

DWBA, again:

Sticking with a modernist view of nuclear forces

Michael C Birse

The University of Manchester

DWBA, again:

A Stuckist Manifesto

Michael C Birse

The University of Manchester

Effective field theories

Ideal goal (unachievable?)

- convergent expansion of observables in powers of Q/Λ₀ low-energy scales, Q: momenta, m_π (≤ 200 MeV) scales of underlying physics, Λ₀: 4πF_π, M_N, m_p (≥ 800 MeV)
- requires Q/Λ_0 small enough (good separation of scales)

Ingredients

- effective Lagrangian or Hamiltonian with contact interactions (describing unresolved physics), respecting symmetries of underlying theory
- the renormalisation group (tool for analysing scale dependence)
- list of low-energy scales

Starting point

- scale-free system*
- fixed point of the RG**

Observables expanded around this

- in powers of Q/Λ_0
- according to the "power counting" for the fixed point (anomalous dimensions)

Starting point

- scale-free system*
- fixed point of the RG**

Observables expanded around this

- in powers of Q/Λ_0
- according to the "power counting" for the fixed point (anomalous dimensions)

Classic example

- chiral perturbation theory [Weinberg (1979)]
- hidden chiral symmetry of QCD
 - \rightarrow pions as Goldstone bosons interact weakly at low energies
- trivial fixed point (no interactions)
- expansion in powers of momenta and m_{π}
- power counting: naive dimensional analysis (perturbative)
- * or one with only low-energy scales
- ** and any marginal (logarithmic) terms or limit cycles

Nuclear EFTs

More complicated

- some interactions too strong for perturbative treatment (bound states!)
- basic nonrelativistic loop diagram of order Q [Weinberg (1991)]

$$rac{M}{(2\pi)^3}\int rac{\mathrm{d}^3 q}{
ho^2-q^2+\mathrm{i}arepsilon}=-\mathrm{i}\,rac{M
ho}{4\pi}+ ext{analytic in }
ho^2$$

 any interaction enhanced to order Q⁻¹ cancels Q from loop iterations not suppressed → nonperturbative part of a nontrivial fixed point

Nuclear EFTs

More complicated

- some interactions too strong for perturbative treatment (bound states!)
- basic nonrelativistic loop diagram of order Q [Weinberg (1991)]

$$rac{M}{(2\pi)^3}\int rac{\mathrm{d}^3 q}{p^2-q^2+\mathrm{i}arepsilon}=-\mathrm{i}\,rac{M
ho}{4\pi}+ ext{analytic in }p^2$$

 any interaction enhanced to order Q⁻¹ cancels Q from loop iterations not suppressed → nonperturbative part of a nontrivial fixed point

Classic example

- "pionless" EFT [Weinberg (1991, again)]
- contact interactions only
- "unitary" fixed point: zero-energy point state, 1/a = 0
- \rightarrow effective-range expansion [Schwinger (1947)]

Low-energy scales in nuclear physics

- momenta, $m_{\pi} \simeq 140 \text{ MeV}$
- S-wave scattering lengths 1/a ≤ 40 MeV
- OPE strength?

$$\lambda_{\scriptscriptstyle NN} = rac{16\pi F_\pi^2}{g_{\scriptscriptstyle A}^2 M_{\scriptscriptstyle N}} \simeq$$
 290 MeV

built out of high-energy scales ($4\pi F_{\pi}, M_{\scriptscriptstyle N}$) but $\sim 2m_{\pi}$

• N- Δ splitting?

$$M_{\Delta}-M_{
m N}\simeq$$
 300 MeV

Adding λ_{NN} to list of low-energy scales

- promotes OPE to order Q⁻¹ ("leading order")
- \rightarrow new fixed point(s)

Distorted waves

To analyse systems with strong long-range forces:

- easiest to work in basis of DWs
- DW scattering amplitude or K matrix

$$\widetilde{\kappa}(
ho) = -rac{4\pi}{M
ho} anig(\delta_{_{ ext{PWA}}}(
ho) - \delta_{_{ ext{OPE}}}(
ho) ig)$$

removes rapid energy dependence on scales of long-range potential

 remainder can be expanded using DWBA or DW (modified) effective-range expansion [Bethe et al (1949)]

