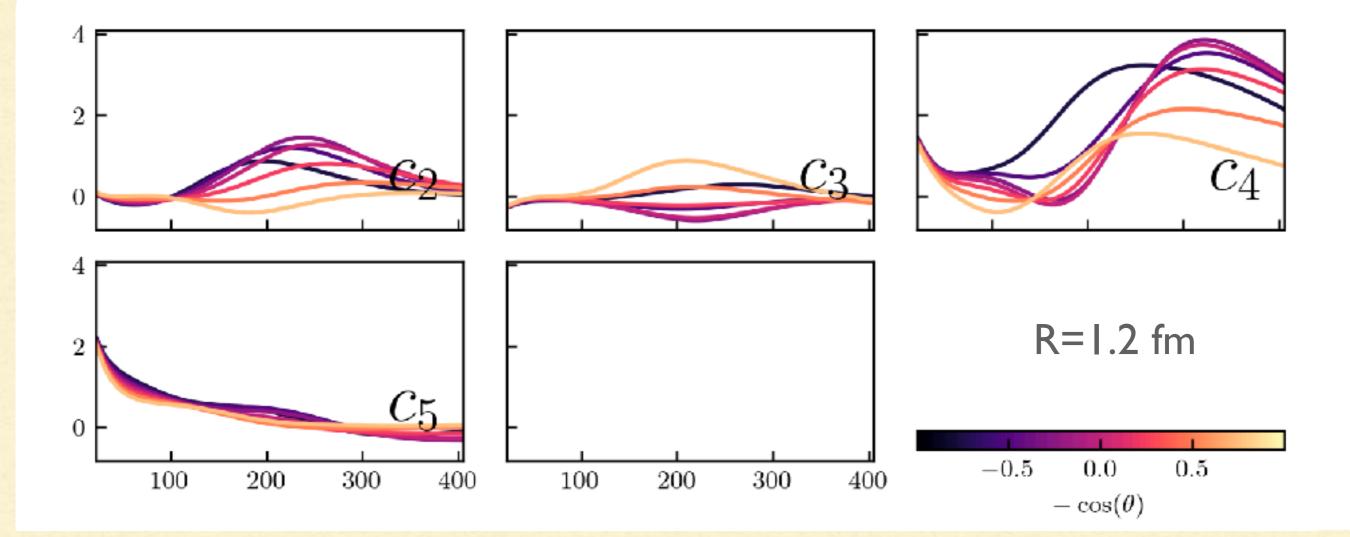
 $p_{\rm rel}$

SMS 400 MeV

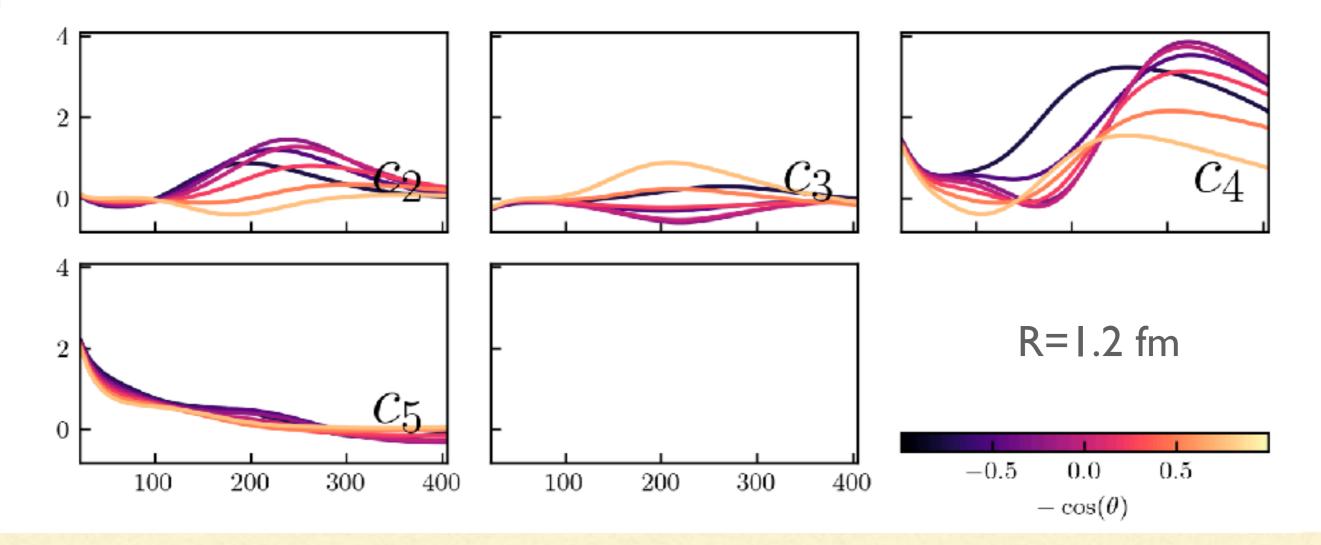
Similar pattern for SCS potentials



Similar pattern for SCS potentials

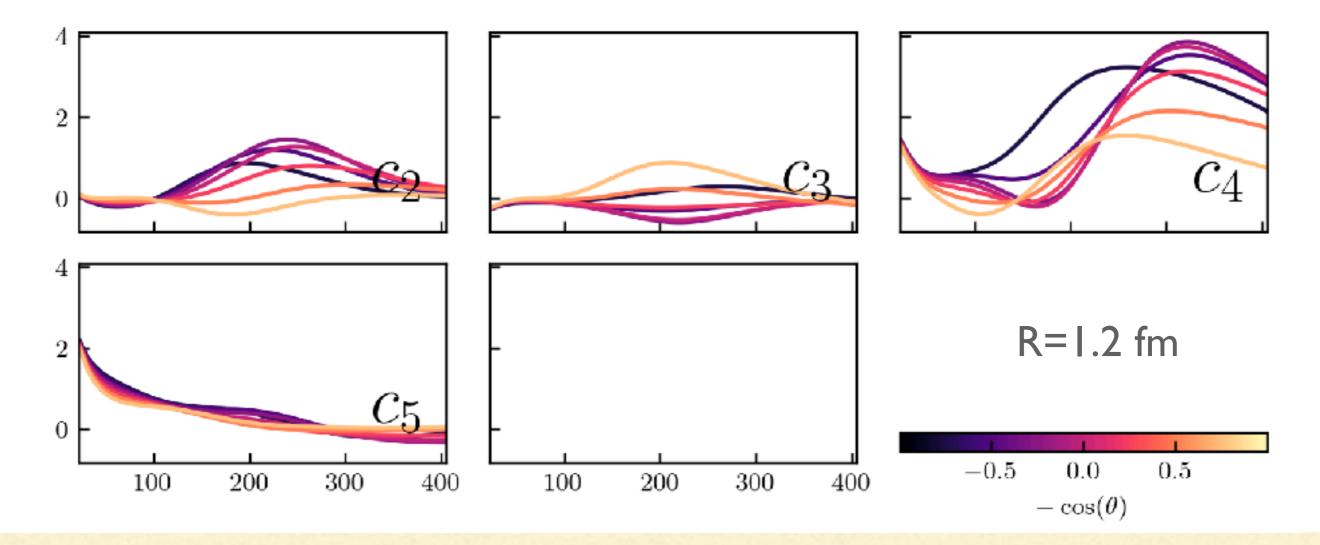


Similar pattern for SCS potentials



Soft potentials reshuffle contributions across orders, leaving large even orders (especially c4) and small odd orders

Similar pattern for SCS potentials



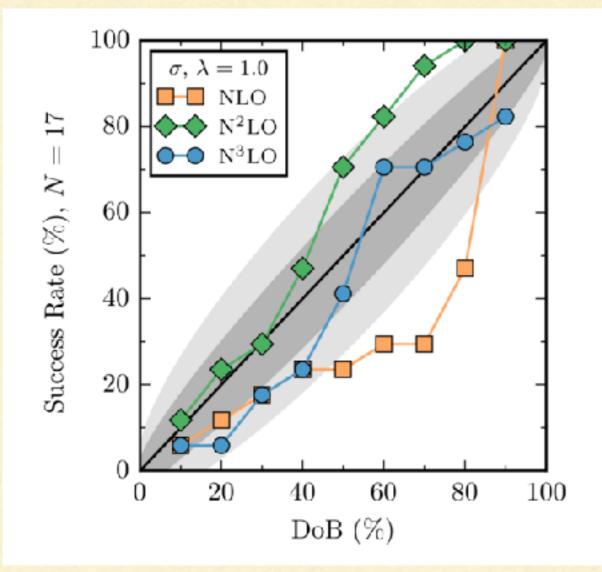
Soft potentials reshuffle contributions across orders, leaving large even orders (especially c4) and small odd orders **The BUQEYE Any statistical model assuming**

regular convergence fails for them

Impact on error bars

Melendez, Furnstahl, Wesolowski (2017)

R=0.9 fm



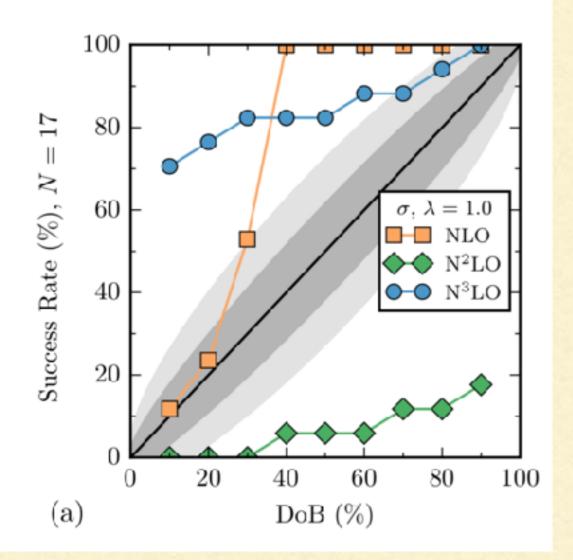
- Now we consider predictions at each order, with their error bars, as data and test them to see if the procedure is consistent
 - Fix a given DOB interval, compute actual success ratio and compare
- Look at this over EKM predictions at four different orders and four different energies

"Pointwise" analysis

Impact on error bars

Melendez, Furnstahl, Wesolowski (2017)

