

Computing atomic nuclei based on **Chiral EFT and HALQCD interactions**

The Nuclear Interaction: Post-Modern Developments

Carlo Barbieri HAL QCD and nuclei Results with ChEFT Diagrammatic Monte Carlo (for nuclei, eventually...)

August 19-23, 2024

Reach of ab initio methods across the nuclear chart

Nuclei with HAL QCD forces

C. McIlroy, CB et al. Phys. Rev. C97, 021303(R) (2018) D. Lonardoni et al. - in preparation

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

In collaboration with:

* Manifest gauge invariance

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

$$_{\mu}^{a})q - m\bar{n}qq$$

Vacuum expectation value

path integral

$$Q q e^{-S(q,q,U)} O(q,q,U)$$

 $D(U)e^{-S_U(U)} O(D^{-1}(U))$
quark propagator
 $O(D^{-1}(U_i))$

{ U_i } : ensemble of gauge conf. U generated w/ probability det $D(U) e^{-S_U(U)}$

Highly predictive

Slide, courtesy of T. Inoue (YITP talk, Oct. 8th 2015)

0

The HAL-QCD Method

such that: $\frac{-\nabla^2}{2\mu}\varphi_{\vec{k}}(\vec{r}) + \int d\vec{r}' U(\vec{r},\vec{r}')\varphi_{\vec{k}}(\vec{r}')$

for the Nambu-Bethe-Salpeter (NBS) wave function **Operationally, measure the 4-pt function on the QCD Lattice** $\psi(\vec{r},t) = \sum_{\vec{\pi}} \langle 0|B$

and extract U(*r*,*r*') from: $\left\{2M_B - \frac{\nabla^2}{2\mu}\right\}\psi(\vec{r},t) + \int d\vec{r}$

A local potential V(\mathbf{r}) is then obtained through a derivative expansion of U(\mathbf{r}, \mathbf{r}), which must give the same observables of the LQCD simulation:

$$U(\vec{r},\vec{r}') = \delta(\vec{r}-\vec{r}')V(\vec{r},\nabla) =$$

$$\bullet \quad V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r}, t)}{\psi(\vec{r}, t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r}, t)}{\psi(\vec{r}, t)}$$

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Define a general potential U(r, r') which is and non-local but energy independent up to inelastic threshold,

$$) = E_{\vec{k}}\varphi_{\vec{k}}(\vec{r})$$

,
$$\varphi_{\vec{k}}(\vec{r}) = \sum \langle 0|B_i(\vec{x}+\vec{r},t)B_j(\vec{x},t)|B=2,\vec{k}\rangle$$

$$d\vec{r}' U(\vec{r},\vec{r}')\psi(\vec{r}',t) = -\frac{\partial}{\partial t}\psi(\vec{r},t)$$

Prog. Theor. Phys. 123 89 (2010); Phys. Lett. B712 , 437 (2012); Prog. Theor. Exp. Phys. 01A105 (2012)

Two-Nucleon HAL potentials in flavour SU(3) symm.

Quark mass dependence of V(r) for NN partial wave (${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{3}S_{1}$ - ${}^{3}D_{1}$)

Potentials become stronger m_{π} as decreases. \rightarrow

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Prog. Theor. Exp. Phys. 01A105 (2012)

Infrared convergence

Short-range repulsion in the HALQCD-type potentials can be tamed correctly even for large nuclei. C. McIlroy, CB, et al., Phys. Rev. C97, 021303(R) (2018)

Binding of 160 and 40Ca:

Binding energies are ~17 MeV ¹⁶O and 70-75MeV for ⁴⁰Ca. Possibly being underestimated by 10%

¹⁶O at $m_{\pi} \approx 470$ MeV is unstable toward 4- α breakup! \rightarrow

C. McIlroy, CB, et al., Phys. Rev. C97, 021303(R) (2018)

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

	1	16 0	40 ~
E_0^A [MeV]	⁴ He	O^{01}	⁴⁰ Ca
BHF [22]	-8.1	-34.7	-112.7
$G(\omega) + ADC(3)$	-4.80(0.03)	-17.9 (0.3) (1.8)	-75.4 (6.7) (7.5)
Exact Result [51]	-5.09	_	_
Separation into ⁴ H	e clusters:	-2.46 (0.3) (1.8)	24.5 (6.7) (7.5)

Results for binding

NB: All calculations assuming spherical wave functions...

