Deep Exclusive $p(e,e'\pi^+)n$ and $p(e,e'K^+)\Lambda$ Studies at Jefferson Lab

Garth Huber

Supported by:

SAPIN-2021-00026

On behalf of the PionLT and KaonLT Collaborations

Towards Improved Hadron Femtography with Hard Exclusive Reactions ECT* Workshop, Trento, Italy August 9, 2024

Two Motivations for Studying DEMP

1) Determine the Pion Form Factor at $Q^2 > 0.3$ GeV²:

- Indirectly measure F_{π} using the "pion cloud" of the proton via $p(e,e'\pi^+)n$ $|p\rangle = |p\rangle_0 + |n\pi^+\rangle + ...$
 - Pion pole process dominates σ_L in forward kinematics.
 - Can a similar method be used to determine the kaon form factor?

2) Study the Hard-Soft Factorization Regime:

Implications for GPD studies, as they can only be extracted from hard exclusive data where hard-soft factorization applies.

 Investigate if p(e,e'π⁺)n and p(e,e'K⁺)Λ cross sections at fixed x behave according to the Q⁻ⁿ scaling expectations of hard QCD.

 $\underline{\sigma_{T}[n(e,e'\pi^{-})p]}$

Form $\sigma_T[p(e,e'\pi^+)n]$ ratios where soft contributions may cancel, yielding insight to factorization at modest Q^2 .

huberg@uregina

Charged Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} . While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

The Pion in perturbative QCD

At asymptotically high Q^2 , only hardest portion of pion distribution amplitude contributes

$$\phi_{\pi}(x) \xrightarrow{Q^2 \to \infty} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$Q^2 F_{\pi}(Q^2) \underbrace{\longrightarrow}_{Q^2 \to \infty} 16\pi \alpha_s(Q^2) f_{\pi}^2$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

This only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_S / \partial \mu) < 0$ as $\mu \rightarrow \infty$.

$Q^2 F_{\pi}$ should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 . \rightarrow Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

 $\int_{-\infty}^{\infty} F(Q^2) \to 16\pi\alpha(Q^2) f^2$

 f_{π} =93 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant

х

(1-x)

 ϕ_{π}

y

(1-y)

Pion Form Factor at Intermediate Q²

At experimentally–accessible Q², both the "hard" and "soft" components (e.g. transverse momentum effects) contribute.

The interplay of hard and soft contributions is poorly understood.

- → Different theoretical viewpoints on whether higher–twist mechanisms dominate until very large momentum transfer or not.
- The pion elastic and transition form factors experimentally accessible over a wide kinematic range.
 - \rightarrow A laboratory to study the **transition** from the soft to hard regime.

Contrasts in Hadron Mass Budgets

Stark Differences between proton, K⁺, π^+ mass budgets

- Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit).
- Conversely, and yet still due to EHM and DCSB, K and π are massless in chiral limit (i.e. they are Goldstone bosons).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.

6

Synergy: Emergent Mass and π^+ Form Factor

8

6

 Q^2 / GeV²

10

At empirically accessible energy scales, π^+ form factor is sensitive to emergent mass scale in QCD

- Two dressed-quark mass functions distinguished by amount of DCSB
 DCSB emergent mass generation is 20% stronger in system characterized by solid green curve, which is more
 - realistic case $F_{\pi}(Q^2)$ obtained with these mass functions
 - r_{π} =0.66 fm with solid green curve
 - r_{π} =0.73 fm with solid dashed blue curve
 - $F_{\pi}(Q^2)$ predictions from QCD hard scattering formula, obtained with related, computed pion PDAs
 - QCD hard scattering formula, using conformal limit of pion's twist–2 PDA $\phi_{\pi}^{cl}(x) = 6x(1-x)$

2

0

7

The Charged Kaon – a 2nd QCD test case

In the hard scattering limit, pQCD predicts that the π⁺ and K⁺ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow{Q^2 \to \infty} \frac{f_K^2}{f_\pi^2}$$

 It is important to compare the magnitudes and Q²-dependences of both form factors.

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$\left| p \right\rangle = \left| p \right\rangle_{0} + \left| n \pi^{+} \right\rangle + \dots$$

- At small –*t*, the pion pole process dominates the longitudinal cross section, $\sigma_{\!L}$
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique 1.Isolating σ_L experimentally challenging 2.Theoretical uncertainty in form factor extraction.

