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We are interested in calibrating the next generation of EFT nucleon-
nucleon interactions. 

These models should have robust uncertainty quantification:
• Parametric uncertainty
• Truncation uncertainty

This must be accomplished in the model calibration.
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We have LECs that are unknown.

How do we find them?
• Compute on the lattice?
So how do we calibrate the LECs?

Let’s cast the problem this way:
pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a)

where  is the vector of parameters,  is a vector of data, and  is 
additional external information.

⃗a ⃗y I

Model Calibration
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We have 
pr( ⃗a | y⃗, I)

Posterior

∝ pr(y⃗ | ⃗a)

Likelihood
How do we calculate the likelihood?
Let’s say we have some experimental data, . For each piece of 
data, we assume this is given by 

⃗yexp

yexp = yth( ⃗a) + δyexp, δyexp ∼ 𝒩(0,σ2)

Likelihood Modeling
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Since we made a Gaussian assumption for the experimental discrepancy, we 
can easily arrive at the result

pr(y | ⃗a) ∼ e−(yexp − yth( ⃗a))
2
/2σ2

For independent data, this becomes

pr(y⃗ | ⃗a) ∼ e−∑i (y(i)
exp − y(i)

th ( ⃗a))
2
/2σ2

i = e−χ2/2

We have arrived that the familiar :χ2

χ2 = ∑
i

(y(i)
exp − y(i)

th ( ⃗a))
2

σ2
i

 from the Likelihoodχ2

Maximize

Minimize
 Find best 

model
→
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But this isn’t the full posterior. Bayes’ Theorem yields
pr( ⃗a | y⃗, I)

Posterior

∝ pr(y⃗ | ⃗a)

Likelihood

pr( ⃗a | I)

Prior
What we found for a Least-squares optimization essentially had 

. pr( ⃗a | I) = C

What the prior does for us is encode any previous information that we 
may know. 

• Ex: LECs are natural, i.e., order 1 → pr( ⃗a | I) ∼ 𝒩 (0⃗, Σpr)

Bayes’ Theorem



Parameter Estimation vs. Parameter Fitting



Bayesian calibration with  is vastly 
different from least-squares


pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a) pr( ⃗a | I)

Parameter Estimation vs. Parameter Fitting



Bayesian calibration with  is vastly 
different from least-squares


pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a) pr( ⃗a | I)

Parameter Estimation vs. Parameter Fitting

Bayesian calibration Least-squares



Bayesian calibration with  is vastly 
different from least-squares


pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a) pr( ⃗a | I)

Parameter Estimation vs. Parameter Fitting

Bayesian calibration Least-squares
• Parameters are random variables


• Parametric uncertainty
• Parameters are fixed



Bayesian calibration with  is vastly 
different from least-squares


pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a) pr( ⃗a | I)

Parameter Estimation vs. Parameter Fitting

Bayesian calibration Least-squares
• Parameters are random variables


• Parametric uncertainty
• Parameters are fixed

• Use of prior information • Informed only by data



Bayesian calibration with  is vastly 
different from least-squares


pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a) pr( ⃗a | I)

Parameter Estimation vs. Parameter Fitting

Bayesian calibration Least-squares
• Parameters are random variables


• Parametric uncertainty
• Parameters are fixed

• Use of prior information • Informed only by data
• Robust handling of data outliers • Sensitive to data outliers



Bayesian calibration with  is vastly 
different from least-squares


pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a) pr( ⃗a | I)

Parameter Estimation vs. Parameter Fitting

Bayesian calibration Least-squares
• Parameters are random variables


• Parametric uncertainty
• Parameters are fixed

• Use of prior information • Informed only by data
• Robust handling of data outliers • Sensitive to data outliers
• Rigorous uncertainties • Approximate uncertainties



Bayesian calibration with  is vastly 
different from least-squares


pr( ⃗a | y⃗, I) ∝ pr(y⃗ | ⃗a) pr( ⃗a | I)

Parameter Estimation vs. Parameter Fitting

Bayesian calibration Least-squares
• Parameters are random variables


• Parametric uncertainty
• Parameters are fixed

• Use of prior information • Informed only by data
• Robust handling of data outliers • Sensitive to data outliers
• Rigorous uncertainties • Approximate uncertainties
• Easy extension to full model 

uncertainties
• Convoluted extension to model 

uncertainties
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In the likelihood, we had the , , but we can improve this. χ2 (e−χ2/2)
We can inform the model calibration with information about the model itself.

