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Disclaimer:
It is by no means my intention to offend anybody ...
not even Weinberg!

Just:
Amicus Plato, sed magis amica veritas!



Imagine a hypothetic situation:

In 1991: S. Weinberg states:

"Capital of Georgia is Atlanta!"

In 1998 X, Y., Z. and other experts of Geography argue giving
perturbative as well as non-perturbative water-proof arguments that

"Capital of Georgia is Tbilisi!

... in 1991 one (including Weinberg) did not have good
understanding of Geography of former Sovjet Union, but now we
know it for sure ... ”

And next 26 years we hear again and again ...

"Everybody knows that Weinberg was wrong !!! "

"I do not know that ... let us have a closer look ..."

"You are NOT Everybody!!!"

"Sorry mite, ... even prophets can be wrong ..."

"There is nothing to discuss ... !"

"Maybe we first should agree on terminology ... "

"Calma, Seniori, Calma! ... otherwise you will get no Dinner today!"



S. Weinberg, Effective chiral Lagrangian for nucleon-pion interactions and
nuclear forces, Nucl. Phys. B363 3, (1991).



RG in few-body sector of chiral EFT

Short reminder about renormalization:

In QFT bare couplings of the Lagrangian ci are represented as

ci(Λ) = cR
i (µ) + δci(Λ, cR

j (µ), µ),

cR
i (µ) - renormalized couplings, µ - renormalization point, δci -

counter terms.

By differentiating with µ we obtain Gell-Mann-Low RG equations

µ
∂

∂µ
cR

i = −µ
∂

∂µ
δci(Λ, cR

j (µ), µ).

By differentiating with Λ we obtain Wilsonian RG equations

Λ
∂

∂Λ
ci(Λ) = Λ

∂

∂Λ
δci(Λ, cR(µ), µ).

Wilsonian RG controls cutoff-dependence of bare couplings!



Gell-Mann-Low RG controls renormalization point-dependence of
renormalized couplings!

While the full physical quantities do not depend on µ, in any
perturbative expansion the relative size of different contributions
(i.e., power counting) essentially depends on the choice of the
renormalization scheme!

Best-known example: Perturbative QCD ...



Demonstrating the usage of RG in PT

Let a physical quantity be given by exact expression

f (g) =
g

1 − ℏg
,

where g is a parameter and ℏ controls the quantum corrections.

Suppose for whatever reason we calculate this quantity in PT.

For |g| > 1 our expansion in g leads to a divergent series.
In this case we can expand in a different way:

f (g) ≡ g
1 − ℏµg − ℏg(1 − µ)

=
gµ

1 − µ

(
1 + ℏgµ + ℏ2g2

µ + · · ·
)
,

where gµ = g(1 − µ)/(1 − ℏµg).



The exact f (g) is µ-independent, however the sum of the first N
terms depends on µ.

While formally this dependence is of higher order ∼ ℏN+1, the
convergence of the series crucially depends on the choice of µ.

For example, for g = 2 this series converges only if µ > 3/4, the
convergence being best close to µ = 1.



Wilsonian RG in few-body sector of chiral EFT:

For definiteness we concentrate on the NN scattering.

We assume that QCD is the correct theory of the strong interaction.

Given the NN scattering amplitude of QCD we could obtain a
corresponding NN potential.

In particular, we would extend the physical amplitude
Ton(E ,Θ) = Ton(p⃗ ′, p⃗) to an off-shell function T (p⃗ ′, p⃗,E) and obtain
the potential by solving the equation:

V
(
p⃗ ′, p⃗ ,E

)
= T

(
p⃗ ′, p⃗ ,E

)
−
∫

d3k V
(

p⃗ ′, k⃗ ,E
)

G(E , k) T
(

k⃗ , p⃗ ,E
)

Considering all possible off-shell extensions of the amplitude one
covers all potentials which lead to the same physical amplitude.



Wilsonian RG:

We regularize the integral equation and modify the potential so that
the scattering amplitude does not change:

T
(
p⃗ ′, p⃗

)
= V

(
Λ, p⃗ ′, p⃗

)
+

∫
d3k V

(
Λ, p⃗ ′, k⃗

)
G(Λ,E , k)T

(
k⃗ , p⃗

)
,

where
G(Λ,E , k) = F (Λ, k)G(Λ,E , k) ,

and F (Λ, k) is a regulator function.