UNIVERSITY OF SURREY

HAL QCD interactions with hyperons and (near)physical pain mass

- Need to improve on statistic for the NN sector
- $\Omega\Omega$ potential

Slides from *S. Aoki* at Kavli institute, Oct. 2016

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Physical mass now under reach ($m_{\pi} \approx 145 \text{ MeV}$) for hyperons

S. Aoki, T. Doi, Front. Phys. 8:307 (2020).

Quantum MC calculations for Ys

- AV4' + UIX with phenomenological hypernuclear forces requires large ANN 3-baryon force
- Physical mass now under reach ($m_{\pi} \approx 145 \text{ MeV}$) for hyperons
- HALQCD AN 3-baryon force is already very close to experiment

 $H = -\frac{\hbar^2}{2m_N}\sum_i \nabla_i^2 + \sum_{i < i} v_{ij} + \sum_{i < i < k} V_{ijk} - \frac{\hbar^2}{2m_\Lambda}\nabla_\Lambda^2 + \sum_i v_{i\Lambda}$ $v_{ij} = \sum_{p=1,4} v^p(r_{ij}) O_{ij}^p$ Argonne v'_4 (AV4') nucleon-nucleon (NN) interaction

central component of the Urbana IX (UIX_c) $V_{ijk} = A_R \sum_{\alpha \nu \alpha} T^2(m_{\alpha} r_{ij}) T^2(m_{\alpha} r_{ik})$

The hyperon-nucleon (YN) potential

$$v_{i\Lambda} = \sum_{p=c,\sigma,t} v^p(r_{i\Lambda}) O_{i\Lambda}^p$$

Diffusion Monte Carlo:

$$\langle X|\Psi_T\rangle = \langle X| \left(\prod_{i < j < k} U_{ijk}\right) \left(\prod_{i < j} F_{ij}\right) \left(\prod_i F_{i\Lambda}\right) |\Phi_{J^{\pi}, J_z, T_z}\rangle, \qquad |\Psi_0\rangle = e^{-(H - E_0)\tau} |\Psi_T\rangle$$

AFDMC:

D. Lonardoni, A. Lovato, et al, Phys. Rev. Lett. 114, 092301 (2015) & arXiv:1506.04042

Future application for Ys in nuclei now possible

- Physical mass now under reach ($m_{\pi} \approx 145 \text{ MeV}$) for hyperons
- HALQCD AN 3-baryon force is already very close to experiment

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

D. Lonardoni, A. Lovato, CB, T. Inoue, HALQCD coll — unpublished

10

Table 1: Λ separation energies (in MeV) for different hypernuclei with the hyperon in different single-particle states. Second column reports the AFDMC results using the original HALQCD96 ΛN potential. Third column shows the results for the modified HALQCD96 ΛN potential (see text for details). In the last column, the available experimental data [] are reported.

$^{A}_{\Lambda}$ Z	J^{π} (state)	HALQCD96	HALQCD96*	Exp
$^{5}_{\Lambda}$ He	$1/2^{+}(s)$	0.21(5)	1.02(3)	3.12(2)
$^{16}_{\Lambda}\mathrm{O}$	$1^{-}(s)$	9.5(5)	13.5(2)	13.4(4)
	$2^{+}(p)$	-1.3(2)	0.5(1)	2.5(2)
$^{40}_{\Lambda}$ Ca	$2^{+}(s)$	21.0(5)	26.8(5)	19.3(1.1)
	3 ⁻ (<i>p</i>)	9.3(6)	13.7(6)	11.0(5)

Self-Consistent Green's function computations based on Chiral EFT interactions (NN+3N forces)