In what way?

Likelihood Improvement

χ2 = ∑
i

(y(i)
exp − y(i)

th ( ⃗a))
2

σ2
i σ2

i → σ2
i + σ2

th,i
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Since our model is a perturbative series, we can model it as such*:

,yth(x) = yref(x)
∞

∑
n=0

cn(x)Qn(x), Q ≡
max[psoft, p]

Λb

where  sets a reference scale for the observable  and  is the 
EFT breakdown scale. 

yref(x) yth Λb

This series follows the truncation scheme of the EFT:

.yth(x) = yref(x)
k

∑
n=0

cnQn + yref(x)
∞

∑
n=k+1

cnQn = y(k)
th (x) + δy(k)

th (x)

Modeling the Model

*R. J. Furnstahl et. al. Phys. Rev. C 92, 024005
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From the neglected terms, we have

.δy(k)
th (x) = yref(x)

∞

∑
n=k+1

cn(x)Qn(x)

This is a geometric series in , so we can find*Q

,δy(k)
th (x) =

yref c̄ Q(k+1)

1 − Q
Where we assume that .cn | c̄ ∼ 𝒩 (0,c̄2)

Truncation Errors

*J. A. Melendez et. al. Phys. Rev. C 100, 044001
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From the truncation uncertainty, we can construct a covariance 
matrix, assuming  is normally distributed,δyth

,Σth
ij =

(yref,i c̄ Q(k+1)
i ) (yref,j c̄ Q(k+1)

j )
1 − QiQj

r(xi, xj; ⃗l)

were we introduce a kernel  to smooth and handle 
correlations.

r(xi, xj; ⃗l)

Theoretical Covariance
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We can build a total covariance,
.Σij = Σexp

ij δij + Σth
ij

And our correlated likelihood is now

pr(y⃗ | ⃗a, I) ∝ e−(y⃗exp − y⃗th)
T
Σ−1(y⃗exp − y⃗th) = e−dM( ⃗a)

where we define the Mahalanobis distance

.dM( ⃗a) = ( ⃗yexp − ⃗yth)
T

Σ−1 ( ⃗yexp − ⃗yth)

Correlated Likelihood

Correlated version of χ2
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Posterior for Λb

.

We can find a closed form of  and .pr(c̄2 |Λb, ⃗a, I) pr(Λb | ⃗a, I)
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Our posterior for the breakdown scale also uses these 
hyperparameters:

pr(Λb | ⃗a, I) ∝
pr(Λb | I)

τν∏n,i ( pi

Λb )
n

This posterior needs to be numerically normalized as the 
normalization constant is dependent on .⃗a

With all our components, we can estimate our parameters.

Posterior for Λb
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Hidden in the  in our distributions is the choice of interaction.I

This includes:
• Degrees of freedom
• Power counting
• Representation
• Regularization scheme

Interaction Choice
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We are working in a “Weinberg-ized” pionless EFT.

Our interaction takes the form:

                             vLO = CS + CTσ1 ⋅ σ2

vCI
NLO( ⃗k, ⃗K ) = C1k2 + C2k2σ1 ⋅ σ2 + C3S12(k) + C4k2τ1 ⋅ τ2

+iC5 ⃗S ⋅ ( ⃗K × ⃗k) + C6k2τ1 ⋅ τ2σ1 ⋅ σ2 + C7S12(k)τ2 ⋅ τ2

vCD
NLO = CIT

0 T12 + CIV
0 (τ1z + τ2z)

Pionless EFT

yth(x) = yref(x)
∞

∑
n=0

c2n(x)Q2n(x)
yexp(x)
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To use these interactions, they must be regularized in some fashion and must 
be local in coordinate space (for QMC).

