
DWBA, again:

Sticking with a modernist view of nuclear forces

Michael C Birse

The University of Manchester

1 / 20



DWBA, again:

A Stuckist Manifesto

Michael C Birse

The University of Manchester

1 / 20



Effective field theories

Ideal goal (unachievable?)

• convergent expansion of observables in powers of Q/Λ0

low-energy scales, Q: momenta, mπ (≲ 200 MeV)
scales of underlying physics, Λ0: 4πFπ, MN , mρ (≳ 800 MeV)

• requires Q/Λ0 small enough (good separation of scales)

Ingredients

• effective Lagrangian or Hamiltonian with contact interactions
(describing unresolved physics), respecting symmetries of
underlying theory

• the renormalisation group (tool for analysing scale dependence)
• list of low-energy scales
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Starting point

• scale-free system∗

• fixed point of the RG∗∗

Observables expanded around this

• in powers of Q/Λ0

• according to the “power counting” for the fixed point
(anomalous dimensions)

Classic example

• chiral perturbation theory [Weinberg (1979)]
• hidden chiral symmetry of QCD
→ pions as Goldstone bosons interact weakly at low energies

• trivial fixed point (no interactions)
• expansion in powers of momenta and mπ

• power counting: naive dimensional analysis (perturbative)
∗ or one with only low-energy scales
∗∗ and any marginal (logarithmic) terms or limit cycles
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Nuclear EFTs

More complicated

• some interactions too strong for perturbative treatment
(bound states!)

• basic nonrelativistic loop diagram of order Q [Weinberg (1991)]

M
(2π)3

∫ d3q
p2 −q2 + iε

=−i
M p
4π

+analytic in p2

• any interaction enhanced to order Q−1 cancels Q from loop
iterations not suppressed → nonperturbative
part of a nontrivial fixed point

Classic example

• “pionless” EFT [Weinberg (1991, again)]
• contact interactions only
• “unitary” fixed point: zero-energy point state, 1/a = 0

→ effective-range expansion [Schwinger (1947)]
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Low-energy scales in nuclear physics

• momenta, mπ ≃ 140 MeV
• S-wave scattering lengths 1/a ≲ 40 MeV
• OPE strength?

λNN =
16πF 2

π

g2
A MN

≃ 290 MeV

built out of high-energy scales (4πFπ, MN) but ∼ 2mπ

• N-∆ splitting?
M∆−MN ≃ 300 MeV

Adding λNN to list of low-energy scales

• promotes OPE to order Q−1 (“leading order”)
→ new fixed point(s)
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Distorted waves

To analyse systems with strong long-range forces:

• easiest to work in basis of DWs
• DW scattering amplitude or K matrix

K̃ (p) =− 4π

Mp
tan
(

δPWA(p)−δOPE(p)
)

removes rapid energy dependence on scales of long-range
potential

• remainder can be expanded using DWBA
or DW (modified) effective-range expansion [Bethe et al (1949)]
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Spin-triplet NN scattering

Wave functions dominated by 1/r3 tensor OPE

• for small r solutions satisfy (uncoupled waves)[
d2

dr2 +
2
r

d
dr

− L(L+1)
r2 − βLJ

r3

]
ψ0(r) = 0

(
β ∝

1
λπ

)
→ Bessel functions for attractive channels, β < 0 (cf WKB)

ψ0(r) ∝ r−1/2

[
sinα J2L+1

(
2

√
|βLJ |

r

)
+cosαY2L+1

(
2

√
|βLJ |

r

)]
α: fixes phase of short-distance oscillations
(self-adjoint extension or leading short-distance parameter)
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Wave functions ψ(r)/pL for (a) 3P0, (b) 3P1, (c) 3D2, (d) 3G4.
Short-dashed lines: T = 5 MeV; long-dashed lines: T = 300 MeV;
solid lines: energy-independent asymptotic form
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Critical relative momenta

From Bessel-function expansion [Birse (2005)]
but standard perturbation theory gives very similar results
(7-loop order!) [Kaplan (2019)]

Channel pc
3S1–3D1 66 MeV

3P0 182 MeV
3P1 365 MeV

other P, D waves ∼ 400 MeV
F waves and above ≳ 2000 MeV

S, P, D waves: PT applicable only for momenta below ∼ 2mπ

(much lower for 3S1, 3P0)
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Power counting

Easiest using RG analysis with running cutoff applied to DWs

For L ≤ 2 partial waves ψ0(r)∼ r−1/4 cos
(
2
√

β/r
)