R=1.2 fm



- Now we consider predictions at each order, with their error bars, as data and test them to see if the procedure is consistent
 - Fix a given DOB interval, compute actual success ratio and compare
- Look at this over EKM predictions at four different orders and four different energies

"Pointwise" analysis

Inferring Q

If Q too big then c_n will shrink with n (and so will error bars)

If Q too small then c_n will grow with n (and so will error bars)

Once we have $pr(\vec{c}_k | \ell, I)$ we derive

$$\operatorname{pr}(\mathbf{Q} | \vec{\mathbf{y}}_{k}, \ell, I) \propto \frac{\operatorname{pr}(Q | I)}{\tau^{\nu} \prod_{i,n} | Q^{n}(x_{i}) |}$$

Inferring Q

If Q too big then c_n will shrink with n (and so will error bars)

If Q too small then c_n will grow with n (and so will error bars)

Once we have $pr(\vec{c}_k | \ell, I)$ we derive

$$\operatorname{pr}(\mathbf{Q} | \vec{\mathbf{y}}_{k}, \ell, I) \propto \frac{\operatorname{pr}(Q | I)}{\tau^{\nu} \prod_{i,n} |Q^{n}(x_{i})|}$$

$$Q_{\max} = \frac{(p, m_{\pi})}{\Lambda_b} \text{ or } Q_{\text{sum}} = \frac{p + m_{\pi}}{\Lambda_b + m_{\pi}}?$$