 K^+ pole is further in the unphysical region, uncertainties will be larger

Experimental Issues

- Deep Exclusive Meson Production (DEMP) cross section is small, can exclusive p(e,e'π⁺)n and p(e,e'K⁺)Λ channels be cleanly identified?
 - High momentum, forward angle (5.5°) meson detection is required, with good Particle ID to separate π^+ , K^+ , p
 - Good momentum resolution required to reconstruct crucial kinematics, such as M_{miss}, Q², W, t
 - Need to measure the longitudinal cross section $d\sigma_L/dt$ needed for form factor extraction

Hall C of Jefferson Lab has been optimized for specifically such studies

Prompt

SHMS+HMS

coincidences

10

1.05

 $e+p\rightarrow e'+\pi^++n$

20 30e π Coin Time (ns)

1.1 MM_π (GeV/c^2)

 2π threshold

Coincidence measurement between charged pions in SHMS and electrons in HMS

Electron-Pion CTime Distribution Easy to isolate $\times 10^3$ Events 160 exclusive channel Accidental 140 coincidences 120 Excellent particle 100 80 identification 60 40 CW beam minimizes 20 "accidental" coincidences -20 Missing Mass Distribution Missing mass resolution 14000 Events easily excludes 2-pion 12000 10000 contributions 8000 6000 PionLT experiment E12–19–006 Data 4000 Q²=1.60, *W*=3.08, *x*= 0.157, ε=0.685 2000 E_{beam}=9.177 GeV, P_{SHMS}=+5.422 GeV/c, θ_{SHMS}= 10.26° (left) 0.9 0.95 Plots by Muhammad Junaid

11

- **L**-T separation required to separate σ_L from σ_T
- Need to take data at smallest available –*t*, so σ_L has maximum contribution from the π^+ pole
- Need to measure *t*-dependence of σ_L at fixed Q²,W

The different pion arm (SHMS) settings are combined to yield φ -distributions for each *t*-bin

(deg)

huberg@uregina

キセ

Ga

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

• Feynman propagator $\left(\frac{1}{t - m_{\pi}^{2}}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_π, Λ_ρ (trajectory cutoff).

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small –*t*, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2.$

Current and Projected F_{π} **Data**

SHMS+HMS will allow measurement of F_{π} to much higher Q^2

No other facility worldwide can perform this measurement

Data taking completed September 2022 (E12–19–006: G. Huber, D. Gaskell and T. Horn, spokespersons)

y–positions of projected points are arbitrary

Error bars are calculated from obtained statistics and projected systematic uncertainties

The ~10% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

The pion form factor is the clearest test case for studies of QCD's transition from non-perturbative to perturbative regions

$p(e,e'K^+)\Lambda(\Sigma^0)$ Experiment

Isolate Exclusive Final States via Missing Mass

$$M_{X} = \sqrt{(E_{det} - E_{init})^{2} - (p_{det} - p_{init})^{2}}$$

- Spectrometer coincidence acceptance allows for simultaneous studies of Λ and Σ° channels.
- Kaon-pole dominance test through

$$\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda^0)}$$

• Should be similar to ratio of $g_{pK\Lambda}^2/g_{pK\Sigma}^2$ coupling constants if t-channel exchange dominates.

Kaon Form Factor Experiment Goals

- Measure the –t dependence of the p(e,e'K⁺)Λ,Σ° cross section at fixed Q² and W>2.5 GeV to search for evidence of K⁺ pole dominance in σ_L
 - Separate the cross section components: L, T, LT, TT
 - First L/T measurement above the resonance region in K⁺ production
- If warranted by the data, extract the Q² dependence of the kaon form factor to shed new light on QCD's transition to quark-gluon degrees of freedom.
- Even if we cannot extract the kaon form factor, the measurements are important.
 - K⁺Λ and K⁺Σ[°] reaction mechanisms provide valuable information in our study of hadron structure
 - Flavor degrees of freedom provide important information for QCD model building and understanding of basic coupling constants