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

The Faddev-RPA and ADC(3) methods in a few words

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy. F-RPA: Both ladders and rings are needed for atomi nuclei: Phys. Rev. C63, 034313 (2001)

All Ladders (GT) and ring modes (GW) are coupled to all orders. Two approaches:

- Faddev-RPA allows for RPA modes
- ADC(3) Tamn-Dancoff version using 3rd order diagrams as 'seeds':

UNIVERSITÀ DEGLI STUDI DI 1 DIPARTIMENTO DI FISICA

The Self-Consistent Green's Function with Faddev-RPA

501 (2	012)]
Expt.	
16.05 20.0	
14.01 16.91 19.72	
12.62 14.74 18.51	

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. **111**, 062501 (2013) and Phys. Rev. C **92**, 014306 (2015)

 \rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen

f. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

UNIVERSITÀ DEGLI STUDI DI MILANIZLO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) DIPARTIMENTO DI FISICA N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

Neutron spectral function of Oxygens

DIPARTIMENTO DI FISICA

A. Cipollone, CB, P. Navrátil, *Phys. Rev. C* 92, 014306 (2015)

N3LO(500) + nln 3NF

SCGF – Gorkov-ADC(2)

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

V. Somà, P. Navrátil, F. Raimondi, CB, T. Duguet – Phys. Rev. C**101**, 014318 (2020) Eur. Phys. J. A**57** 135 (2021)

Bubble nuclei...

<u>Validated</u> by charge distributions and neutron guasiparticle spectra:

DIPARTIMENTO DI FISICA

34Si prediction

Duguet, Somà, Lecuse, CB, Navrátil, Phys.Rev. C95, 034319 (2017)

- ³⁴Si is unstable, charge distribution is still unknown
- Suggested central depletion from mean-field simulations
- Ab-initio theory confirms predictions -
- Other theoretical and experimental evidence: -Phys. Rev. C 79, 034318 (2009), Nature Physics 13, 152–156 (2017).

46Ar(³He, d)⁴⁷K at GANIL

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

d3/2 - s1/2 inversion revisited from adding protons to ⁴⁶Ar

D. Brugnara, A. Gottardo, CB et al...

⁴⁶Ar(³He,d)⁴⁷K at GANIL : New charge bobble in ⁴⁶Ar

 $3)/\mathcal{C}^2 \mathcal{S}(\ell)$

d3/2 - s1/2 inversion revisited from adding protons to ⁴⁶Ar

Theory & experiment for relative SFs agree within 1 sigma and confirms charge depletion in ⁴⁶Ar

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

FIG. 1. Overview of the SCRIT electron scattering facility.

First ever measurement of charge radii through electron scattering with and ion trap setting that <u>can</u> be used on radioactive isotopes !!

K. Tsukada *et al.,* Phy rev Lett **118**, 262501 (2017)

Electron-Ion Trap colliders...

FIG. 3. Reconstructed momentum spectra of ¹³²Xe target after background subtraction. Red shaded lines are the simulated radiation tails following the elastic peaks.

P. Arthuis, CB, M. Vorabbi, P. Finelli, Phys. Rev. Lett. 125, 182501 (2020)

Charge density for Sn and Xe isotopes

P. Arthuis (Surrey, now @ TU Darmstadt,

P. Arthuis, CB, M. Vorabbi, P. Finelli, Phys. Rev. Lett. 125, 182501 (2020) ____

Gorkov ADC(2) and Dyson ADC(3) with N3LO-Inl and NNLOsat Hamiltonians

138 Xe
¹³⁶ Xe
132 Xe
^{132}Sn
¹⁰⁰ Sn
10

Ab initio optical potentials from propagator theory

Relation to Fesbach theory: Mahaux & Sartor, Adv. Nucl. Phys. 20 (1991) Escher & Jennings Phys. Rev. C66, 034313 (2002)

Previous SCGF work:

CB, B. Jennings, Phys. Rev. C72, 014613 (2005) S. Waldecker, CB, W. Dickhoff, Phys. Rev. C84, 034616 (2011) A. Idini, CB, P. Navrátil, Phys. Rv. Lett. 123, 092501 (2019) M. Vorabbi, CB, et al., Phys. Rev. C 109, 034613 (2024)