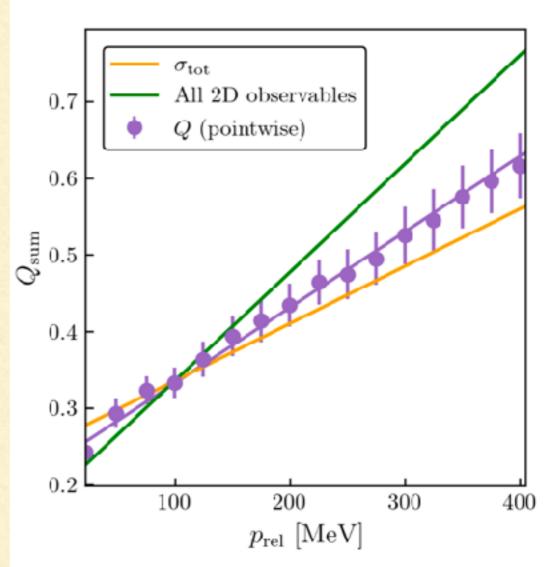
Inferring Q

If Q too big then c_n will shrink with n (and so will error bars)

If Q too small then c_n will grow with n (and so will error bars)

Once we have $pr(\vec{c}_k | \ell, I)$ we derive

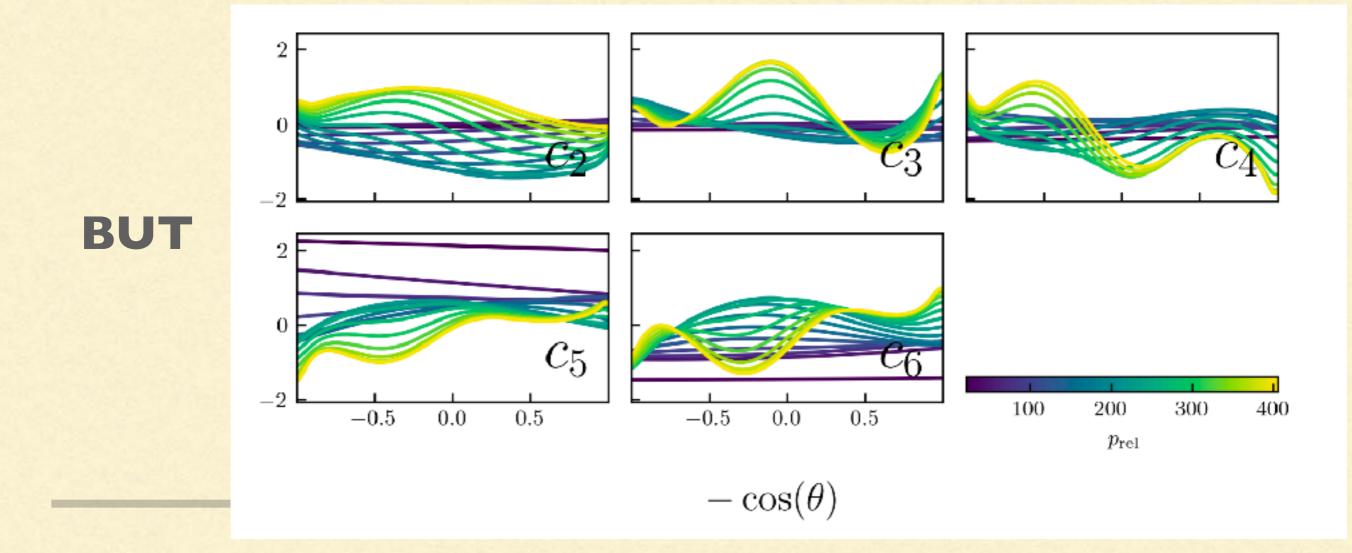
$$\operatorname{pr}(\mathbf{Q} | \vec{\mathbf{y}}_k, \ell, I) \propto \frac{\operatorname{pr}(Q | I)}{\tau^{\nu} \prod_{i,n} |Q^n(x_i)|}$$



$$Q_{\max} = \frac{(p, m_{\pi})}{\Lambda_b} \text{ or } Q_{\text{sum}} = \frac{p + m_{\pi}}{\Lambda_b + m_{\pi}}?$$

Preliminary conclusions

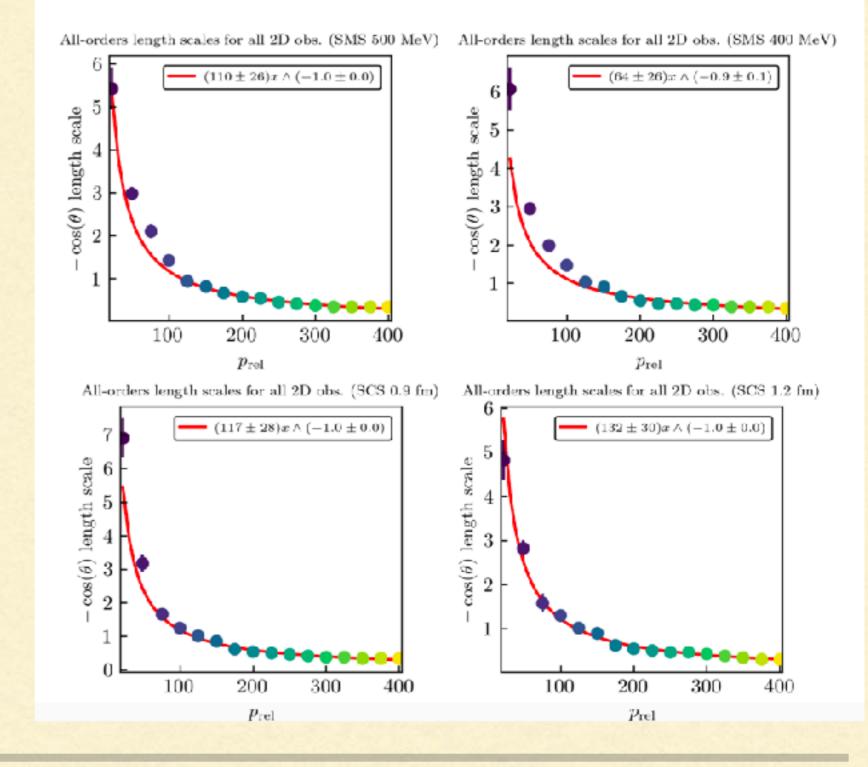
- Input space (p, -cos(θ))
- Expansion parameter $Q_{sum} = \frac{p + m_{\pi}}{\Lambda_b + m_{\pi}}$
- No evidence that N4LO+ is pathological cf. other coefficients