Projected Uncertainties for K⁺ Form Factor

- First measurement of F_K well above the resonance region.
- Measure form factor to Q²=3 GeV²
 with good overlap with elastic
 scattering data.
 - Limited by *-t*<0.2 GeV² requirement to minimize non–pole contributions.
- Data will provide an important second qq system for theoretical models, this time involving a strange quark.
 - Partially completed as an early SHMS commissioning experiment: LT–separation
 - (E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons)
 - Data under analysis, expecting final results next year
 - R. Trotta (CUA/Virginia)

Extraction of F_K from Q²>4 GeV² data is more uncertain, due to higher $-t_{min}$

Verification of GPD Accessibility

At sufficiently high Q², the Hard–Soft Factorization Theorem separates the reaction amplitude into two parts:

- Hard scattering process, where perturbative QCD can be used
- A non-perturbative (soft) part, where the response of the target nucleon to the virtual photon probe is encoded in GPDs

Collins, Frankfurt, Strikman PRD <u>56(1997)2982</u>

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
- No single criterion for applicability, but tests of necessary conditions can provide evidence that Q² scaling regime reached

Testing Factorization: $p(e,e'\pi^+)n$

- One of most stringent tests of factorization is Q² dependence of π/K electroproduction cross sections
 - σ_L scales to leading order as Q⁻⁶
 - As Q² becomes large: σ_L » σ_T
- If we show factorization regime is not reached, it will have major implications for meson production GPD experiments in this Q² regime (Some of these experiments are already taking data!)

Important 2nd Test: $p(e,e'K^+)\Lambda$

- Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results
- Is onset of scaling different for kaons than pions? • K^+ and π^+ together provide quasi model-independent study

 $p(e,e'K^+) \wedge Existing = and Projected \Leftrightarrow Data$

- E12-09-011 data taking partially completed in 2019
- Data for $x_B = 0.40$ scan in hand. Data for $x_B = 0.25$ scan only partly acquired.
 - Spokespersons: T. Horn, P. Markowitz, GMH

Summary

- Higher Q² data on π⁺ and K⁺ form factors are vital to our better understanding of hadronic physics
 - PionLT (E12–19–006) has for the first time, since the pioneering measurements at Cornell in 1970's, acquired the high quality data needed to test these theoretical developments with authority
 - KaonLT (E12–09–011) partially completed. First results hopefully out next year
- Factorization studies are crucial if the field is to fully utilize the information encoded in GPDs, as GPDs are only accessible experimentally in the hard–soft factorization regime
 - PionLT (E12–19–006) has acquired data for LT–separated p(e,e'π⁺)n Q⁻ⁿ scans at x_B=0.31, 0.39, 0.55
 - KaonLT (E12–09–011) has acquired p(e,e'K⁺)/ data for Q⁻ⁿ scan at x_B=0.40, eventual extension to x_B=0.25

L/T–separation error propagation

Error in $d\sigma_L/dt$ is magnified by $1/\Delta\epsilon$, where $\Delta\epsilon = (\epsilon_{Hi} - \epsilon_{Low})$ \rightarrow To keep magnification factor <5x, need $\Delta\epsilon$ >0.2, preferably more!

$$\frac{d^{2}\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\,\varepsilon\,(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi_{\pi} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi_{\pi}$$
$$\frac{\Delta\sigma_{L}}{\sigma_{L}} = \frac{1}{(\varepsilon_{1} - \varepsilon_{2})} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{(R + \varepsilon_{1})^{2} + (R + \varepsilon_{2})^{2}} \qquad \text{where } R = \frac{\sigma_{T}}{\sigma_{L}}$$
$$\frac{\Delta\sigma_{T}}{\sigma_{T}} = \frac{1}{(\varepsilon_{1} - \varepsilon_{2})} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\varepsilon_{1}^{2} \left(1 + \frac{\varepsilon_{2}}{R}\right)^{2} + \varepsilon_{2}^{2} \left(1 + \frac{\varepsilon_{1}}{R}\right)^{2}}$$

The relevant quantities for F_{π} extraction are R and $\Delta \varepsilon$

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

JLab Hall C – 12 GeV Upgrade

SHIMS

SHMS:

11 GeV/c SpectrometerPartner of existing 7 GeV/c HMS

MAGNETIC OPTICS:

Point-to Point QQQD for easy calibration and wide acceptance.
Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

Drift Chambers
Hodoscopes
Cerenkovs
Calorimeter

Well-Shielded Detector Enclosure

Rigid Support Structure Rapid & Remote Rotation Provides Pointing Accuracy & Reproducibility demonstrated in HMS

Luminosity • ~4x10³⁸ cm⁻² s⁻¹

SHMS = Super High Momentum Spectrometer HMS = High Momentum Spectrometer

Upgraded Hall C has some similarity to SLAC End Station A, where the quark substructure of proton was discovered in 1968.