UNIVERSITÀ DEGLI STUDI DI MILANO

Microscopic optical potential

DIPARTIMENTO DI FISICA

contains both particle and hole props.

it is proven to be a Feshbach opt. pot \rightarrow in general it is non-local ! $\Sigma_{\alpha\beta}^{\star}(\omega) = \Sigma_{\alpha\beta}^{(\infty)} + \sum_{i,j} \mathbf{M}_{\alpha,i}^{\dagger} \left(\frac{1}{E - (\mathbf{K}^{>} + \mathbf{C}) + i\Gamma} \right)_{i,j} \mathbf{M}_{j,\beta}$ $+\sum_{\alpha,r} \mathbf{N}_{\alpha,r} \left(\frac{1}{E - (\mathbf{K}^{<} + \mathbf{D}) - i\Gamma} \right)_{r,s} \mathbf{N}_{s,\beta}^{\dagger}$ Particle-vibration * couplings:

Solve scattering and overlap functions directly in momentum space:

$$E_{n,n'} = \sum_{n,n'} R_{n\,l}(k) \Sigma_{n,n'}^{\star \,l,j} R_{n\,l}(k') \int dk' \, k'^2 \, \Sigma^{\star l,j}(k,k';E_{c.m.}) \psi_{l,j}(k') = E_{c.m.} \psi_{l,j}(k)$$

Low energy scattering - from SCGF

Benchmark with NCSM-based scattering.

Scattering from mean-field only:

[A. Idini, CB, Navratil, Phys. Rev. Lett. **123**, 092501 (2019)]

NCSM/RGM [<u>without</u> core excitations]

EM500: NN-SRG λ_{SRG} = 2.66 fm⁻¹, Nmax=18 (IT) [PRC82, 034609 (2010)]

NNLOsat: Nmax=8 (IT-NCSM)

SCGF [$\Sigma^{(\infty)}$ only], always Nmax=13

Low energy scattering - from SCGF

Benchmark with NCSM-based scattering.

Scattering from mean-field only:

[A. Idini, CB, Navratil, Phys. Rev. Lett. **123**, 092501 (2019)]

Full self-energy from SCGF:

Role of intermediate state configurations (ISCs)

n-16O, total elastic cross section

[A. Idini, CB, Navrátil, Phys. Rev. Lett. **123**, 092501 (2019)]

S. Brolli (Masters thesis)

Green's function theory beyond ADC(3)?

The Green's function is found as the exact solution of the Dyson equation:

$$G_{\alpha\beta}(\omega) = G_{\alpha\beta}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) \Sigma_{\gamma\delta}^{(0)}(\omega) \Sigma_{\gamma\delta}^{(0)}(\omega) = G_{\alpha\beta}^{(0)}(\omega) \Sigma_{\gamma\delta}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) \Sigma_{\gamma\delta}^{(0)}(\omega) = G_{\alpha\beta}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) = G_{\alpha\gamma}^{(0)}(\omega) + \sum_{\gamma\delta} G_{\alpha\gamma}^{(0)}(\omega) = G$$

It requires knowing the self-energy which is the sum of an *infinite series* of Feynman diagrams:

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

- $G_{\gamma\delta}^{\star}\left(\omega\right)G_{\delta\beta}\left(\omega\right)$

Diagrams grow factorially (more than exponentially) with the order A direct calculation of all diagrams beyond order three is unfeasible.

Order: IV V

Diagrammatic Monte Carlo (DiagMC) *samples diagrams in their topological space* using a Markov chain.