Spin-triplet NN scattering

Wave functions dominated by $1/r^3$ tensor OPE

for small r solutions satisfy (uncoupled waves)

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}}{\mathrm{d}r} - \frac{L(L+1)}{r^2} - \frac{\beta_{LJ}}{r^3}\right]\psi_0(r) = 0 \qquad \left(\beta \propto \frac{1}{\lambda_{\pi}}\right)$$

 $\rightarrow \text{ Bessel functions for attractive channels, } \beta < 0 \text{ (cf WKB)} \\ \psi_0(r) \propto r^{-1/2} \left[\sin \alpha J_{2L+1} \left(2\sqrt{\frac{|\beta_{LJ}|}{r}} \right) + \cos \alpha Y_{2L+1} \left(2\sqrt{\frac{|\beta_{LJ}|}{r}} \right) \right]$

α: fixes phase of short-distance oscillations
 (self-adjoint extension or leading short-distance parameter)

◆□> ◆□> ◆注> ◆注> ○注

Wave functions $\psi(r)/p^{L}$ for (a) ${}^{3}P_{0}$, (b) ${}^{3}P_{1}$, (c) ${}^{3}D_{2}$, (d) ${}^{3}G_{4}$. Short-dashed lines: T = 5 MeV; long-dashed lines: T = 300 MeV; solid lines: energy-independent asymptotic form Critical relative momenta

From Bessel-function expansion [Birse (2005)] but standard perturbation theory gives very similar results (7-loop order!) [Kaplan (2019)]

Channel	D _c
³ S ₁ - ³ D ₁	66 MeV
3 D	190 MoV
$^{\circ}P_{1}$	365 MeV
other P, D waves	\sim 400 MeV
F waves and above	\gtrsim 2000 MeV

S, P, D waves: PT applicable only for momenta below $\sim 2m_{\pi}$ (much lower for ${}^{3}S_{1}$, ${}^{3}P_{0}$)

Power counting

Easiest using RG analysis with running cutoff applied to DWs

For $L \leq 2$ partial waves $\psi_0(r) \sim r^{-1/4} \cos(2\sqrt{\beta/r})$

- \rightarrow new power counting
 - leading contact interaction promoted to order Q^{-1/2} very weakly irrelevant → treat nonperturbatively [Nogga *et al* (2005); developments by: Pavon Valderrama; Long and Yang; Gasparyan and Epelbaum (2021)]
 - higher energy-dependent terms at orders $Q^{3/2}, Q^{7/2}, \ldots$
 - corresponds to DWBA amplitude expanded in powers of energy

Long-range potentials not renormalised:

- leading 2π exchange: Q^2
- subleading: Q³

イロト 不得 トイヨト イヨト 二日 二

DWBA for effective potential

Regulate using energy-dependent δ -shell form

$$V_{\mathcal{S}}(\rho,r) = \frac{1}{4\pi R^2 |\psi_0(R)|^2} \widetilde{V}(\rho) \,\delta(r-R)$$

- cutoff $\Lambda = \frac{1}{R}$ arbitrary but $\gg p, m_{\pi}, \lambda_{NN}$
- divide by $|\psi_0(R)|^2$ to remove dependence on R (as R
 ightarrow 0)

Strength determined directly from residual K matrix using DWBA

$$\widetilde{V}(\rho) = rac{|\psi_0(R)|^2}{|\psi(
ho,R)|^2} \widetilde{K}(
ho)$$

 $\psi(p, r)$: full energy-dependent distorted wave

Note: zeros of full $\psi(p, r)$ and energy-independent form $\psi_0(r)$ coincide only in limit $r \to 0$

