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INTRODUCTION
and OUTLINE
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Cluster EFT calculation
of electromagnetic breakup reactions

with the Lorentz Integral Transform method

MODEL

✤ Effective particles
• nucleons and α-particles

✤ Interaction
• potential models from Effective Field Theory (EFT)
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Cluster EFT calculation
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Choice of the METHOD

✤ Bound-state problem
• variational method
• Non-Symmetrized Hyperspherical Harmonics (NSHH) method

✤ Continuum-states problem
• integral transform approach: Lorentz Integral Transform (LIT) method
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Cluster Effective Field Theory calculation
of electromagnetic breakup reactions

with the Lorentz Integral Transform method

γ + 9Be→ α+ α+ n γ + 12C→ α+ α+ α

✤ Study of the reactions of astrophysical relevance
in a three-body ab initio approach and in the low-energy regime
• three-body binding energies
• cross sections

✤ Comparison of the results with the experimental data
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Model
Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Cluster Effective Field Theory (EFT) approach [Hammer, et al. (2017), Hammer, et al. (2020)]

Borromean systems: 9Be ∼ ααn S3 ≈ 1.573 MeV ≪ Sp(4He) ≈ 19.81 MeV
12C ∼ ααα S3 ≈ 7.275 MeV < Sp(4He) ≈ 19.81 MeV

6He ∼ αnn , 10Be ∼ ααnn , 16O ∼ αααα , . . .

⇒ 3-body (or 4-body) effective clustering systems in the low-energy regime

Separation of energy scales → halo/cluster EFT approach

momentum scales: Mlow , Mhigh
↓

EFT expansion in
( Mlow

Mhigh

)ν

↓
error estimate
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Model
Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Two-body effective potentials [Hammer, et al. (2017), Ji]

Effective potential defined in momentum space and in the partial wave ℓ:

Vℓ(p, p′) =
[
λ0 + λ1 (p2 + p′2)

]
pℓp′ℓ g(p; Λ) g(p′; Λ)

• sum of contact terms parametrized by the LECs

• momentum-regulator function g(p; Λ)

g(p; Λ) = e−( p
Λ )2m

m = 1, 2
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Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Two-body effective potentials [Hammer, et al. (2017), Ji]

Effective potential defined in momentum space and in the partial wave ℓ:

Vℓ(p, p′) =
[
λ0 + λ1 (p2 + p′2)

]
pℓp′ℓ g(p; Λ) g(p′; Λ)

• sum of contact terms parametrized by the LECs

• momentum-regulator function g(p; Λ)

g(p; Λ) = e−( p
Λ )2m

m = 1, 2

✓ We calculate the T -matrix by solving the Lippmann-Schwinger equation (on-shell: p = p′ = k)

⇒ α–n : Tℓ(k), α–α : T SC
ℓ (k) Coulomb-distorted strong term

✓ We compare the calculated low-energy T -matrix with its ERE or Coulomb-modified ERE up to terms O(k2)

⇒ λi = λi (aℓ, rℓ, Λ)

✓ The LECs are fixed on the experimental values of the scattering length aexp
ℓ

and the effective range r exp
ℓ

λi = λi (aexp
ℓ

, r exp
ℓ

, Λ)

The effective potentials Vαn
ℓ and Vαα

ℓ reproduce the experimental low-energy α–n and α–α phase-shifts ➠
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Model
Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Two-body effective potentials

Calculated phase-shifts for different two-body cut-offs Λ < Λmax (⇐ Wigner bound)
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Model
Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Two-body effective potentials

α–n Power counting α–α
k2ℓ

Tℓ(k)
=

µ

2π

[
1

aℓ

−
1
2

rℓk2 + O(k4) + ik2ℓ+1
]

Mhi =
√

2µSp(4He) ≈ 170 MeV

1
T SC

ℓ=0(k)
∝

µ

2π

[
1
a0

−
r0

2
k2 + O(k4) + 2kC H(η)

]
Mhi =

√
2µSp(4He) ≈ 270 MeV, kC = Z 2

ααemµ ≈ 60 MeV
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Model
Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Two-body effective potentials

α–n Power counting α–α
k2ℓ

Tℓ(k)
=

µ

2π

[
1

aℓ

−
1
2

rℓk2 + O(k4) + ik2ℓ+1
]