HMS

SHMS Focal Plane Detector System

Hall C during Data Taking

π^+/K^+ FF experiments have challenging forward angle requirements

PionLT (E12–19–006) t–φ Coverage

•Measure σ_{LT} , σ_{TT} by taking data at three pion spectrometer (SHMS) angles, +2°, 0°, -2°, with respect to *q*-vector

Example t– ϕ plots from: Q²=3.85, W=3.07, High ϵ

Plots by Nathan Heinrich (Regina PhD student)

- •To control systematics, an excellent understanding of spectrometer acceptances is required
 - Over–constrained *p*(*e*,*e'p*) reaction, and inelastic e+¹²C, used to calibrated spectrometer acceptances, momenta, kinematic offsets, efficiencies.
 - Control of point–to–point systematic uncertainties crucial due to $1/\Delta\epsilon$ error amplification in σ_L

28

Measurement of π^+ Form Factor – Low Q^2

At low Q^2 , F_{π} can be measured <u>model-independently</u> via high energy elastic π^- scattering from atomic electrons in Hydrogen

- CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia, et al., NP B277 (1986) 168]
- Data used to extract pion charge radius $r_{\pi} = 0.657 \pm 0.012$ fm

Maximum accessible Q² roughly proportional to pion beam energy

Q²=1 GeV² requires 1 TeV pion beam

E12–19–006 Optimized Run Plan

12

Points along vertical lines allow *F_π* values at different distances from pion pole, to check model properly accounts for:
 π⁺ production mechanism
 spectator nucleon
 off-shell (*t*-dependent) effects

Points along red curves allow $1/Q^n$ scaling tests at fixed x_B

For more details, visit Pion-LT RedMine: https://redmine.jlab.org/projects/hall-c/wiki/

Measurement of *K*⁺ **Form Factor**

 Similar to π⁺ form factor, elastic K⁺ scattering from electrons used to measure charged kaon form factor at low Q²

[Amendolia, et al., PL **B178** (1986) 435]

- Can "kaon cloud" of the proton be used in the same way as the pion to extract kaon form factor via p(e,e'K⁺) A?
- Kaon pole further from kinematically allowed region.

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_K^2)} g_{K\Lambda N}^2(t) F_K^2(Q^2,t)$$

 Many of these issues will be explored in JLab E12-09-011.

$p(e,e'K^+)\Lambda(\Sigma^0)$ Experiment Overview

- Measure the separated cross sections at varying -t and x_B
 - If K^+ pole dominates σ_L allows for extraction of the kaon ff (W>2.5 GeV)

Measure separated cross sections for the $p(e,e'K^+)\Lambda(\Sigma^\circ)$ reaction at two fixed values of -t and x_B

- Q^2 coverage is a factor of 2-3 larger compared to 6 GeV at much smaller -t
- Facilitates tests of Q² dependence even if L/T ratio less favorable than predicted

x	Q ² (GeV ²)	W (GeV)	-t (GeV/c)²
0.1-0.2	0.4-3.0	2.5-3.1	0.06-0.2
0.25	1.7-3.5	2.5-3.4	0.2
0.40	3.0-5.5	2.3-3.0	0.5

Check of Pion Electroproduction Technique

- Does electroproduction really measure the on-shell formfactor?
- Test by making p(e,e'π⁺)n measurements at same kinematics as π⁺e elastics.
- Can't quite reach the same Q², but electro–production appears consistent with extrapolated elastic data.

Data for new test acquired in Summer 2019: • small Q^2 (0.375, 0.425) competitive with DESY Q^2 =0.35 • -*t* closer to pole (=0.008 GeV²) vs. DESY 0.013 Expecting results to be finalized soon — V. Kumar (Regina) • A similar test for F_{K^+} (KaonLT) is under analysis — A. Hamdi (Regina)

F π -2 VGL $p(e,e'\pi^+)n$ model check

Only statistical and t-uncorrelated systematic uncertainties shown.

