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“Perturbative” calculation of observables

Expansion parameter: (soft scale)/(hard scale)

Bare parameters of the Lagrangian
Renormalization:

power counting for
renormalized quantities
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Balancing at the border of phenomenology



Implicit renormalization

Explicit renormalization

Identify each term individually, or at least prove this is possible

fit bare

(re)fit bare

(re)fit bare

Justifies theoretical error estimation!

bare =renormalized + counter term 
(absorb divergent and power counting breaking contributions)

Balancing at the border of phenomenology



Power counting for NN chiral EFT: LO and NLO
Weinberg, S., NPB363, 3 (1991) 

+...
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Motivation: Finite cutoff scheme

G. P. Lepage, nucl-th/9706029
  J. Gegelia, JPG25, 1681 (1999)

Power-counting violating contributions from large loop momenta:

Expectation: power-counting breaking contributions 
can be absorbed by lower order contact (counter) terms

Expectation:

Rob Timmermans: If you cannot go with the cutoff above the breakdown scale, 
what, at all, are you doing? 
Answer: The finite cutoff scheme is the most well grounded approach to date 
(with nonperturbative pions)

We cannot absorb all positive powers of Λ. 
Absorb only those that are not compensated by the inverse powers of Λb 



Variation of the cutoff

nontrivial!

Not small If T0 is enhanced (S-waves):

After renormalization: adjusting counter terms



Effective Lagrangian and the regulator

contains

regulated potential

-RG-invariance



Effective Lagrangian and the regulator

Λ specifies the non-perturbative regime (the renormalization scheme )

The remaining Λ-dependence is removed perturbatively by expansion in           

contains

regulated potential

Lagrangian and amplitude are formally cutoff (regulator) independent

Nonperturbative effects (bound states) cannot be generated this way

For locally regulated long-range potentials,             can be expanded in 1/Λ
and absorbed by contact interactions, 
or can be kept explicit to access lower values of the cutoff

-RG-invariance



Explicit inclusion of the regulator corrections

LO NLO

AG, E.Epelbaum, PRC107, 044002 (2023)



Misconceptions: RG-invariance in Perturbative QFT

S-matrix is renormalization scale µ independent (only formally and up to higher order)

Perturbation theory converges equally well for all µ:

QED: Landau pole

QCD:  

Brodsky, Lepage, Mackenzie, PRD28 (1), 228 (1983)

None of these criteria can be fulfilled (exceptional cutoffs), but this is not necessary

 H. W. Hammer, S. König, U. van Kolck, 
 Rev. Mod. Phys. 92(2), 025004 (2020)

 H. Grießhammer, EPJA 56 (4), 118 (2020)



Technicalities of renormalization:
estimating integrals using bounds on potentials
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Technicalities of renormalization:
estimating integrals using bounds on potentials

V
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LO potential:

NLO potential:

2-nucleon Green’s function:

Integral converges at

V
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(regulator)

Renormalization → Subtraction → Counter term



Structure of the interaction in chiral EFT  

Interaction obtained from chiral EFT:

AG, E.Epelbaum, PRC 105, 024001 (2022)

Subtractions:

Large loop momenta are suppressed

Renormalizability



More iterations of V0
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Renormalized NLO amplitude:

2-nucleon Green’s function:

Integral converges at



More iterations of V0
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LO potential:

Renormalized NLO amplitude:

2-nucleon Green’s function:

Integral converges at

One more subtraction The same form of a counter term



Overlapping diagrams

Mills, Yang, Prog.Theor.Phys.Suppl. 37 (1966)

Early history of QFT. Using tricks: Ward identities, derivatives w.r.t external momenta
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For this 16-th order diagram
tricks do not work

 N. N. Bogoliubov, O. S. Parasiuk, AM97, 227 (1957); K. Hepp, CMP2, 301 (1966); W. Zimmermann, CMP15, 208 (1969)

General method. BPHZ scheme:
subtractions in all possible nested sets of diagrams (forests)



General case, BPHZ
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General case, BPHZ
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Partition integrations over pi into sectors to avoid double counting

All counter terms add up to a single counter term



Power counting in the finite-cutoff scheme, NLO 
AG, E.Epelbaum, PRC 105, 024001 (2022)

Renormalized amplitude:

-Perturbative (convergent) sum



Power counting in the finite-cutoff scheme, NLO 
AG, E.Epelbaum, PRC 105, 024001 (2022)

Renormalized amplitude:

