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Next-Generation yEFT Interactions

We are interested in calibrating the next generation of EF T nucleon-
nucleon interactions.

These models should have robust uncertainty quantification:

» Parametric uncertainty arXiv:2408.02480
* Truncation uncertainty

This must be accomplished in the model calibration.
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Model Calibration

We have LECs that are unknown.

How do we find them?
* Compute on the lattice”? <= To0 hard

So how do we calibrate the LECs?

Let’s cast the problem this way:
pr(a|y, D) o pr(y|a)

where d is the vector of parameters, y is a vector of data, and [ is
additional external information.
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[Likelihood
How do we calculate the likelihood?

Let's say we have some experimental data, iexp. For each piece of
data, we assume this Is given by

yexp — yth(c_i) T 5y€Xp’ 5yexp ~ '/’/(0902)
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y* from the Likelihood

Since we made a Gaussian assumption for the experimental discrepancy, we
can easily arrive at the result

2
Pr(y ‘ 5) ~ e_<yexp _yth(c_i)) 26°

For iIndependent data, this becomes

2
L ~y (v — <l’>(a’)> ne? o
pr(y|a) ~ e (o -t =X

We have arrived that the familiar)(z:
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y* from the Likelihood

2
B ~y (v — <i>zi>/2a.2 )
pr(y|a) ~ e Z (@) 2ot _
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=) —( ~

{ l



y* from the Likelihood
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y* from the Likelihood

/Minimize
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y* from the Likelihood

/Minimize
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Bayes’ Theorem

But this isn’t the full posterior. Bayes’ Theorem yields
pr(aly, ) o pr(y|a) pr(a|I)

Posterior [Likelthood Prior
What we found for a Least-squares optimization essentially had

pr(a|l) = C.

What the prior does for us is encode any previous information that we
may know.

. Ex: LECs are natural, i.e., order1 — pr(a|l) ~ A (6, Zpr)
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Parameter Estimation vs. Parameter Fitting

Bayesian calibration with pr(a | v, 1) & pr(y|a) pr(a|l) is vastly
different from least-squares

Bayesian calibration Least-squares
« Parameters are random variables < Parameters are fixed

« Parametric uncertainty

» Use of prior information * |Informed only by data

* Robust handling of data outliers » Sensitive to data outliers

» Rigorous uncertainties * Approximate uncertainties

» Easy extension to full model » Convoluted extension to model

uncertainties uncertainties
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Modeling the Model

Since our model is a perturbative series, we can model it as such™:

max|p;,q, P

V) = () ) 6,00Q"(), Q= —————
0 b

where y .(x) sets a reference scale for the observable y,;, and A, is the
EFT breakdown scale.

This series follows the truncation scheme of the EFT:

Vin () = Vre(X) 2 Cp Q" + Vret(X) 2 ¢, Q" = yi(x) + 8y ().

n=k+1
*R. J. Furnstahl et. al. Phys. Rev. C 92, 024005






Truncation Errors

From the neglected terms, we have

5YP(X) = Yef®) Y €,(0)0"(x).

n=k+1



Truncation Errors

From the neglected terms, we have

BYP(X) = Yierlx) 2 C,(X)Q"(x).

n=k+1
This is a geometric series in (), so we can find*
~ N (k+1)
(k)(X) _ Yref ¢ Q |
1 -0

*J. A. Melendez et. al. Phys. Rev. C 100, 044001



Truncation Errors

From the neglected terms, we have

BYP(X) = Yierlr) 2 C,(X)Q"(X).

n=k+1
This is a geometric series in (), so we can find*
~ N (k+1)
(k)(X) _ Yref ¢ Q |
1 -0

Where we assume that ¢, | ¢ ~ A (0,52).

*J. A. Melendez et. al. Phys. Rev. C 100, 044001
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Theoretical Covariance

From the truncation uncertainty, we can construct a covariance
matrix, assuming 0yy, is normally distributed,

- N (k+1 - N (k+1
(yref,ic Qi( T )) (yref,jc Q]( i )) -
M= r(x;, x;3 ),

if
1 — 0,0
were we introduce a kernel r(x;, x;; [) to smooth and handle
correlations.
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Correlated Likelithood

We can build a total covariance,
= 2;?‘1’51.]. + 23?.
And our correlated likelihood Is now
T
or(y |, 1) e—(?exp—?th) 2‘1(?exp—?th) _ o—dy@
where we define the Mahalanobis distance

T
dM(Zi) — (iexp - yth) > (yexp - yth)'

Correlated version of )(2
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Additional Parameters

In this process, we have introduced two new parameters: ¢ and A,

This changes the posterior we need to find:
pr(a,c”, A, | Yexpr 1) & Pr(Yexp |2, Z, 1) pr(al I) pr(c’| A, a, 1) pr(A,|a,]) .