The GP is not **actually** 2D stationary

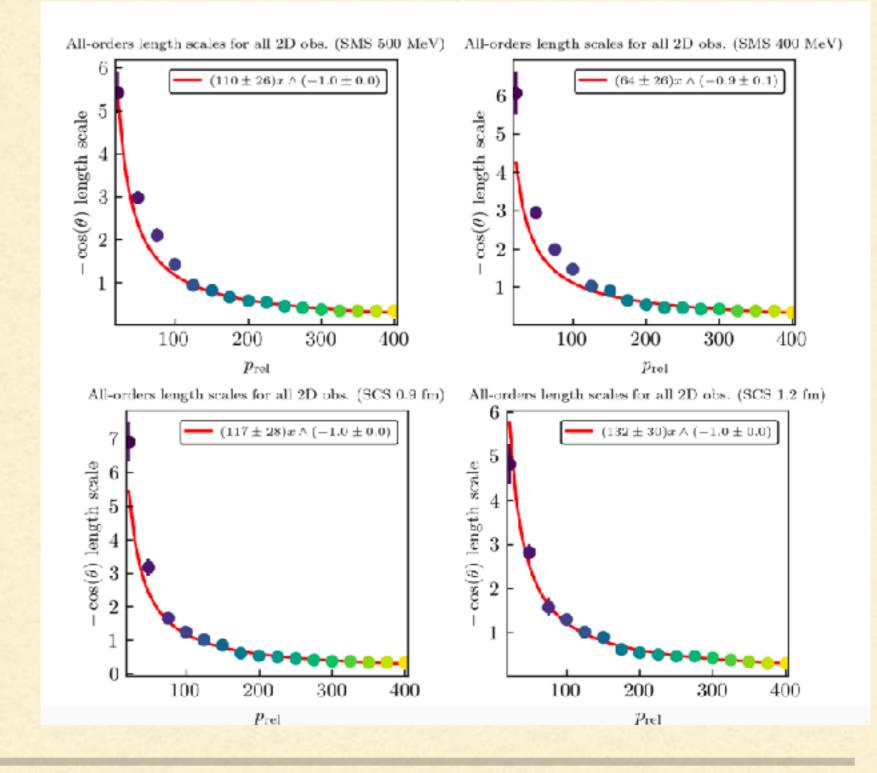
Millican et al. (2024B)

PRELIMINARY



PRELIMINARY

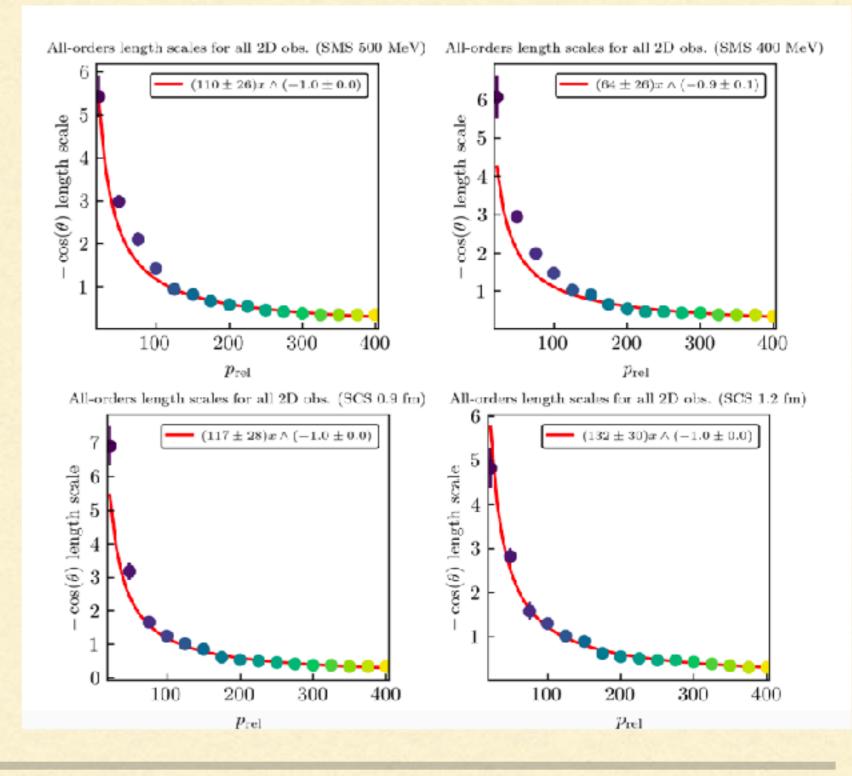
• $\ell_{\theta} \sim 1/p$



PRELIMINARY

• $\ell_{\theta} \sim 1/p$

Duh



PRELIMINARY

All-orders length scales for all 2D obs. (SMS 500 MeV) All-orders length scales for all 2D obs. (SMS 400 MeV) 6 $(110 \pm 26)x \wedge (-1.0 \pm 0.0)$ $(64 \pm 26)x \land (-0.9 \pm 0.1)$ 6 5 $\cos(\theta)$ length scale $\cos(\theta)$ length scale 54 3 $\mathbf{3}$ $\overline{2}$ $\mathbf{2}$ 1 1 100200300400100200300400 $p_{\rm rel}$ p_{rel} All-orders length scales for all 2D obs. (SCS 1.2 fm) All-orders length scales for all 2D obs. (SCS 0.9 fm) 6 $(117 \pm 28)x \wedge (-1.0 \pm 0.0)$ $(132 \pm 30)x \wedge (-1.0 \pm 0.0)$ $\mathbf{5}$ $\cos(\theta)$ length scale $\cos(\theta)$ length scale 6 4 53 3 $\underline{2}$ 2300 400100 300400100200200 $p_{\rm rel}$ p_{rel}