-Perturbative (convergent) sum



Non-local separable long-range interaction 
AG, E.Epelbaum, N.Jacobi, in preparation

Long-range power-counting-breaking terms

Nonrenormalizability (in terms of local counter terms)

two-pion exchange



Renormalization in the non-perturbative regime
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T
0=1+

The series for R(TR(T
22

[m,n][m,n]) )  can be summed explicitly:

AG, E.Epelbaum, PRC107, 044002 (2023)



Using Fredholm formula to match to 
the perturbative regime

Convergent series in V0 :

The same for the counter terms:

-Fredholm determinant



Renormalizability constraints



Renormalizability constraints

Can be small, or ~0



Renormalizability constraints

Can be small, or ~0

Renormalizability constraints on (the short-range part of ) the  LO potential.
The simplest formulation: LECs must be of natural size (If              ).

Constraints on the choice of the cutoff are not driven by data!

For realistic interactions works well for Λ<650-750 MeV



Failure of renormalizability for 

Sharp cutoff, harder than smooth regulators
0.7 GeV → above 1 GeV

Tlab=130MeV

AG, E.Epelbaum, PRC107, 034001 (2023)



Failure of renormalizability for 

Sharp cutoff, harder than smooth regulators
0.7 GeV → above 1 GeV

Tlab=130MeV

AG, E.Epelbaum, PRC107, 034001 (2023)



Adding one more counter term at NLO 
to reduce cutoff dependence: “RG-invariance”

B. Long, C. J. Yang, PRC84, 057001 (2011)

AG, E.Epelbaum, PRC107, 034001 (2023)

R. Peng, B. Long,  F. Xu, 2407.08342 (2024)



Exceptional cutoffs
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“physically measure zero” The poles of the S-matrix
is a set of measure zero
 → neglect them?



Exceptional cutoffs

B. Long, C. J. Yang, PRC84, 057001 (2011)

AG, E.Epelbaum, PRC107, 034001 (2023)

R. Peng, B. Long,  F. Xu, 2407.08342 (2024)

“physically measure zero”

Relying on numerical simulations without a deeper understanding
of the physics might be dangerous

The poles of the S-matrix
is a set of measure zero
 → neglect them?



(In)Consistency of Weinberg power counting
and its modifications

Large cutoff arguments are irrelevant in the finite cutoff scheme:
Divergencies →  positive (uncompensated) power powers of Λ

3P0: cutoff variation is a higher order effect, it is phenomenologically 
enhanced (reduce g_A by a factor of 2)

The scheme is inefficient → promote some contact terms: 1S0, 
3P0

Mismatch of ultraviolet divergencies and infrared power counting is typicall:
covariant ChPT in the 1-nucleon sector, especially ∆-full
→scheme dependence as a higher order effect

Consistent in the EFT sense: systematic expansion preserving symmetries

Analogy in perturbative EFT: promotion of the Q5 contact term in γN→γN ChPT
H. Griesshammer, J. McGovern, D. Phillips, Eur.Phys.J. A 52 (2016) 5, 139



Going to larger cutoff values: “RG-invariance”

Price: 
Promoting many (∞) counter terms 
to make the amplitude insensitive (independent) of the cutoff
Relying on purely (potentially dangerous) numerical analysis

However, while in analytical calculations Eq. (...) can be
verified explicitly, in numerical calculations varying the
regulator parameter widely above the breakdown scale is
usually the only tool available to check RG invariance.

After renormalization, when the contribution from momenta
of the order of the large cutoff have been removed,
the dominant terms in loop integrals come from momenta of O(Q). 

 H. W. Hammer, S. König, U. van Kolck, 
 Rev. Mod. Phys. 92(2), 025004 (2020)

What about momenta of order Λb ?

Large cutoffs do not solve any problems of finite cutoffs



Explicit renormalization of an EFT provides a justified systematic 
expansion of observables and theoretical error estimate

Summary

(1) Locality of the long-range forces

(2) Cutoff of the order of the hard scale 

(3) Naturalness of the counter terms

(1)+(2) in most cases imply (3): (1)+(2) → (3)

Sufficient conditions for renormalizability:



Should we insist on cutoff insensitivity of a scheme for Λ>Λb 

by promoting many (∞) counter terms 
and 

relying on semi-phenomenological (potentially dangerous) numerical 
analysis 

or

should we stick to the practically more affordable 
and better justified fundamentally

finite cutoff scheme ?

Questions
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