→ new power counting
• leading contact interaction promoted to order Q−1/2

very weakly irrelevant → treat nonperturbatively
[Nogga et al (2005); developments by: Pavon Valderrama;
Long and Yang; Gasparyan and Epelbaum (2021)]

• higher energy-dependent terms at orders Q3/2, Q7/2, . . .
• corresponds to DWBA amplitude expanded in powers of energy

Long-range potentials not renormalised:

• leading 2π exchange: Q2

• subleading: Q3
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DWBA for effective potential

Regulate using energy-dependent δ-shell form

VS(p, r) =
1

4πR2|ψ0(R)|2
Ṽ (p)δ(r −R)

• cutoff Λ =
1
R

arbitrary but ≫ p, mπ, λNN

• divide by |ψ0(R)|2 to remove dependence on R (as R → 0)

Strength determined directly from residual K matrix using DWBA

Ṽ (p) =
|ψ0(R)|2

|ψ(p,R)|2
K̃ (p)

ψ(p, r): full energy-dependent distorted wave
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Note: zeros of full ψ(p, r) and energy-independent form ψ0(r)
coincide only in limit r → 0

• generates poles in Ṽ (p) for finite values of R
• but poles get more widely spaced and strengths tend to zero

(not a limit cycle!)
→ well-defined large-Λ limit exists

[contrast: Gasparyan and Epelbaum (2022)]
• in practice take Λ in flat “plateau” between two poles

(large enough that good plateaux exist – provided we work
perturbatively following our power counting, counterterms exist to
cancel all divergences)
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Results for 3P0

Presented as a Lepage-style plot of ln Ṽ (p) against ln(Tlab)

• starting from Nijmegen PWA93 and two Nijmegen potentials
(newer Granada 2013 PWA gives similar behaviours)

• cutoff R = 0.3 fm
• short-distance counterterms from polynomials fitted to range

Tlab = 40−100 MeV

To avoid the Reign of Terror [© Timmermans] we need. . .
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A Napoleonic Code

“Deconstruct” by subtracting order by order in our counting:

Q−1 iterated leading OPE with α = 0 (DWBA)
Q−1/2 and a constant

Q1 iterated leading OPE with α = 0.53
(fit to very-low-energy scattering)

Q3/2 and a term linear in energy ∝ p2

Q2 and leading TPE plus subleading OPE
Q3 and next-to-leading TPE

Q7/2 and a term quadratic in energy ∝ p4
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• breakdown scale Λ0 ∼ 550 MeV
• next-to-leading TPE (Q3) larger than expected

→ ? need to include ∆ (signs hidden)
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Observations and questions

Analysis uses large values of the cutoff

• not a problem provided we have identified a fixed point
• and we treat everything else as perturbations around it
• then the counting for that fixed point will ensure we have

counterterms needed to cancel all divergences
• here O(Q3) TPE has 1/r6 singularity → divergences linear and

quadratic in energy:
renormalised by O(Q−1/2,3/2) contact interactions

Can we extend this to understand the power counting for three-body
forces?

• first solve with tensor OPE plus contact term treated
nonperturbatively, with large cutoffs

• then add a three-body contact term as a perturbation
• renormalise to keep some low-energy three-body observable

fixed as Λ varied
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Can we understand the transition from perturbative to nonperturbative
regimes?

• iterating tensor OPE generates divergences of ever higher orders
• infinite number of these...
• but can we sum at least the leading ones for each loop:

∝
1

λNN

(
Λ

λNN

)n

(Kaplan reached n = 7 but need to get to ∞ ... how?
N/D method [Oller and Entem]?)

Does including explicit ∆ improve convergence in this channel?

• should reduce O(Q3) TPE
• does it also reduce residual p4 term?

(surprisingly large and cutoff dependent)
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Modified/DW effective range expansion

Schematic form

k cot[δ(k)−δL(k)] = |ψI
L(k ,R)|2 F(k2)−Re[GL(R,R;k)]

• F(k2) effective-range function (meromorphic in k2)
• δL(k) phase shift for long-range VL

• ψI
L(k ,R) irregular DW solution for VL (dressed vertex)

• GL(R,R;k) DW Green’s function (loop integral dressed with VL)
• waves evaluated at nonzero R if VL singular

(powers of R, k , numerical factors omitted)

Contribution of F(k2) to observables enhanced by DWs at small r
Expansion of F(k2) (short-range physics) not tied to expansion of GL

etc (long-range forces)
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Griesshammer plot
Differences between Ṽ (p) for R = 0.1 fm and 0.3 fm
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