- $\ell_{\theta} \sim 1/p$
- Duh
- And \bar{c}_{θ}^2 has mild p dependence

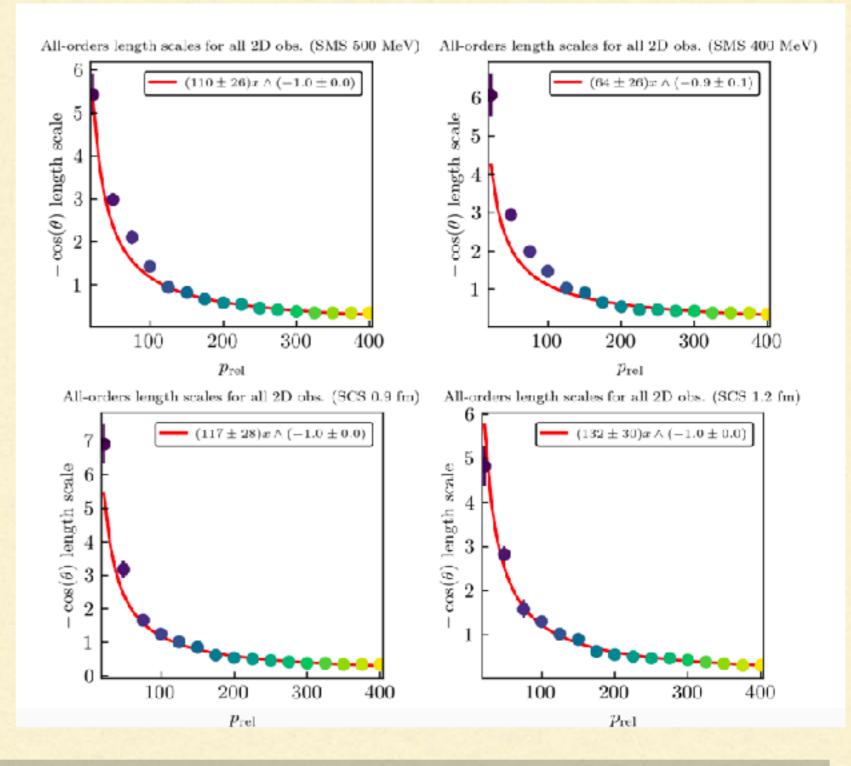
PRELIMINARY

All-orders length scales for all 2D obs. (SMS 500 MeV) All-orders length scales for all 2D obs. (SMS 400 MeV) 6 $(110 \pm 26)x \wedge (-1.0 \pm 0.0)$ $(64 \pm 26)x \land (-0.9 \pm 0.1)$ 6 5 $\cos(\theta)$ length scale $\cos(\theta)$ length scale $\mathbf{5}$ 3 $\mathbf{3}$ $\overline{2}$ $\mathbf{2}$ 1 1 100200300200300100400400 $p_{\rm rel}$ p_{rel} All-orders length scales for all 2D obs. (SCS 1.2 fm) All-orders length scales for all 2D obs. (SCS 0.9 fm) 6 $(117 \pm 28)x \wedge (-1.0 \pm 0.0)$ $(132 \pm 30)x \wedge (-1.0 \pm 0.0)$ $\mathbf{5}$ $\cos(\theta)$ length scale $\cos(\theta)$ length scale 4 5 3 $\underline{2}$ 2300 400 100 300400100200200 $p_{\rm rel}$ p_{rel}

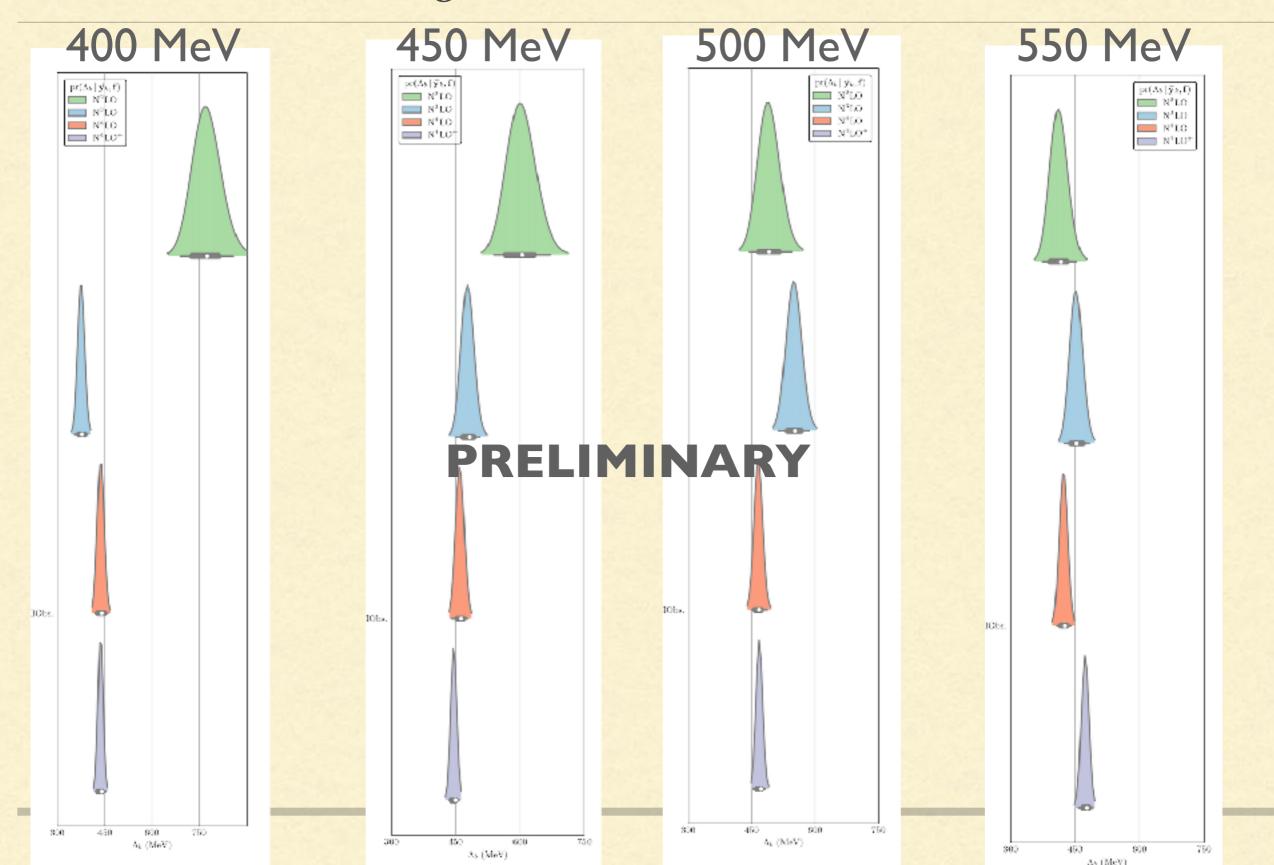
- $\ell_{\theta} \sim 1/p$
- Duh
- And \bar{c}_{θ}^2 has mild p dependence
- "Warp" input space to account for I/p effect

PRELIMINARY

- $\ell_{\theta} \sim 1/p$
- Duh
- And \bar{c}_{θ}^2 has mild p dependence
- "Warp" input space to account for I/p effect
- Fit Lorentzian parameters



Results for Λ_b for SMS potentials



Are observables the right place to look?