The off-shell amplitude coincides with the original one if the potential
satisfies RG equation:

V
(
Λ, p⃗ ′, p⃗ ,E

)
= V

(
p⃗ ′, p⃗ ,E

)
+

∫
d3k V

(
Λ, p⃗ ′, k⃗ ,E

)
G(E , k)(1 − F (Λ, k)) V

(
k⃗ , p⃗ ,E

)
.

The solution to this equation defines the RG flow of the potential.

M. C. Birse, J. A. McGovern, K. G. Richardson, Phys. Lett. B 464, 169
(1999).



Any value of Λ leads to the same amplitude if the full
cutoff-dependent potential V

(
Λ, p⃗ ′, p⃗ ,E

)
is substituted.

If one expands V
(
Λ, p⃗ ′, p⃗ ,E

)
by applying some method of

approximations, the convergence of the corresponding perturbative
series for the amplitude, in general, strongly depends on the choice
of the value of Λ.

One chooses such values of Λ which lead to optimal convergence of
perturbative series for physical quantities.



Does there exist any regulated potential following from QCD which
admits a systematic expansion in some region of Λ, which can be
reproduced order-by-order using an effective Lagrangian?

If such an expansion does not exist in the RG space of potentials
then the Wilsonian RG approach to chiral EFT is guaranteed to fail.

If it does, one still needs to identify the region of values of Λ and the
expansion of the potential in terms of chiral EFT, i.e., the
corresponding power counting for various terms of the Lagrangian.

For a system with scale separation Mlow ≪ Mhigh
for energies E ∼ M2

low/m

by choosing Mlow ≪ Λ ≪ Mhigh

we can expand the regulated potential in powers of
ϵ ∼ Mlow/Λ ∼ Λ/Mhigh :
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RG flow, red line - exact potential, blue line - approximate potential.



Georgian mountains ... "Svaneti"







"RG invariant" approach or "peratization"?

Following
J. B. Habashi, S. Sen, S. Fleming and U. van Kolck, Annals Phys. 422,
168283 (2020),
U. van Kolck, Symmetry 14, 1884 (2022),
H. W. Griesshammer and U. van Kolck, Eur. Phys. J. A 59, 289 (2023)
we revisit the contact interaction potential with first two terms for
a ∼ re ∼ 1/Q ≫ 1/Q̃, where Q and Q̃ are the soft and hard scales
of the problem.

To avoid the complications caused by the Wigner bound
(D. R. Phillips and T. D. Cohen, Phys. Lett. B 390, 7-12 (1997) )
encountered in "RG invariant" approach it was assumed that the
effective range is negative.



Following
D. R. Phillips, S. R. Beane and T. D. Cohen, Nucl. Phys. A 631,
447C-451C (1998)
one can obtain the corresponding amplitude in closed analytic form.

Using sharp cutoff and fitting C and C2 to a and re one obtains:

T =
N

mD
,

N = 4iπ2a
(
πaΛq2re − 4aℏ

(
Λ2 + q2

)
+ 2πΛ

)
D = 2iπ2Λ− 2aπ(πq + 2iΛ)Λℏ

− iaqℏ
(
−2πΛ + 4a

(
q2 + Λ2

)
ℏ− aπq2Λre

)
ln

Λ− q
Λ + q

+ a2qℏ
(
−8iqΛℏ+ 4π

(
q2 + Λ2

)
ℏ+ πq(−πq + 2iΛ)Λre

)
.



By taking Λ ∼ Q̃ or larger the above amplitude can be written as

T = −4π
m

1
−1/a + q2re/2 − iqℏ

+
π2q4r2

e

2Λmℏ
(
−1/a + q2re/2 − iqℏ

)
2 +O

(
1
Λ2

)
.

This expression satisfies conditions of "RG invariant" approach.

However it has to be applicable also for momenta q ≪ 1/a, where
the perturbative loop expansion converges.

That is, for such values of q the re-summation of diagrams is not
necessary because renormalized perturbative series converges.



The problem with the non-perturbatively "renormalized" amplitude is
manifested in its perturbative expansion in ℏ:

T =
4πa
m

+
2πa2q2re

m
− ia2qℏ

m

[
−2iq

(
a2Λq2r2

e +
4
Λ

)
+ 2i tanh−1

(q
Λ

)(
aq2re + 2

)
2 + π

(
aq2re + 2

)
2
]
+O(ℏ2) .

Starting at one-loop order it contains positive powers of Λ.

The term linear in Λ is suppressed relative to LO contribution only if
a3Λq4ℏr2

e
2π ≪ 1 which implies that Λ cannot be taken much larger than

Q ∼ 1/a ∼ 1/re.