- generates poles in $\widetilde{V}(p)$ for finite values of R
- but poles get more widely spaced and strengths tend to zero (not a limit cycle!)
- → well-defined large-Λ limit exists [contrast: Gasparyan and Epelbaum (2022)]
 - in practice take Λ in flat "plateau" between two poles (large enough that good plateaux exist – provided we work perturbatively following our power counting, counterterms exist to cancel all divergences)

Results for ³P₀

Presented as a Lepage-style plot of $\ln \tilde{V}(p)$ against $\ln(T_{lab})$

- starting from Nijmegen PWA93 and two Nijmegen potentials (newer Granada 2013 PWA gives similar behaviours)
- cutoff *R* = 0.3 fm
- short-distance counterterms from polynomials fitted to range $T_{\text{lab}} = 40 100 \text{ MeV}$

To avoid the Reign of Terror [© Timmermans] we need...

A Napoleonic Code

"Deconstruct" by subtracting order by order in our counting:

- Q^{-1} iterated leading OPE with $\alpha = 0$ (DWBA)
- $Q^{-1/2}$ and a constant
 - Q^1 iterated leading OPE with $\alpha = 0.53$ (fit to very-low-energy scattering)
 - $Q^{3/2}$ and a term linear in energy $\propto p^2$
 - Q^2 and leading TPE plus subleading OPE
 - Q^3 and next-to-leading TPE
 - $Q^{7/2}$ and a term quadratic in energy $\propto p^4$

- breakdown scale $\Lambda_0\sim 550~\text{MeV}$
- next-to-leading TPE (Q³) larger than expected
- \rightarrow ? need to include Δ (signs hidden)

Observations and questions

Analysis uses large values of the cutoff

- not a problem provided we have identified a fixed point
- and we treat everything else as perturbations around it
- then the counting for that fixed point will ensure we have counterterms needed to cancel all divergences
- here O(Q³) TPE has 1/r⁶ singularity → divergences linear and quadratic in energy: renormalised by O(Q^{-1/2,3/2}) contact interactions

Can we extend this to understand the power counting for three-body forces?

- first solve with tensor OPE plus contact term treated nonperturbatively, with large cutoffs
- then add a three-body contact term as a perturbation
- renormalise to keep some low-energy three-body observable fixed as Λ varied

Can we understand the transition from perturbative to nonperturbative regimes?

- iterating tensor OPE generates divergences of ever higher orders
- infinite number of these...
- but can we sum at least the leading ones for each loop:

$$\propto \frac{1}{\lambda_{NN}} \left(\frac{\Lambda}{\lambda_{NN}}\right)^n$$

(Kaplan reached n = 7 but need to get to ∞ ... how? N/D method [Oller and Entem]?)

Does including explicit Δ improve convergence in this channel?

- should reduce $O(Q^3)$ TPE
- does it also reduce residual p⁴ term? (surprisingly large and cutoff dependent)

・ロト・(型)・(E)・(E)・(E) のへで

18/20

Modified/DW effective range expansion

Schematic form

 $k \cot[\delta(k) - \delta_L(k)] = |\psi_L^l(k, R)|^2 F(k^2) - \operatorname{Re}[G_L(R, R; k)]$

- $F(k^2)$ effective-range function (meromorphic in k^2)
- $\delta_L(k)$ phase shift for long-range V_L
- $\psi_L^l(k, R)$ irregular DW solution for V_L (dressed vertex)
- G_L(R, R; k) DW Green's function (loop integral dressed with V_L)
- waves evaluated at nonzero R if V_L singular (powers of R, k, numerical factors omitted)

Contribution of $F(k^2)$ to observables enhanced by DWs at small *r* Expansion of $F(k^2)$ (short-range physics) not tied to expansion of G_L etc (long-range forces)

Griesshammer plot Differences between $\widetilde{V}(p)$ for R = 0.1 fm and 0.3 fm

Removed: $O(Q^{-1})$ $O(Q^{-1/2})$ $O(Q^{1})$ $O(Q^{3/2})$ $O(Q^{2})$ $O(Q^{3})$ $O(Q^{7/2})$

< ロ > < @ > < E > < E > E の < C</p>

20/20