McClung, Elster, DP (in progress)

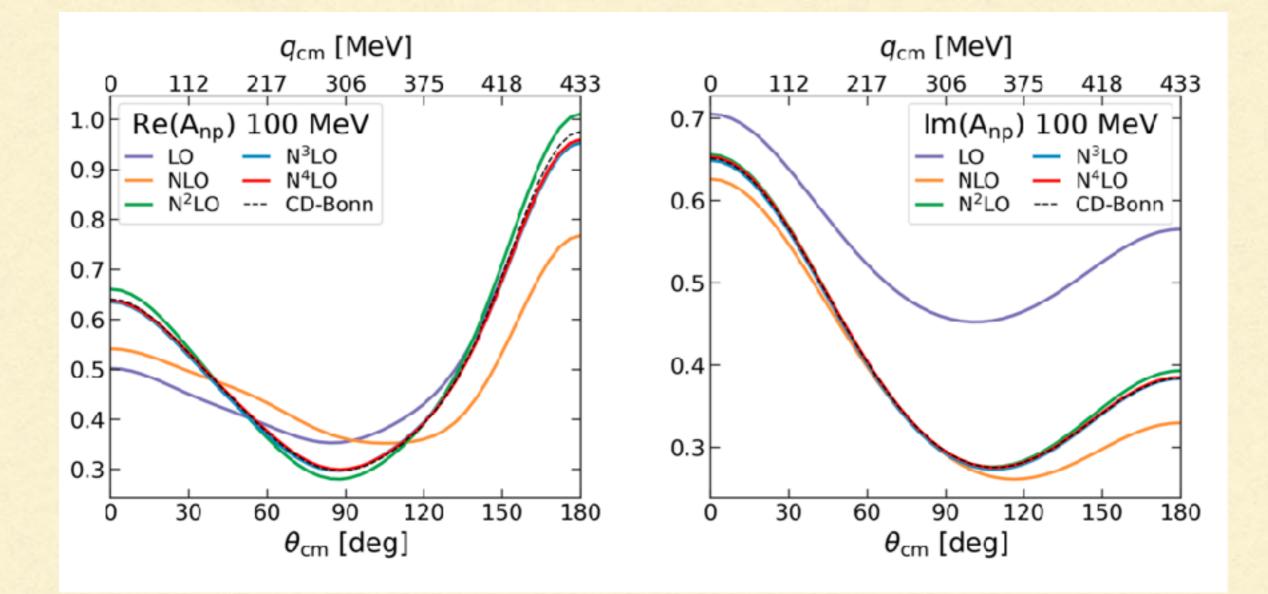
Wolfonstoin

$$\begin{split} \overline{M}(q,\theta) =& A(q,\theta)\mathbb{1} & \text{amplitudes} \\ &+ iC(q,\theta)(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot \hat{\mathbf{n}} & \text{Wolfenstein \& Ashkin (1952)} \\ &+ M(q,\theta)(\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{n}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{n}}) \\ &+ [G(q,\theta) - H(q,\theta)](\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{q}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{q}}) \\ &+ [G(q,\theta) + H(q,\theta)](\boldsymbol{\sigma}_1 \cdot \hat{\mathcal{K}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathcal{K}}). \end{split}$$

$$\mathbf{K} = \frac{1}{2}(\mathbf{p} + \mathbf{p}'); \mathbf{q} = \mathbf{p}' - \mathbf{p}; \mathbf{n} = \mathbf{p} \times \mathbf{p}'$$

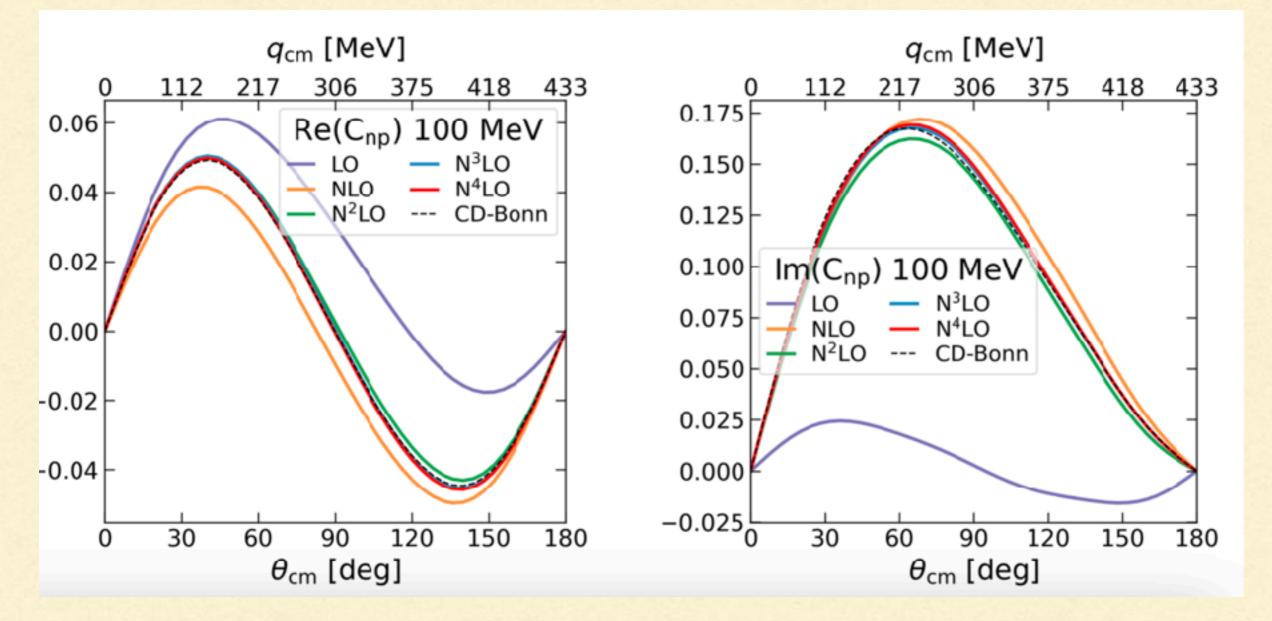
A: central part
C: spin-orbit
M, G, and H: tensor effects

Why not decompose these order by order?