The above "RG Invariant" treatment leads to differing results for the
dimensional and the cutoff regularizations
D. R. Phillips, S. R. Beane and T. D. Cohen, Nucl. Phys. A 631,
447C-451C (1998).
In particular, using dimensional regularization one obtains

T = −4π
m

1
−1/(a + q2a2re/2)− iqℏ

+O(d − 4) ,

where d is the space-time dimension.
Notice that the difference between two expressions is not of higher
order for a ∼ re ∼ 1/Q ≫ 1/Q̃.

Different regularizations leading to different results is a clear
indication that the applied "renormalization" procedure is not
consistent with the standard QFT formalism.



In fact this "non-perturbative renormalization" is actually
"peratization" of
G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963).
G. Feinberg and A. Pais, Phys. Rev. 133, B477 (1964).

Peratization:

limΛ→∞
A+B Λ
C+D Λ = B

D .

Renormalization:

limΛ→∞
A+B Λ
C+D Λ = AR

CR ̸= B
D .



S. Weinberg, Effective chiral Lagrangian for nucleon-pion interactions and
nuclear forces, Nucl. Phys. B363 3, (1991).



Lorentz invariance and low energy EFT

Lorentz invariance is a fundamental symmetry of QCD!

Is it important at low energies?

Apparent answer: No! ...

Does that apply to real world, or to its mathematical image (... called
theoretical Physics)?

If to both, then how is it realized in mathematical image?

Does Lorentz-invariant formulation offer any advantages in few-body
sector? ...



INT Program 13-1a

Computational and Theoretical Advances ...

March 25 - April 19, 2013

available on INT homepage

van Kolck:

Root of the problem:
pion exchanges (long-ranged, contribute to waves higher than S)

are singular (sensitive to short-range physics, require counterterms)
This ¯s Nothing to ˘ with relativity...

(For the opposite opinion, see Epelbaum + Gegelia ’12)

E. Epelbaum and J. Gegelia, Phys. Lett. B 716, 338 (2012).



▶ From the long-range behavior of the potential follows Nothing
about its short-range behavior!

▶ Chiral EFT potential is valid only for small momenta!

▶ Singular behavior of chiral potentials comes from large
momenta - it is solely artefact of extrapolation!

▶ QCD does not fix the NN potential uniquely, however the
spectrum of QCD fixes the class of possible potentials:
NON-SINGULAR!

▶ Any short-range extrapolation
... in the class of non-singular potentials is going to be wrong!

... in the class of singular potentials is not going to be even
wrong!

▶ What does that to do with Lorentz invariance?



Lorentz-invariant formulation versus NR approach

Is Lorentz invariance important at low energies?

No, provided that one takes proper care!

Non-relativistic theory should be adequate at low energies, however
...

Per definition, non-relativistic expansion means:
1. Lorentz invariant effective Lagrangian – Lorentz invariance is a

fundamental symmetry!
2. Quantum corrections.
3. Regularization (Λ) and renormalization.
4. Non-relativistic expansion (expansion in 1/m) of renormalized

quantities.



On the other hand, non-relativistic EFT:
1. Lorentz-invariant EFT Lagrangian – expanded in 1/m ⇒

non-relativistic EFT Lagrangian.
2. Quantum corrections.
3. Regularization (Λ), Renormalization.
4. Renormalized quantities are given as non-relativistic series.



▶ Proper non-relativistic expansion:
first – calculation of quantum corrections,
after – 1/m expansion.

▶ Non-relativistic EFT:
first – expansion in 1/m,
after – calculation of quantum corrections.

▶ Expansions in 1/m and calculation of quantum corrections are
not commutative!

▶ Difference (”error”) can be compensated by adding terms in
non-relativistic EFT Lagrangian. A finite number of terms
needed at any fixed order in one nucleon sector.

J. G. and G. Japaridze, Phys. Rev. D 60, 114038 (1999).
▶ Due to solving an integral equations, an infinite number of

compensating terms needed in few-body sector already at LO.



Solutions:
▶ Keep Λ ≲ m – successfully implemented by various groups:

C. Ordonez, L. Ray and U. van Kolck, . . .
E. Epelbaum, W. Gloeckle and U. -G. Meißner, ...
D. R. Entem and R. Machleidt ...

▶ Take into account compensating terms of non-relativistic EFT
Lagrangian:

- Realized in KSW approach (perturbative pions)
D. B. Kaplan, M. J. Savage and M. B. Wise, Phys. Lett. B 424,
390 (1998) ...