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Diagrammatic Monte Carlo: overview

$$\Sigma_{\alpha\beta}^{\star}(\omega) = \sum_{\mathcal{T}} \sum_{\gamma_1 \dots \gamma_n} \int d\omega_1 \dots d\omega_m \ \mathcal{D}_{\alpha}^{\omega}$$

We define $\mathcal{C} := (\mathcal{T}; \gamma_1 ... \gamma_n; \omega_1 ... \omega_m)$

$$\Sigma_{\alpha\beta}^{\star}(\omega) = \int d\mathcal{C} \, |\mathcal{D}_{\alpha\beta}^{\omega}(\mathcal{C})| e^{i \arg \left[\mathcal{D}_{\alpha\beta}^{\omega}(\mathcal{C})\right]} 1_{\mathcal{T}}$$

$$\Sigma_{\alpha\beta}^{\star}(\omega) = \mathcal{Z}_{\alpha\beta}^{\omega} \int d\mathcal{C} \; \frac{\left| \mathcal{D}_{\alpha\beta}^{\omega}(\mathcal{C}) \right| W_{o}(N)}{\mathcal{Z}_{\alpha\beta}^{\omega}} \frac{e^{i \arg\left[\mathcal{D}_{\alpha\beta}^{\omega}(\mathcal{C}) \right]}}{W_{o}(N)} \mathbf{1}_{\mathcal{T} \in \mathcal{S}_{\Sigma^{\star}}}$$

$$w^{\omega}_{\alpha\beta}\left(\mathcal{C}\right) := \frac{|\mathcal{D}^{\omega}_{\alpha\beta}\left(\mathcal{C}\right)|W}{\mathcal{Z}^{\omega}_{\alpha\beta}}$$

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

S. Brolli (Masters thesis)

 $\mathcal{T}_{\mathcal{A}\mathcal{B}}(\mathcal{T};\gamma_1...\gamma_n;\omega_1...\omega_m) 1_{\mathcal{T}\in\mathcal{S}_{\Sigma^{\star}}}$

$$\frac{\mathcal{D}_{\alpha\beta}^{\omega}(\mathcal{C})}{\mathcal{D}_{\alpha\beta}^{\omega}(\mathcal{C})} = \frac{1}{\mathcal{T}_{\varepsilon}\mathcal{S}_{\Sigma}},$$

 $W_o(N)$ is an order dependent reweighting factor

 $V_o(N)$ is a normalization factor

 $V_o(N)$ is a probability distribution function

Change Frequency

2 Change Single-Particle Quantum Numbers

Change Frequency:

Change Single-Particle Quantum Numbers:

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

The updates

Standard Monte Carlo

 ω'_1 is drawn from the probability distribution $W_f(\omega'_1)$.

$$q_{AL} = \frac{|g|}{4\pi} \frac{1}{W_f(\omega_1')} e^{-k\omega_1'^2} |G_{\alpha}(\omega)| \frac{W_o(3)}{W_o(2)}$$

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Reconnect:

S. Brolli (Masters thesis)

The unphysical propagators are turned into physical ones when reconnected.

Richardson pairing model with D states, half filled:

$$\begin{split} \Sigma_{\alpha\beta}^{\star}(\omega) &= \Sigma_{\alpha\beta}^{(\infty)} + \sum_{i,j} \mathbf{M}_{\alpha,i}^{\dagger} \left(\frac{1}{E - (\mathbf{K}^{>} + \mathbf{C}) + i\Gamma} \right)_{i,j} \mathbf{M}_{j,\beta} \\ &+ \sum_{r,s} \mathbf{N}_{\alpha,r} \left(\frac{1}{E - (\mathbf{K}^{<} + \mathbf{D}) - i\Gamma} \right)_{s,j} \mathbf{M}_{j,\beta} \end{split}$$

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

Results of the simulation for D=4

Figure 4.1: Components $\alpha = 0$ and $\alpha = 2$ of the imaginary part of the self-energy for different values of the coupling g. The blue line is the results obtained with the BDMC simulation, while the red line is the best fit as a sum of two Lorentzians. The results for the two values of $\alpha = 0, 2$ are displayed respectively on the left and on the right of the graph. The error bars are calculated as explained in the main text.

Reorganization in terms of ladders (Γ)

Ongoing extensions to nuclei in no-core model spaces

DiagMC is being extended to treat realistic microscopic nuclear Hamiltonians.