_—

Y Y

Total posterior Likelihood for @ Prior for & Posterior for ¢©  Posterior for A,

We can find a closed form of pr(c” | Ay, a, I) and pr(A,, | a, I).
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Posterior for ¢

Sincewe had ¢, |[c ~ N (0,52), where ¢’ is a population variance, we make the
standard choice of prior for an unknown variance:

2 -2
o~ ) (Vo» Tg )
This yields a conjugate posterior
pr(c’|D) ~ y (v, 75) < pr(c|a, AL D)~y (v,77@E, A)) -

Where we have hyperparameters: s
V=1t N N, ders> degrees of freedom Cpi = Vi i
\ Yref,i an
B} 1 :
Tz (Cl, Ab) — — I/()TO + Z C’ii(a, Ab) . scale

U

*J. A. Melendez et. al. Phys. Rev. C 100, 044001
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Posterior for A,

Our posterior for the breakdown scale also uses these
hyperparameters:
pr(/A, [ 1)

Pi .
TVHn,i (A_b)
This posterior needs to be numerically normalized as the
normalization constant is dependent on a.

pr(A,|a, 1)

With all our components, we can estimate our parameters.
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Hidden in the / in our distributions is the choice of interaction.

This includes:

* Degrees of freedom

* Power counting

* Representation

» Regularization scheme
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Pionless EFT

We are working in a]"Weinberg-ized” pionless EFT.
Two-nucleon force -
Vin(X) = ) €,(0) 0" (x)

om X M )
o X MNNN
MK

L (@) >< xxx

N2LO (Q3)
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Pionless EFT
We are working in a]"Weinberg-ized” pionless EFT.

_ 2n
Our interaction takes the form: Yin(X) _m@*z Con(X) Q7 (X)

YexpX) "=V

Vo = Cs+ Croy - 0,

VNLO(k K) — Clkz + Czkzdl o) + C3S12(k) + C4k2T1 (%)

+iC55 (K X k) + Cek*1) - 1301 - 6, + C;S),(K)7, - 7,
wio = Co' T+ Gy (71, + 75,)
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Regularization

To use these interactions, they must be regularized in some fashion and must
be local in coordinate space (for QMC).

We employ a Gaussian cutoff in coordinate space, which smears
o-functions upon Fourier transformation

400
We choose R, € [1.5,2.0,2.5] tm which are ~—— MeV in momentum

R

S
space.
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Parameter Estimation Algorithm

To estimate all of these parameters, we need data to calibrate to:

Our choice of data is the pp and np Granada database (251 differential
cross sections, 133 total cross sections, 4 polarized cross sections) up
to 5 MeV + deuteron binding energy + nn scattering length.

We then use Markov Chain Monte Carlo (MCMC) to sample the
posteriors at LO (QO), NLO (Qz), and N3LO (Q4), allowing for the

order-by-order convergence analysis for LO—NLO and NLO—NJ3LO
to estimate ¢ and A,



Prior Choices

pr@|D) ~ N (a’yﬁl’, 102)
. pr(Ay|I) ~ A (500 MeV,1000* MeV?)
. pr(c*|D) ~ y Ay, = 1.5,7; = 1.5%)

. IN — L p—pil2L 16—6:|/21 - Ao
O r(xl, x], l) — e J pe J eétypeiatypej’ lp — ().3 Mev, lH — 2()

p,~ 45 MeV/c, for np scattering
o Proft = 1/161pp ~ 25 MeV, for pp scattering .
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Unconstrained p-waves

With A,~50 MeV, the max lab energy is given by

(max) El(gﬁ/l,aX)//t Az
Pem.” _ = 1= E" =L ~ 5Mev

The Granada database has 4 data (polarized cross sections) up to 5

MeV that constrains ' P, and °P, channels which have poor
experimental and theoretical constraints.

The data is telling us that our "Weinberg-ized” pionless EF T is
predominantly s-wave physics!
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Posterior Predictive Density

We can now easily and rigorously propagate uncertainty to observable
calculations.

We calculate a posterior predictive distribution (p.p.d.) for the
observables

pr(yy, | v, X, 1) = [dc_i de* dNy NV (Y Zap) Pr(a, %, Ay | Yexps 1)

which is done via sampling the posterior.

This can be done for any calculation of nuclear observables.
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Deuteron Reduced Interaction

» Poorly constrained d-waves
. 2b corrections at O(Q")
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Propagation of Errors for ERPs

Effective Range Reduced Interaction
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» For pion- and A-full interactions, we must look at higher energy data (~200 MeV)
« Emulation for calculation of scattering observables

~10° parallel sample steps at ~4 min. per step
— 280 days of wall time on an HPC
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More Degrees of Freedom

» For pion- and A-full interactions, we must look at higher energy data (~200 MeV)
« Emulation for calculation of scattering observables

o
J

3

Ozge Surer Stefan Wild Matt Plumlee || Pablo Giuliani Daniel Odell
Miami Universit LBNL Amazon MSU/FRIB SRNL

Gaussian Process Emulation









Open Questions

* Does proper inclusion of theoretical uncertainties in the calibration
of EF T-inspired potentials bring all such models in agreement?



Open Questions

* Does proper inclusion of theoretical uncertainties in the calibration
of EF T-inspired potentials bring all such models in agreement?

» Can Bayesian machinery help us identify consistent power
counting? E.x. breakdown discrepancies across orders?



Open Questions

* Does proper inclusion of theoretical uncertainties in the calibration
of EF T-inspired potentials bring all such models in agreement?

» Can Bayesian machinery help us identify consistent power
counting? E.x. breakdown discrepancies across orders?

» Data can inform us about EFTs if we work consistently. How do

we move towards consistent order-by-order inclusion of many-
body forces and currents?
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