Mhi =
√

2µSp(4He) ≈ 170 MeV

P3/2: resonance ⇒ enhanced partial wave

Mlo =
√

2µER (5He) ≈ 30 MeV≪ Mhi

1
a1
∼ M2

loMhi , r1 ∼ Mhi ⇒ a1, r1 LO

[Bedaque, et al. (2003)]

aexp
1 , rexp

1 ⇒ Mlo/Mhi ≈ 30 MeV/170 MeV ≈ 0.2

nonperturbative approach

1
T SC

ℓ=0(k)
∝

µ

2π

[
1
a0

−
r0

2
k2 + O(k4) + 2kC H(η)

]
Mhi =

√
2µSp(4He) ≈ 270 MeV, kC = Z 2

ααemµ ≈ 60 MeV

S0: resonance ⇒ enhanced partial wave

Mlo =
√

2µER (8Be) ≈ 20 MeV≪ Mhi

1
a0
∼

M3
lo

M2
hi

, r0 ∼
1

Mhi
⇒ a0, r0 LO

[Higa, et al. (2008)]

aexp
0 , rexp

0 ⇒ Mlo/Mhi ≈ 20 MeV/180 MeV ≈ 0.1

nonperturbative approach
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Model
Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Two-body effective potentials

α–n Power counting α–α
k2ℓ

Tℓ(k)
=

µ

2π

[
1

aℓ

−
1
2

rℓk2 + O(k4) + ik2ℓ+1
]

Mhi =
√

2µSp(4He) ≈ 170 MeV

P3/2: resonance ⇒ enhanced partial wave

Mlo =
√

2µER (5He) ≈ 30 MeV≪ Mhi

1
a1
∼ M2

loMhi , r1 ∼ Mhi ⇒ a1, r1 LO

[Bedaque, et al. (2003)]

aexp
1 , rexp

1 ⇒ Mlo/Mhi ≈ 30 MeV/170 MeV ≈ 0.2

nonperturbative approach

S1/2 and P1/2: non-enhanced partial waves
a0 LO, r0, a1, r1 subleading [Bedaque, et al. (2003)]

we use the same nonperturbative approach

1
T SC

ℓ=0(k)
∝

µ

2π

[
1
a0

−
r0

2
k2 + O(k4) + 2kC H(η)

]
Mhi =

√
2µSp(4He) ≈ 270 MeV, kC = Z 2

ααemµ ≈ 60 MeV

S0: resonance ⇒ enhanced partial wave

Mlo =
√

2µER (8Be) ≈ 20 MeV≪ Mhi

1
a0
∼

M3
lo

M2
hi

, r0 ∼
1

Mhi
⇒ a0, r0 LO

[Higa, et al. (2008)]

aexp
0 , rexp

0 ⇒ Mlo/Mhi ≈ 20 MeV/180 MeV ≈ 0.1

nonperturbative approach
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Model
Methods

Photodidintegration reactions
Results

Cluster EFT approach
2-body potentials
3-body potential

Three-body potential

Leading Order (LO)

NLO

9Be

Vαα
S0

(Λαα
S0

) + Vαn
P3/2

(Λαn
P3/2

) + V3(Λ3, λ3)

+ Vαn
P1/2

(Λαn
P1/2

)

+ Vαn
S1/2

(Λαn
S1/2

)

12C

Vαα
S0

(Λαα
S0

) + V3(Λ3, λ3)

To avoid the dependence of the three-body results on the two-body cut-offs,
we add a three-body potential

V3(Q,Q′) = λ3 e−
(

Q
Λ3

)2

e−
(

Q′
Λ3

)2

• we choose the two-body cut-offs Λαn and/or Λαα

• for each value of the three-body cut-off Λ3 , the LEC λ3 is fixed on a three-body observable
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Model
Methods

Photodidintegration reactions
Results

Response function
NSHH method
LIT method

Methods

Electromagnetic inclusive reactions

Cross section

σEM ∝ R(ω)

Response function

R(ω) =
∫

df | ⟨Ψf |Ô|Ψ0⟩ |2 δ(Ef − E0 − ω)

❶ calculation of the initial bound state |Ψ0⟩ ➛ bound-state method

❷ calculation of the final states |Ψf ⟩ in the continuum ➛ integral transform approach

❸ determination of the operator Ô ➛ photodisintegration processes
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Model
Methods

Photodidintegration reactions
Results

Response function
NSHH method
LIT method

Non-Symmetrized Hyperspherical Harmonics (NSHH) method
[Gattobigio, et al. (2011), Deflorian, et al. (2013)]