Example of DiagMC neutron $p_{1/2}$ self-energy partial wave at 2nd order in harmonic oscillator space with dimension N_{max} = max {2n+l}=2 in ¹⁶O.

DIPARTIMENTO DI FISICA

Summary

 \rightarrow Occurrence of a charge bubble in 46Ar (second case "known")

And thanks to my collaborators (over the years...):

G. Colò, E. Vigezzi, S. Brolli

M. Vorabbi, P. Arthuis

V. Somà, T. Duguet, A. Scalesi

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

- \rightarrow HAL QCD share characteristic with low energy EFT interactions though they are different. \rightarrow HAL QCD forces allow studying (un)physical quark masses and improve in Y-N description.
- → SCGF Gorkov/ADC(3) computations with ChEFT reliable and evolving to large masses
- \rightarrow Diagrammatic Monte Carlo is a promising method to go forward on high precision simulations.

P. Navrártil

C. Giusti, P. Finelli

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

SCGF computations of infinite matter

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

F. Marino (PhD Thesis)

Nuclear Density Functional from Ab Initio Theory

PHYSICAL REVIEW C 104, 024315 (2021)

Nuclear energy density functionals grounded in *ab initio* calculations

F. Marino,^{1,2,*} C. Barbieri,^{1,2} A. Carbone,³ G. Colò,^{1,2} A. Lovato,^{4,5} F. Pederiva,^{6,5} X. Roca-Maza,^{1,2} and E. Vigezzi \mathbb{D}^2 ¹Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, 20133 Milano, Italy ²Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy ³Istituto Nazionale di Fisica Nucleare_CNAF Viale Carlo Rerti Pichat 6/2 40127 Rologna Italy

DFT is in principle exact – but the energy density functional (EDF) is not known

For nuclear physics this is even more

demanding: need to link the EDF to

theories rooted in QCD!

Machine-learn DFT functional on the nuclear equation of state

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

<u>Benchmark</u> in finite systems

Benchmark on finite systems

Machine-learn DFT functional on the nuclear equation of state

Gradient terms are important (but they seem to work!):

Need to extract gradient information from non-uniform matter

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

<u>Benchmark</u> in finite systems

F. Marino, G. Colò, CB et al., Phys Rev. C104, 024315 (2021) NFN

ADC(3) computations for infinite matter

Finite size box (of length L) with periodic boundary conditions:

$$\rho = \frac{A}{L^3} \qquad p_F = \sqrt[3]{\frac{6\pi^2\rho}{\nu_d}}$$

$$\phi(x+L, y, z) = \phi(x, y, z)$$

ADC(3) se $\Sigma_{\alpha\beta}^{(\star)}(\omega) =$

• • •

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

$$\frac{1}{2}a_{\alpha}^{\dagger}a_{\alpha} - \sum_{\alpha\beta} U_{\alpha\beta} a_{\alpha}^{\dagger}a_{\beta} + \frac{1}{4}\sum_{\substack{\alpha\gamma\\\beta\delta}} V_{\alpha\gamma,\beta\delta} a_{\alpha}^{\dagger}a_{\gamma}^{\dagger}a_{\delta}a_{\beta} + \frac{1}{36}\sum_{\substack{\alpha\gamma\epsilon\\\beta\delta\eta}} W_{\alpha\gamma\epsilon,\beta\delta\eta} a_{\alpha}^{\dagger}a_{\gamma}^{\dagger}a_{\epsilon}^{\dagger}a_{\eta}a_{\delta}a_{\beta}.$$

$$= -U_{\alpha\beta} + \Sigma_{\alpha\beta}^{(\infty)} + M_{\alpha,r}^{\dagger} \left[\frac{1}{\omega - [E^{>} + C]_{r,r'} + i\eta} \right]_{r,r'} M_{r',\beta} + N_{\alpha,s} \left[\frac{1}{\omega - (E^{<} + D) - i\eta} \right]_{s,s'} N_{s'}^{\dagger}$$

F. Marino, CB et al., in preparation INFN