SCS 0.9 fm

Why not decompose these order by order?

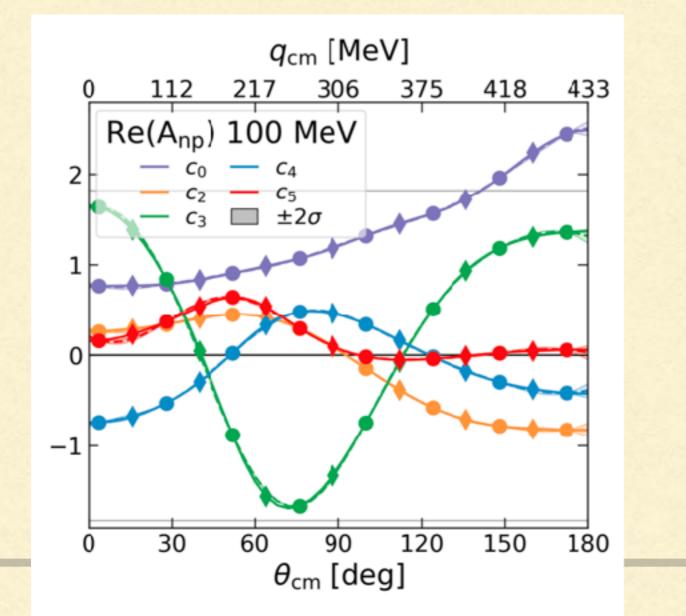


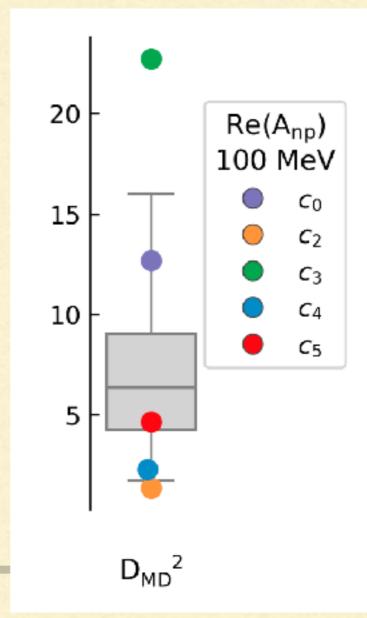
SCS 0.9 fm

Works well for amplitudes at 100 MeV

yref=Im(A)

•
$$Q = \frac{\max(p,q) + m_{\pi}}{\Lambda_b + m_{\pi}}$$





PRELIMINARY

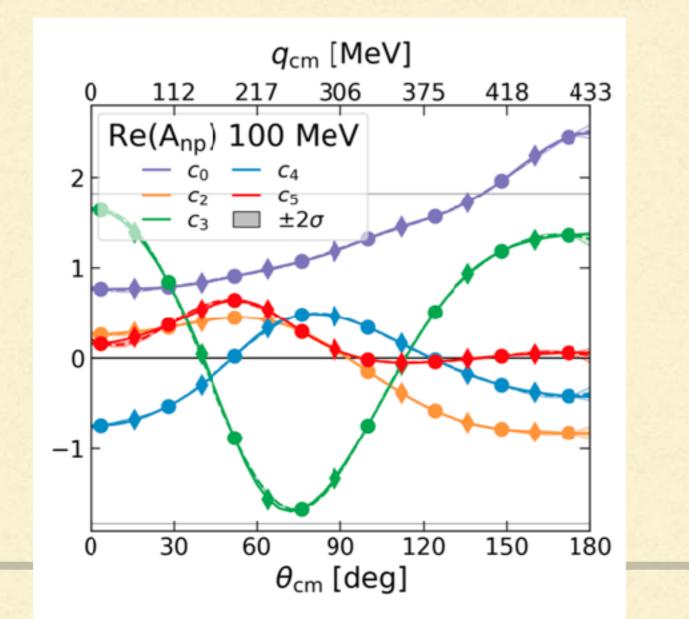
Works well for amplitudes at 100 MeV

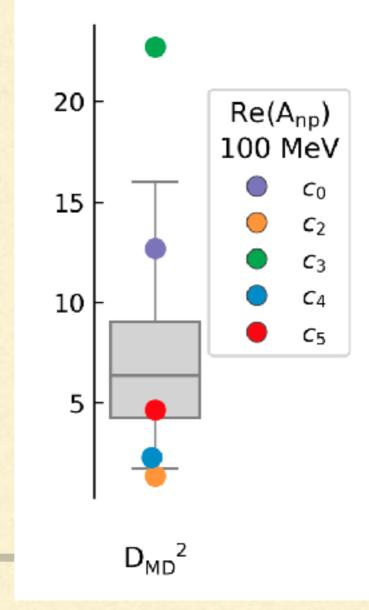
yref=Im(A)