R(ω) ∼ | ⟨Ψf |Ô| Ψ0 ⟩ |2

Variational method + Non-Symmetrized HH basis

• potentials from EFT ← INPUT

• Ĥ is represented on a Non-Symmetrized basis in momentum space

Ψ =
∑

ν

cνΨν ≡
∑

m{K}

cm{K} fm(Q) Y{K}(ΩQ) fm(Q) ∝ Laguerre polynomials basis

Y{K}(ΩQ) = complete basis of the HH functions

• Ĥ is diagonalized ∑
ν′ ⟨Ψν |Ĥ|Ψν′ ⟩ cν′ = E cν E0, { c0

ν } ⇒ Ψ0

• Convergence is reached by enlarging the dimension of the basis (m = 1, . . . , NLag, K = 1, . . . , Kmax)
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Model
Methods

Photodidintegration reactions
Results

Response function
NSHH method
LIT method

Lorentz Integral Transform (LIT) method [Efros, et al. (2007)]

R(ω) ∼ | ⟨ Ψf |Ô|Ψ0⟩ |2

R(ω): states in the continuum spectrum are involved Ĥ |Ψf ⟩ = Ef |Ψf ⟩ ⇒ direct calculation is DIFFICULT

Integral transform approach

• Definition of an Integral Transform L(σ) with a Lorentzian kernel K(σ, ω) (σ = σR + iσI)

L(σ) =
∫

dωK(σ, ω) R(ω) , K(σ, ω) =
1

(ω − E0 + σR)2 + σ2
I

⇒ L(σ) INVERSION−−−−−−−→ R(ω)

• It can be demonstrated that L(σ) = ⟨Ψ̃|Ψ̃⟩, where |Ψ̃⟩ ≡ LIT states
|Ψ̃⟩ can be calculated using bound-state methods

Continuum-states problem
R(ω) reformulation−−−−−−−→

Bound-state-like problem
L(σ)

Y. Capitani Cluster EFT calculation of EM breakup reactions with the LIT method 16



Model
Methods

Photodidintegration reactions
Results

Siegert operator
One-body convection current
Practical calculation of the LIT

Photodisintegration reactions [Bacca and Pastore (2014)]

R(ω) ∼ | ⟨Ψf | Ô |Ψ0⟩ |2

Photon γ:
A(x),ϵ̂q,λ

choice: q ∥ ẑ

ω = |q| |Ψ0⟩ → |Ψf ⟩
transition

Nucleus:
J(x) nuclear current operator

ρ(x) nuclear charge operator

Rγ(ω) ∼
∣∣ ⟨Ψf | ϵ̂q,λ · J(q) |Ψ0⟩

∣∣2

Nuclear current matrix element
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Model
Methods

Photodidintegration reactions
Results

Siegert operator
One-body convection current
Practical calculation of the LIT

Siegert operator [Siegert (1937), Golak, et al. (2011)]

R(ω) ∼
∣∣ ⟨Ψf | ϵ̂q,λ · J(q) |Ψ0⟩

∣∣2

• Multipole decomposition: ϵ̂q,λ · J(q) = −
∑

J

√
2π(2J + 1)

[
T el

Jλ
(q; J) + λT mag

Jλ
(q; J)

]
T el

Jλ(q; J) = T el,I
Jλ

(q; J) + T el,II
Jλ

(q; J) Dominant: EJ = E1, E2

• Siegert theorem (continuity equation)

T el,I
Jλ

(q; J) ∝
∫

dq̂′ q′ · J(q′) YJλ(q̂′) ← ωρ(q)− q · J(q) = 0

∝
∫

d3x jJ (qx) ρ(x) YJλ(x̂) ∝ T el,S
Jλ

(q; ρ)

• long-wavelength approximation (qR ≪ 1)

T el,S
Jλ

(q; ρ) ∝ ω
J
∫

d3x xJ
ρ(x)YJλ(x̂) ← dipole dλ or T el,II

Jλ
(q; J) ∝ ω

J+1 ← correction
quadrupole uλ

operator
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Model
Methods

Photodidintegration reactions
Results

Siegert operator
One-body convection current
Practical calculation of the LIT

One-body convection current [Bacca and Pastore (2014)]

R(ω) ∼
∣∣ ⟨Ψf | ϵ̂q,λ · J(q) |Ψ0⟩

∣∣2

• The nuclear current operator is a sum of terms

J = J [1] + J [2] + J [3] + . . . ← the nuclear current matrix element
can be calculated by using only
the one-body term
i.e. the nuclear convection current

• Specifically with our EFT, the continuity equation is NOT fully satisfied.
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Model
Methods

Photodidintegration reactions
Results

Siegert operator
One-body convection current
Practical calculation of the LIT

Motivations [Bacca and Pastore (2014)]

Why this twofold calculation?