- Problematic if pions are included non-perturbatively!
▶ Prove that an infinite number of compensating terms can be

safely dropped – has (can)not been done!
▶ Use the original Lorentz invariant Lagrangian without 1/m

expansion ... Resulting OPE ∼ 1/r2.
E. Epelbaum and J. G., Phys. Lett. B 716, 338 (2012).



Chiral EFT for P-wave halo states and RG

C.A. Bertulani, H.-W. Hammer, U. Van Kolck, Nucl.Phys. A712, 37, (2002) .

Consider two non-relativistic particles with range of interaction
R ∼ 1/Mhi.

ERE for the orbital angular momentum l :

T (k) ∝ 1
k cot δ − ik

≃ k2l(
−1/a + 1/2 r k2 + v2k4 + . . .

)
− ik2l+1 ,

a, r , vi - scattering length, effective range and the shape parameters.

Assume that the first two terms in the ERE are fine tuned as

1/a ∼ M3
lo , r ∼ Mlo , vn ∼ M3−2n

hi . (1)



In low-energy EFT with contact interactions only the two
lowest-order contact interactions in the effective potential

V = C2 p′p + C4 p′p
(

p′2 + p2
)
+ . . . ,

need to be iterated in the LS equation to all orders.



We solve

T (p′,p) = V (p′,p) + m
∫ Λ

0

l2dl
2π2

V (p, l) T (l ,p′)

k2 − l2 + i ϵ
,

and obtain for the on-shell amplitude T (k) ≡ T (k , k):

k2

T (k)
= −I(k) k2 − I3 +

(C4I5 − 1) 2

C4
(
k2 (2 − C4I5) + C4I7

)
+ C2

,

where the integrals In and I(k) are defined via

In = −m
∫ Λ

0

l2dl
2π2 ln−3, n = 1,3,5, . . . ,

I(k) =

∫ Λ

0

l2dl
2π2

m
k2 − l2 + iϵ

.

Renormalization and RG can be implemented a la Gell-Mann and
Low or a la Wilson.



Subtractive renormalization

We renormalize the amplitude by applying BPHZ procedure, i.e.
subtracting all UV divergences prior to taking the limit Λ → ∞.

Specifically, we first separate out power-like UV divergences in the
appearing integrals in the most general way via

In = −m
∫ µn

0

l2dl
2π2 ln−3 − m

∫ Λ

µn

l2dl
2π2 ln−3 ≡ IR

n (µn) + ∆n(µn) ,

with n = 1,3,5, . . . ,
I(k) ≡ IR(k , µ1)−∆1(µ1) ,

where µn denote the corresponding renormalization scales.

We renormalize the amplitude by replacing the integrals In and I(k)
with IR

n (µn) and IR(k , µ1) and the bare couplings C2 and C4 by
renormalized couplings CR

2 and CR
4 .



Since the renormalized amplitude depends only on UV-convergent
integrals, we can now safely take the limit Λ → ∞.

Fitting the renormalized LECs to a and r leads to:

k3 cot δ = −1
a
+

1
2

rk2 − 3k4

2π
(4µ1 + πr) 2

6πa−1 − 4µ3
3 + 3k2(4µ1 + πr)

.

The renormalized scattering amplitude depends on µ1 and µ3.

The choice of µi plays a key role in setting up a self-consistent
power counting.



For the resonant P -wave scattering the choice of renormalization
conditions is rather delicate due to the strong fine tuning.

Indeed, one must choose µ3 ∼ Mhi since setting µ3 ∼ Mlo would
lead to poles in the effective range function located at k ∼ Mlo,
thereby resulting in enhanced values of the coefficients in the ERE.

Consequently, no KSW-like scheme is possible for resonant P-wave
systems under consideration.

A self-consistent Weinberg-like scheme with all LECs scaling
according to NDA emerges if we set µ5 ∼ µ7 ∼ µ9 ∼ . . . ∼ Mlo.
The scale µ1 can be chosen either as µ1 ∼ Mhi or µ1 ∼ Mlo.



Wilsonian RG with two cutoffs

Using the approach of
E. Epelbaum, J. G. and U. -G. Meißner, Commun. Theor. Phys. 69, no.3,
303 (2018)
we rewrite the potential as

V = (C2 + 2C4k2)pp′ + C4pp′(p2 − k2 + p′2 − k2) ,

and introduce two cutoffs via

V = (C2 + 2C4k2)pp′θ(Λ1 − p)θ(Λ1 − p′)

+ C4pp′θ(Λ1 − p)θ(Λ1 − p′)

×
[
(p2 − k2)θ(Λ2 − p) + (p′2 − k2)θ(Λ2 − p′)

]
,

where it is implied that Λ1 ≥ Λ2.