We employ a Gaussian cutoff in coordinate space, which smears 
-functions upon Fourier transformationδ

We choose  which are ~  in momentum 

space.

Rs ∈ [1.5,2.0,2.5] fm
400
Rs

MeV

Regularization

f(r) =
1

π3/2R3
s

e−( r
Rs )

2
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To estimate all of these parameters, we need data to calibrate to:

Our choice of data is the pp and np Granada database (251 differential 
cross sections, 133 total cross sections, 4 polarized cross sections) up 
to 5 MeV + deuteron binding energy + nn scattering length.

We then use Markov Chain Monte Carlo (MCMC) to sample the 
posteriors at LO , NLO , and N3LO , allowing for the 
order-by-order convergence analysis for LO NLO and NLO N3LO 
to estimate  and .

(Q0) (Q2) (Q4)
→ →

c̄ Λb

Parameter Estimation Algorithm



• 


• 


• 


• 


•

pr( ⃗a | I) ∼ 𝒩 ( ⃗aMAP
p.s. , ⃗102)

pr(Λb | I) ∼ 𝒩 (500 MeV,10002 MeV2)
pr(c̄2 | I) ∼ χ−2(ν0 = 1.5,τ2

0 = 1.52)
r(xi, xj; ⃗l) = e|pi−pj|/2lpe|θi−θj|/2lθδtypei,typej

, lp = 0.3 MeV, lθ = 20∘

psoft = {
pd ∼ 45 MeV/c, for np scattering

1/1app ∼ 25 MeV, for pp scattering .

Prior Choices
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With ~50 MeV, the max lab energy is given by Λb

 MeV
p(max)

c.m.
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=

E(max)
lab μ

Λb
= 1 ⇒ E(max)

lab =
Λ2

b

μ
∼ 5

The Granada database has 4 data (polarized cross sections) up to 5 
MeV that constrains  and  channels which have poor 
experimental and theoretical constraints.

1P1
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With ~50 MeV, the max lab energy is given by Λb

 MeV
p(max)

c.m.

Λb
=

E(max)
lab μ

Λb
= 1 ⇒ E(max)

lab =
Λ2

b

μ
∼ 5

The Granada database has 4 data (polarized cross sections) up to 5 
MeV that constrains  and  channels which have poor 
experimental and theoretical constraints.

1P1
3P0

The data is telling us that our “Weinberg-ized” pionless EFT is 
predominantly -wave physics!s

Unconstrained -wavesp
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We can now easily and rigorously propagate uncertainty to observable 
calculations.

We calculate a posterior predictive distribution (p.p.d.) for the 
observables

pr( ⃗yth | ⃗y, ⃗x, I) = ∫ d ⃗a dc̄2 dΛb 𝒩 ( ⃗yth, Σth) pr( ⃗a, c̄2, Λb | y⃗exp, I)

which is done via sampling the posterior.

This can be done for any calculation of nuclear observables. 

Posterior Predictive Density
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Propagation of Errors for Deuteron

• Poorly constrained -wavesd
• 2b corrections at O(Q5)
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Propagation of Errors for ERPs
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More Degrees of Freedom

~  parallel sample steps at ~4 min. per step

280 days of wall time on an HPC

105
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• For pion- and -full interactions, we must look at higher energy data (~200 MeV)Δ
• Emulation for calculation of scattering observables

More Degrees of Freedom

Ozge Surer
Miami University

Matt Plumlee
Amazon

Stefan Wild
LBNL

Daniel Odell
SRNL

Gaussian Process Emulation
Reduced Basis Methods via


Galerkin Projection

Pablo Giuliani
MSU/FRIB
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• Does proper inclusion of theoretical uncertainties in the calibration 
of EFT-inspired potentials bring all such models in agreement?

• Can Bayesian machinery help us identify consistent power 
counting? E.x. breakdown discrepancies across orders? 

• Data can inform us about EFTs if we work consistently. How do 
we move towards consistent order-by-order inclusion of many-
body forces and currents? 

Open Questions
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