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Falsifying claims about an EFT expansion for observables

Consider χEFT, where we have two light scales, p and mπ 

I will argue that we can:

Make a probabilistic definition of “The cn  are order 1” 

Falsify claims that all orders behave in the same way

Estimate the  that makes the cn as similar in size as possible

Check what cn is a function of (E? p? E and theta? p and q?)

Test different assumptions for how soft scales appear in Q

Λb
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This is what a healthy observable expansion looks like: 
bounded coefficients, that do not grow or shrink with order. 
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This is what a healthy observable expansion looks like: 
bounded coefficients, that do not grow or shrink with order. 

Data for analysis: EFT predictions at different orders across “input space”
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coefficients 
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predict size of truncation error

A statistical model for EFT coefficients
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If we know the distribution from 
which c0, c1, …, ck are drawn we can 

predict size of truncation error

A statistical model for EFT coefficients

“Pointwise”

For this talk cn ∼ 𝒩(0,c̄2)
c̄2 ∼ χ−2(ν, τ2)

ν = ν0 + nc;
ντ2 = ν0τ2

0 + ⃗c2
k



From pointwise to curvewise

y = yref

k
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But the cn’s at different values of p aren’t 

independent random variables either

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)
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From pointwise to curvewise

Our hypothesis:
EFT coefficients at different orders can be modeled as independent 

draws from a Gaussian Process with a stationary kernel

Gaussian distribution at each point

With correlation structure parameterized by a single   and ũ at all ordersc̄2

y = yref

k

∑
n=0

cn(p/mπ)Qn Function cn is not a constant.
But the cn’s at different values of p aren’t 

independent random variables either

Melendez, Wesolowski, Furnstahl, DP, Pratola, PRC (2019)



A bit more on Gaussian Processes
Non-parametric, probabilistic model for a function

Suppose we already know f at x1, x2, x3, …, xn. 

Specify how f(y) is correlated with f(x1), f(x2), …..; don’t specify underlying 
functional form.

But value of f(y) is not deterministic: it’s given by a (Gaussian) probability 
distribution. 

Correlation decreases as points get further away from each other.

Specify correlation matrix of f at x and y, e.g.:

Two parameters  and ũ:  uniform c̄2 pr(c̄2 | I) ∼ χ−2(ν0, τ2
0); pr(ℓ | I)

k( f(x), f(y)) = c̄2 exp (− (x − y)2

2ℓ2 )
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Statistical 

model 
choices



Inferring the next coefficient(s)

Gaussian process “model” for χEFT coefficients, trained on c2 -c5, can be 
used to predict distribution of N5LO corrections 



Inferring the next coefficient(s)

Gaussian process “model” for χEFT coefficients, trained on c2 -c5, can be 
used to predict distribution of N5LO corrections 

Δσ(E) = σref[c6(E)Q6 + c7(E)Q7 + c8(E)Q8 + c9(E)Q9 + c10(E)Q10]



Model checking Melendez et al. (2019), Millican et al. (2024),  
Bastos & O’Hagan (2009)

https://github.com/buqeye/gsum

https://github.com/buqeye/gsum


What does success look like?
Millican, Furnstahl, Melendez, DP, Pratola (2024)
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Application to np→dγ
Acharya, Bacca, PLB 2022
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Application to µ-d→nnνµ
Gnech, Marcucci, Viviani, arXiv 2023
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NN physics choices 0 & I: yref & angular space
yref=y0 or yk. Don’t choose something that goes to zero

Is it cn(cos(θ)) or cn(q) that has a single length scale?
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Calibrating NN LECs with a GP error model
Svennson, Ekstróm, Forssén, PRC (2024)
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 correlations by data indexσtot



So what do coefficients look like for SMS potentials?

SMS 500 MeV

Millican et al. (2024B)
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Similar pattern for SCS potentials

R=0.9 fmR=1.2 fm

Soft potentials reshuffle contributions across orders, leaving large even 
orders (especially c4) and small odd orders

The BUQEYE Any statistical model assuming 
regular convergence fails for them 



Impact on error bars

Now we consider predictions at 
each order, with their error bars,  
as data and test them to see if the 
procedure is consistent 

Fix a given DOB interval, 
compute actual success ratio and 
compare

Look at this over EKM 
predictions at four different 
orders and four different energies

“Pointwise” analysis

R=0.9 fm

Melendez , Furnstahl, Wesolowski (2017)



Impact on error bars

Now we consider predictions at 
each order, with their error bars,  
as data and test them to see if the 
procedure is consistent 

Fix a given DOB interval, 
compute actual success ratio and 
compare

Look at this over EKM 
predictions at four different 
orders and four different energies

“Pointwise” analysis

R=1.2 fm

Melendez , Furnstahl, Wesolowski (2017)



Inferring Q

pr(Q | y⃗k, ℓ, I) ∝ pr(Q | I)
τν∏i,n |Qn(xi) |

If Q too big then cn will shrink with n 
(and so will error bars)

If Q too small then cn will grow with n
(and so will error bars)

Once we have  we derive pr( ⃗ck |ℓ, I)
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Preliminary conclusions
Input space (p, -cos(θ))

Expansion parameter  

No evidence that N4LO+ is pathological cf. other coefficients

Qsum = p + mπ

Λb + mπ

BUT
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The GP is not actually 2D stationary

ℓθ ∼ 1/p

Duh

And  has mild p 
dependence

c̄2
θ

“Warp” input space 
to account for 1/p 
effect

Fit Lorentzian 
parameters

PRELIMINARY
Millican et al. (2024B)



Results for  for SMS potentialsΛb
400 MeV 450 MeV 550 MeV500 MeV

PRELIMINARY



Are observables the right place to look?

K = 1
2 (p + p′ ); q = p′ − p; n = p × p′ 

A: central part
C: spin-orbit M, G, and H: tensor effects

Wolfenstein 
amplitudes

Wolfenstein & Ashkin (1952)

McClung, Elster, DP (in progress)



Why not decompose these order by order?
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Works well for amplitudes at 100 MeV
yref=Im(A)

Q = max(p, q) + mπ

Λb + mπ

PRELIMINARY



Works well for amplitudes at 100 MeV
yref=Im(A)

Q = max(p, q) + mπ

Λb + mπ

PRELIMINARY
See 1/p dependence of

 in this analysis tooℓθ



And at other energies too 
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Summary, omissions, and future work
Statistical modeling for EFT coefficients  means quantifying what we mean by 
EFTheological statements

Since probability theory is “the logic of science” (Jaynes) once we do this we 
can then check if EFTs are behaving in accord with the statistical model.

Building & checking such models doesn’t only get us truncation error estimates

Do all orders really have the same size? What range can  be in?

Could also make “pion mass” a parameter of the statistical model

Forthcoming: analyses for many potentials. Amplitudes or observables? 

Future: incorporate correlated truncation error in fit of LECs to NN data

Apply technology to other observables, other nuclear physics EFTs

How to combine information across different observables ?

Λb

Svennson, Ekström, Forssén, PRC (2024)