This potential can be represented in a separable form:

V =
(

p′θ(Λ1 − p′), p′(p′2 − k2)θ(Λ2 − p′)
)

×
(

C2 + 2C4k2, C4
C4, 0

)(
pθ(Λ1 − p)

p(p2 − k2)θ(Λ2 − p)

)
,

and therefore the corresponding LS equation for the scattering
amplitude can be straightforwardly solved analytically.



Matching the solution to the ERE we fix the LECs C2 und C4:

C2 =
1

350mπ2(3π − 2aΛ3
1)

{
75C2

4m2πΛ7
2 + a

[
4200π4

+840C4mπ2Λ5
2 + 2C2

4m2Λ7
2(21Λ3

2 − 25Λ3
1)
]
,

C4 =
10

√
5π2(3π − 2aΛ3

1)
2

mΛ5
2

√
(3π − 2aΛ3

1)
2 α(Λ1,Λ2)

− 10π2

mΛ5
2

}
.

The LECs C2 and C4 must be real, therefore the argument of the
square root has to be non-negative.

This leads to the condition

α(Λ1,Λ2) ≡ 45π2 + 4a2Λ1(5Λ5
1 − 9Λ5

2)− 3aπ(20Λ3
1 + 3arΛ5

2) ≥ 0 .



For two independent cutoffs Λ1 and Λ2, the condition that α(Λ1,Λ2)
has to be non-negative can be satisfied for any values of a and r .

To check the convergence of the ERE we subtract − 1
a + 1

2 r k2 from
the calculated expression of k cot δ and obtain the remainder:

SRest =
k3

2π

(
− 3ak(πr + 4Λ1)

2

3π(2 + ak2r)− 4aΛ1(Λ
2
1 − 3k2)

− 2 ln
Λ1 − k
Λ1 + k

)
.

The second term in the bracket has a convergent expansion in k2 for
Λ1 ≫ k and the expansion of the first term converges if

−1 <
3 (π r + 4Λ1)

6π/a − 4Λ3
1

k2 < 1 .

By taking sufficiently large Λ1 this condition can always be fulfilled.
For considered system this amounts to taking Λ1 ∼ Mhi or larger.

By taking Λ1 ∼ Mhi and Λ2 ∼ Mlo, we find that C2 ∼ 1/(mM3
hi) and

C4 ∼ 1/(mM5
hi), i.e. both are of natural size.



For Λ1 = Λ2 = Λ we have

α(Λ,Λ) = 45π2 − 16a2Λ6 − 9πa2rΛ5 − 60πaΛ3 ,

which turns negative for sufficiently large Λ values and, therefore,
the LECs C2 and C4 become complex.

For our system the cutoff Λ cannot be taken larger than ∼ Mlo.
This observation is in line with the causality bound
r ≤ −2/R (1 +O(R3/a)) obtained in

H. W. Hammer and D. Lee, Annals Phys. 325, 2212-2233 (2010).

if the range of the interaction R is identified with 1/Λ.



What does „RGI EFT“ mean? Which criteria should the amplitude fulfill to qualify for RGI?

If residual Λ-dependence allowed, why not Λ ~ Λb? Is it essential to allow for Λ  Λb?

If so, what about the examples with a wrong  ,  e.g. 0906.3822, 2104.01823, 2202.01105 ? 

≫
lim

Λ→∞
T

Can renormalization by itself impose constraints on physical quantities? E.g., in π-less 
EFT, on relative sizes and signs of a, r, …  as claimed by Habashi et al. ’20,’21 ?  Has χEFT for NN 

any predictive power beyond χ symmetry (= long-range tail of the interaction)?

PC in explicitly renorm. EFTs (ChPT, KSW, …)          PC in π-full nuclear cutoff EFTs⟷
powers of Q, not unique (renorm. cond.)          large-Λ behavior, powers of what?⟷

?
?

How have simpler EFTs, such as pionless and halo/cluster EFTs, influenced Chiral EFT?
  test/benchmark different approaches! For resonant P-wave systems, see 2104.01823→
dimer EFT      subtractively renormalized NN EFT (W. and KSW)   

                                                implicitly renormalized cutoff EFT      RG analysis

↔ ↔
↔ ↔

A clever person solves the problem.

A wise person avoids it. 

 EFT & renormalization of singular potentials 

— Albert Einstein (?)

Perhaps, we should (try to) agree on the analytically solvable pionless/halo EFT first…

+ talk by Ashot