•
$$Q = \frac{\max(p,q) + m_{\pi}}{\Lambda_b + m_{\pi}}$$

PRELIMINARY

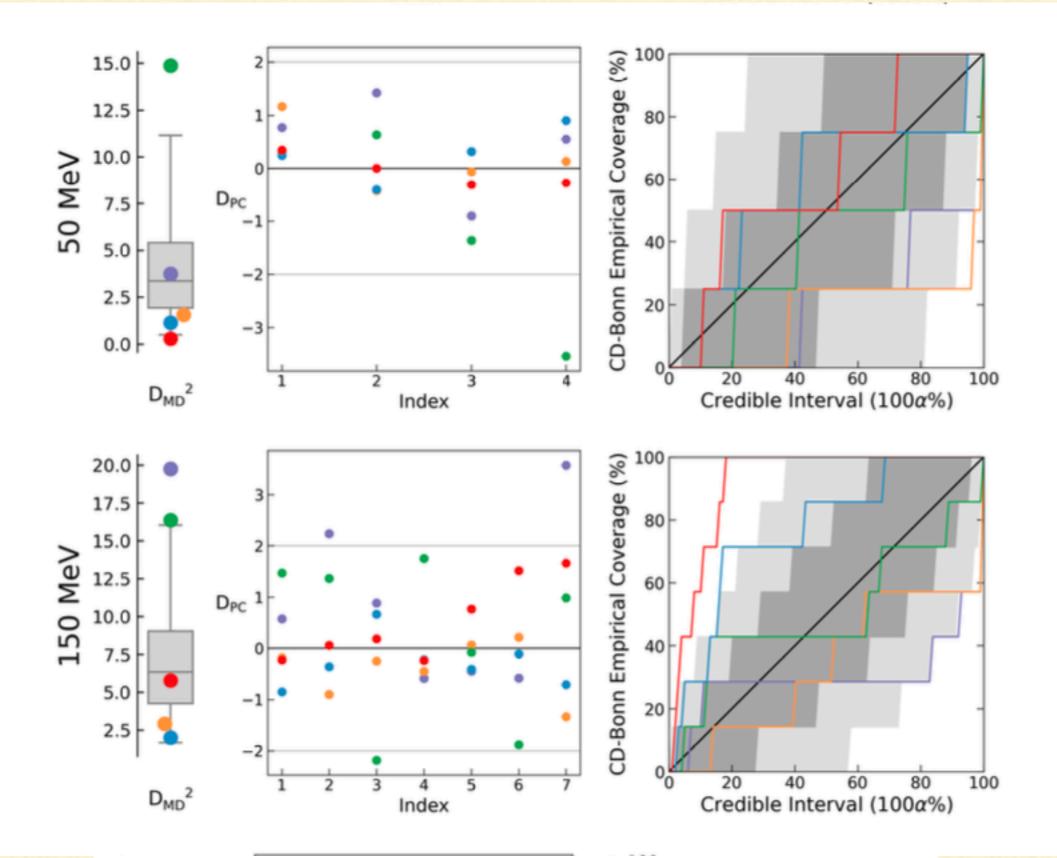
See I/p dependence of ℓ_{θ} in this analysis too





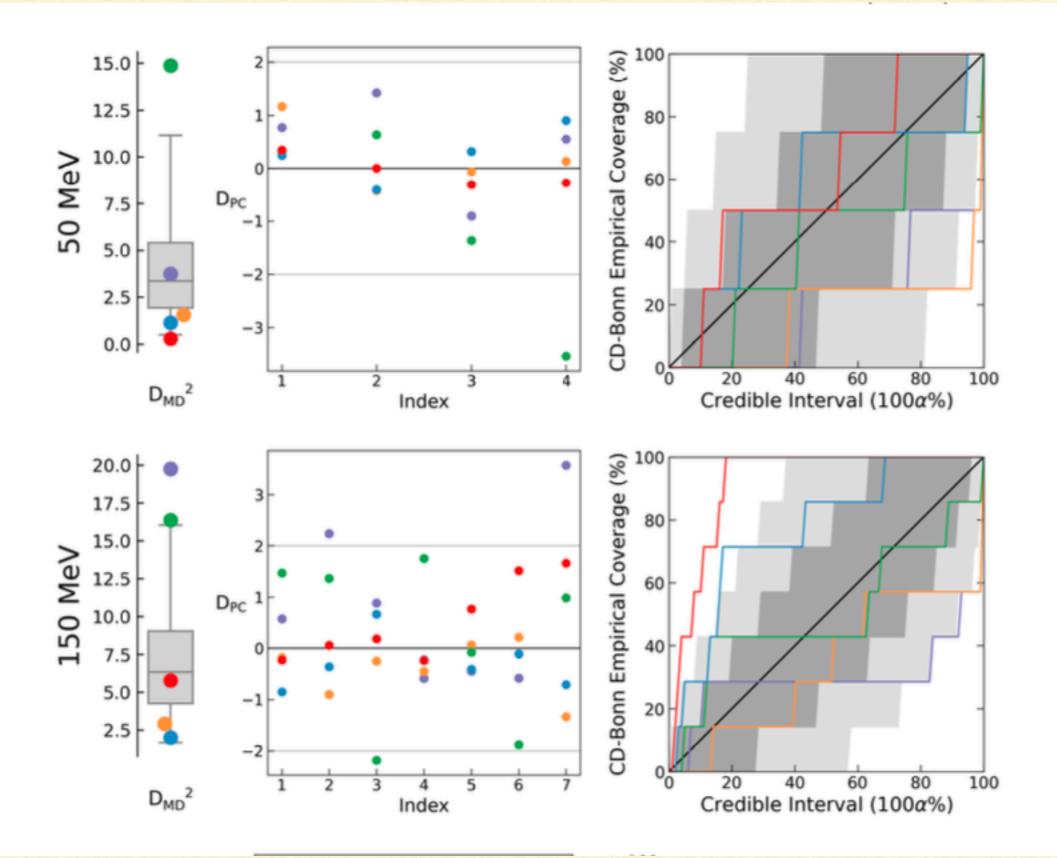
And at other energies too

and the second second



And at other energies too

and the second second



Summary, omissions, and future work

- Statistical modeling for EFT coefficients means quantifying what we mean by EFTheological statements
- Since probability theory is "the logic of science" (Jaynes) once we do this we can then check if EFTs are behaving in accord with the statistical model.
- Building & checking such models doesn't only get us truncation error estimates
- Do all orders really have the same size? What range can Λ_b be in?
- Could also make "pion mass" a parameter of the statistical model
- Forthcoming: analyses for many potentials. Amplitudes or observables?
- Future: incorporate correlated truncation error in fit of LECs to NN data Svennson, Ekström, Forssén, PRC (2024)
- Apply technology to other observables, other nuclear physics EFTs
- How to combine information across different observables ?