1. Siegert operator

T el,S
Jλ

(q; ρ)

2. One-body current

J [1]
λ

(q)

continuity equation: q · J(q) = [H, ρ(q)] , H = T + V2B + . . .

q · J [1](q) = [T , ρ(q)] always satisfied , [V2B , ρ(q)] ̸= 0⇒ J [2](q) such that q · J [2](q) = [V2B , ρ(q)]
[V2B , ρ(q)] ̸= 0 . . .

• With the Siegert theorem, since the continuity equation is used explicitly, the contribution
due to the many–body current operators is implicitly included in the calculation

• Comparison between the two calculations
⇒ the contribution due to the many–body currents can be quantified
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Photodidintegration reactions
Results

Siegert operator
One-body convection current
Practical calculation of the LIT

Practical calculation of the LIT

Eigenvalue method
[Efros, et al. (2007)]

L(σ) =
∑

L

|⟨ΨL|ϵ̂q,λ · J(q)|Ψ0⟩|2

(EL − E0 − σR)2 + σ2
I

∑
ν′ ⟨Ψν |Ĥ|Ψν′ ⟩ cν′ = E cν

E0, { c0
ν } ⇒ Ψ0 EL, { cL

ν } ⇒ ΨL

1. Siegert operator [This work]

E1 : ⟨ΨL|dλ|Ψ0⟩ E2 : ⟨ΨL|uλ|Ψ0⟩

coordinate space calculation

Ψ0,L(ρ, Ωρ) =
∑

m{K}
c0,L

m{K}gm,K (ρ) Y{K}(Ωρ)

2. One-body current [Filandri (2022)]

⟨ΨL|J
[1]
λ
|Ψ0⟩

momentum space calculation

Ψ0,L(Q, ΩQ) =
∑

m{K}
c0,L

m{K}fm(Q) Y{K}(ΩQ)

a Fourier Transform of the basis fm(Q) originally defined in momentum space is needed [Viviani, et al. (2006)]

gm,K (ρ) = (−i)K

∫ ∞

0

dQ
Q3N−1

(Qρ)
3N
2 −1

J
K+ 3N−3

2 + 1
2

(Qρ) fm(Q) N = A− 1
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Photodidintegration reactions
Results

9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

9Be ground state (LO)

NLag = 30

1 3 5 7 9 11 13 15 17 19 21 23 25

K
max
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0

E
0
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M
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]

E
0

exp
 = -B

3

λ
3

3/2-
 = 0.013045 fm

5

V
LO+3

• Basis ∼ fm(Q)Y{K}(ΩQ) with m = 1, . . . , NLag, K = 1, . . . , Kmax

• EFT potential

VLO+3 = Vαα
S + Vαn

P3/2
+ V3(300,λ3/2−

3 )
↓

The LEC λ
3/2−
3 is fixed to reproduce the

experimental binding energy B3 = −1.573 MeV

• V3 = 0 with NLag = 30, Kmax = 25

VLO E0 = −1.965 MeV

VLO + Vαn
S1/2

E0 = −1.982 MeV subleading!

VLO + Vαn
P1/2

E0 = −2.041 MeV subleading!
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Photodidintegration reactions
Results

9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

1/2+ LIT (LO)

0 1 2 3 4 5
σ

R
 [MeV]

0

0.5

1

1.5

2

L
IT

 [
fm

2
 M

e
V

-2
]

λ
3

1/2+
 = λ

3

3/2-

λ
3

1/2+
 = -0.1000 fm

5

λ
3

1/2+
 = -0.1112 fm

5

λ
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5

σ
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• EFT potential

VLO+3 = Vαα
S + Vαn

P3/2
+ V3(300,λ1/2+

3 )
↓

The LEC λ
1/2+
3 is fixed to locate the

resonance peak at the experimental energy

• dipole operator

L(σR) =
∑

L

|⟨ΨL|d̂λ|Ψ0⟩|2

(EL − E0 − σR)2 + σ2
I

↓
σI ∼ resolution
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Model
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Photodidintegration reactions
Results

9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

1/2+ LIT (LO)

NLag = 30
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← convergence: Kmax = 26

convergence: NLag > 60 →

Kmax = 26
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Photodidintegration reactions
Results

9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

1/2+ LIT and cross section (LO)
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+ ← slight dependence on the

variation of the cut-off Λ3

L(σR )→ R(ω)→ σ(ω)