- Deficiencies in model may show up as *t*-dependence in extracted $F_{\pi}(Q^2)$ values.
- Resulting F_{π} values are insensitive (<2%) to *t*-bin used.
- Lends confidence in applicability of VGL model to the kinematical regime of the JLab data, and the validity of the extracted $F_{\pi}(Q^2)$ values.

34

Verify that σ_L is dominated by *t*-channel process

- π^+ *t*-channel diagram is purely isovector.
- Measure

$$\mathbf{R}_{L} = \frac{\sigma_{L}[n(e, e' \pi^{-})p]}{\sigma_{L}[p(e, e' \pi^{+})n]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

using a deuterium target.

- Isoscalar backgrounds (such as b₁(1235) contributions to the *t*-channel) will dilute the ratio.
- We will do the same tests at Q²=1.60, 3.85, 6.0 GeV².

University

Because one of the many problems encountered by the historical data was isoscalar contamination, this test will increase the confidence in the extraction of $F_{\pi}(Q^2)$ from our σ_L data.

π^{-}/π^{+} data to check *t*-channel dominance

π^{-}/π^{+} Hard–Soft Factorization Test

- Transverse Ratios tend to ¼ as -t increases:
 - \rightarrow Is this an indication of Nachtmann's quark charge scaling?
- -t=0.3 GeV² seems too low for this to apply. Might indicate the partial cancellation of soft QCD contributions in the formation of the ratio.

A. Nachtmann, Nucl.Phys.B115 (1976) 61.

 R_{T}

- Another prediction of quark-parton mechanism is the suppression of σ_{TT}/σ_T due to *s*-channel helicity conservation.
- Data qualitatively consistent with this, since σ_{TT} decreases more rapidly than σ_T with increasing Q^2 .

The Pion as a Goldstone Boson

00

- A remarkable feature of QCD is Dynamical Chiral Symmetry Breaking (DCSB) because it cannot be derived directly from the Lagrangian and is related to nontrivial nature of QCD vacuum.
 - Explicit symmetry breaking, which is put in "by hand" through finite quark masses, is quite different.
- DCSB is now understood to be one of the most important emergent phenomena in the Standard Model, responsible for generation of >98% baryonic mass.

Two important consequences of DCSB:

- 1. Valence quarks acquire a dynamical or constituent quark mass through their interactions with the QCD vacuum.
- 2. The pion is the spin-0 boson that arises when Chiral Symmetry is broken, similar to how Higgs boson arises from Electroweak Symmetry Breaking.

Recent Theoretical Advances

Amazing progress in the last few years.

- We now have a much better understanding how Dynamical Chiral Symmetry Breaking (DCSB) generates hadron mass.
- Quenched lattice–QCD data on the dressed–quark wave function were analyzed in a Bethe–Salpeter Equation framework by Bhagwat, et al.
- For the first time, the evolution of the current–quark of pQCD into constituent quark was observed as its momentum becomes smaller.
- The constituent-quark mass arises from a cloud of lowmomentum gluons attaching themselves to the current quark.
- This is DCSB: an essentially non-perturbative effect that generates a quark *mass from nothing*: namely, it occurs even in the chiral (m=0) limit.

L. Chang, et al., Chin.J.Phys. 49 (2011) 955.

K⁺ properties also strongly influenced by DCSB

K⁺ PDA also is broad, concave and asymmetric.

 Q^2 / GeV²

While the heavier s quark carries more bound state momentum than the *u* quark, the shift is markedly less than one might naively expect based on the difference of *u*, *s* current quark masses. (x)[C. Shi, et al., PRD 92 (2015) 014035]. 1.5 $\phi_{\pi}^{DCSB}(x)$ РР $\phi_{\pi}^{cl}(x)$ 0.5 Full calculation 0.0 $Q^{2}F_{K}$ / GeV² 5.0 0.25 0.0 0.50 0.75 1.0 u pQCD+DCSB • F_{κ} DCSB model prediction Conformal limit pQCD for JLab kinematics 0 [F. Guo, et al., arXiv: 1703.04875]. 20 5 10 15 0

40