Kmax = 26, NLag = 90
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Arnold, et al. (2012)

Λ
3
 = 300 MeV

Λ
3
 = 400 MeV

1/2
+

5/2
+

Inclusion of other α–n partial waves ➠
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Photodidintegration reactions
Results

9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

1/2+ LIT (LO + P1/2, LO + S1/2)
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• Vαn
P1/2
→ almost no effect

• Vαn
S1/2
→ peak lower in height! (Λαn

S1/2
= 100 MeV)

Choice: cut-offs Λαn
S1/2

> 100 MeV

⇒ to "project out" the αn deep bound state we add a
projection potential

VPR(p, p′) = ψS1/2 (p)
Γ

4π
ψS1/2 (p′)

Theoretically: Γ→∞
In practice: Γ-independence of the three-body results ➠
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9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

➠ Γ-independence of the three-body results
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• calculation of the 9Be ground state
• calculation of the 1/2+ LIT

Γ ≳ 1000 MeV ⇒ not a free parameter
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9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

1/2+ LIT and cross section
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slight dependence on the variation
of the cut-off Λ3

[YC, Filandri, Ji, Leidemann, Orlandini, In preparation]
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9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+
, 5/2+

, 3/2+

Total photodisintegration cross section
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1/2+, 3/2+: NLag = 60, Kmax = 26

5/2+: NLag = 80, Kmax = 30 → not fully convergent results
this needs further check (ongoing!)
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9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+

1/2+ LIT and cross section (LO) - one-body current calculation
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• R(ω) ∼ | ⟨ΨL|J
[1]
λ
|Ψ0⟩ |2

one-body convection current
operator [Filandri, PhD Thesis (2022)]

• strong dependence on the
variation of the cut-off Λ3

⇒ non-vanishing contribution
due to the many-body currents
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9Be photodisintegration
12C photodisintegration

γ + 9Be→ α + α + n |0⟩ : Jπ = 3/2− → |f ⟩ : Jπ = 1/2+
, 5/2+

, 3/2+

Photodisintegration cross section (NLO) - comparison
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γ + 12C→ α + α + α |0⟩ : Jπ
n = 2+

1 (bound state) → |f ⟩ : Jπ
n = 0+

2 (Hoyle state)

0+ LIT (LO)
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• quadrupole operator
• VLO+3 = Vαα
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λ2+
3 chosen to reproduce Eexp(2+

1 ) = −2.875 MeV,

λ0+
3 chosen to locate the resonance peak at the exp. en. ≈ 3.25 MeV

• 0+
1 (ground state) and 0+

2 are NOT simultaneously reproduced

E(0+
1 ) = −1.792 MeV ̸= Eexp(0+

1 ) = −7.275 MeV
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Construction of the response function:
• we take the highest peak as a single “LIT state”
• we impose the experimental width of the resonance

( Γexp(0+
2 ) ∼ eV, very narrow! )
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9Be photodisintegration
12C photodisintegration

γ + 12C→ α + α + α |0⟩ : Jπ
n = 2+

1 (bound state) → |f ⟩ : Jπ
n = 0+

2 (Hoyle state)

0+ cross section (LO)

[Γth from Suno, et al. (2016)]
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Comparison
⇒ factor ∼ 4 or ∼ 2
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Conclusions and outlook

Photodisintegration reactions of three-body cluster nuclei at low energy
✤ potentials from Cluster EFT
✤ LIT method: cross sections
✤ study of the effect of the many-body currents

9Be
• LO cross section: overestimation of the data
• LO+S1/2 cross section: agreement with the data −→ ❶ comparison with other calculations (phenomenological potentials)

• non-vanishing effect of the many-body currents, dominant in the 5/2+ channel

☞ Calculation of the magnetic transition M1
12C
• LO calculation (early stage!): overestimation of the data −→ ❷ How the calculation can be improved? (D-wave potential)

☞ Improvement in the convergence

✤ Effect of the many-body currents in 12C nucleus
✤ Four-body calculations
✤ NN interaction from EFT (10Be)
✤ Final goal: γ + 16O→ α+ α+ α+ α −→ ❸ Is the EFT approach still valid?

Y. Capitani Cluster EFT calculation of EM breakup reactions with the LIT method 34


	Model
	Cluster EFT approach
	2-body potentials
	3-body potential

	Methods
	Response function
	NSHH method
	LIT method

	Photodidintegration reactions
	Siegert operator
	One-body convection current
	Practical calculation of the LIT

	Results
	9Be photodisintegration 
	12C photodisintegration 


