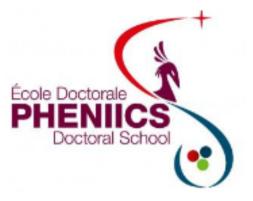
# Prospects for DDVCSmeasurements

BY: Juan Sebastian Alvarado Mostafa Hoballah **Eric Voutier** 







### IJCLab - Orsay



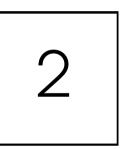
August 4th 2024, Trento



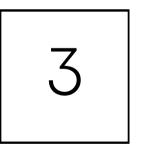
# Table of contents

universite

PARIS-SACLAY













### INTRODUCTION

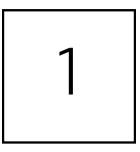
GPDs, Exclusive leptoproduction reactions DDVCS experimental observables, motivation

### MEASUREMENTS AT JLAB

The CLAS12 spectrometer The SoLID spectrometer

### MEASUREMENTS AT EIC

Sample BSA measurements with pass1 fiducial cuts



# INTRODUCTION

### GPDs

Exclusive leptoproduction reactions DDVCS experimental observables Motivation

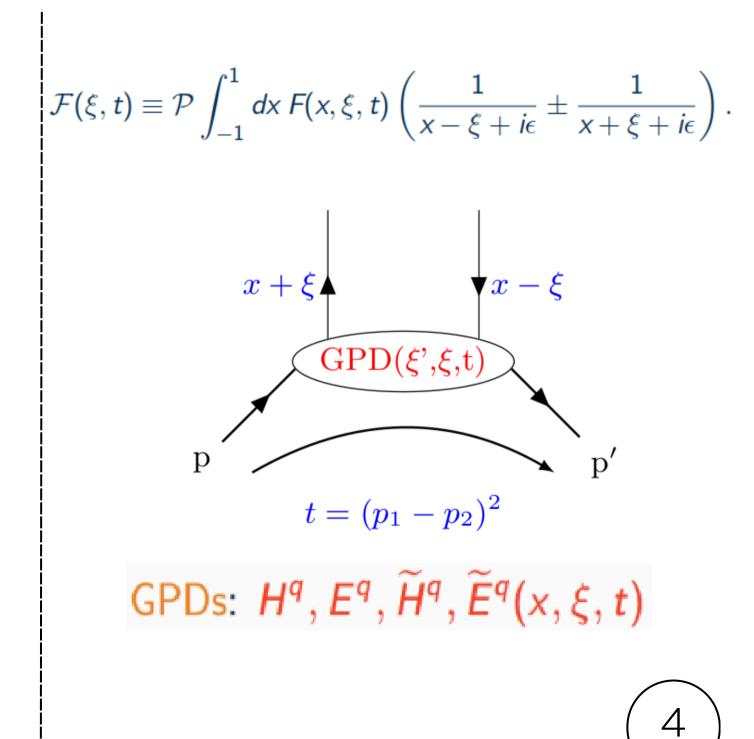


# INTRODUCTION

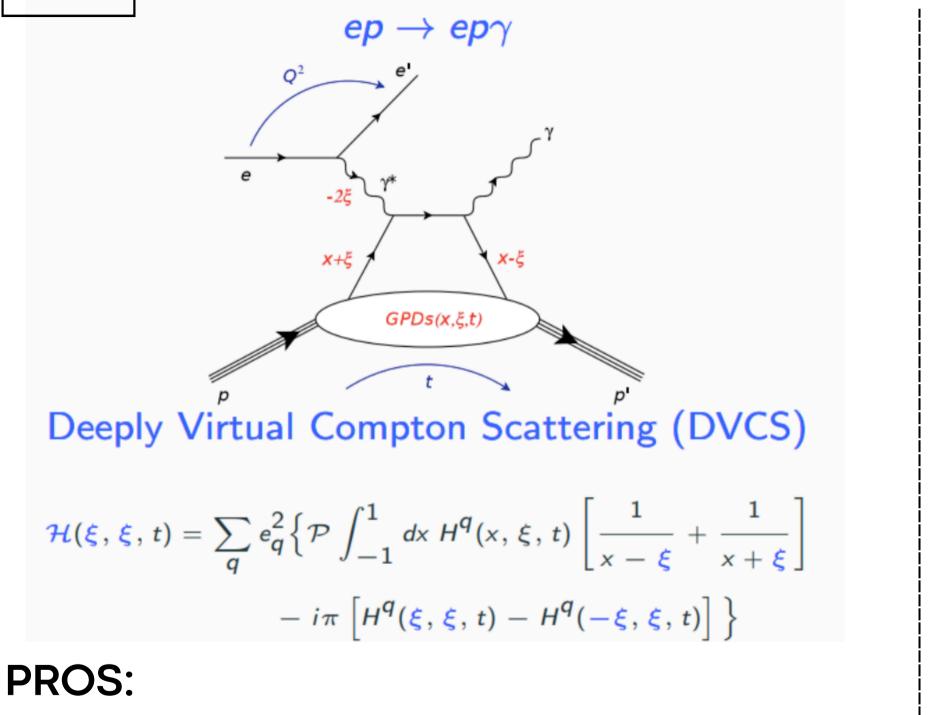
Generalized Parton Distributions (GPDs) allows to access the 3D structure of nucleons

- They correlate the transverse position and longitudinal momentum of partons in the nucleon.
  - spatial distribution of partons
  - mechanical properties of hadrons
  - hadron's spin decomposition
- To measure GPDs we require deep exclusive processes
- They enter the cross-section through Compton Form Factors (CFFs).
- For a spin 1/2 particle there are four chiral-even GPDs





### Two golden channels for GPD measurements are DVCS and DDVCS K. Deja, V. Martinez-Fernandez et al. Phys. Rev. D 107.9 (2023), p. 094035.



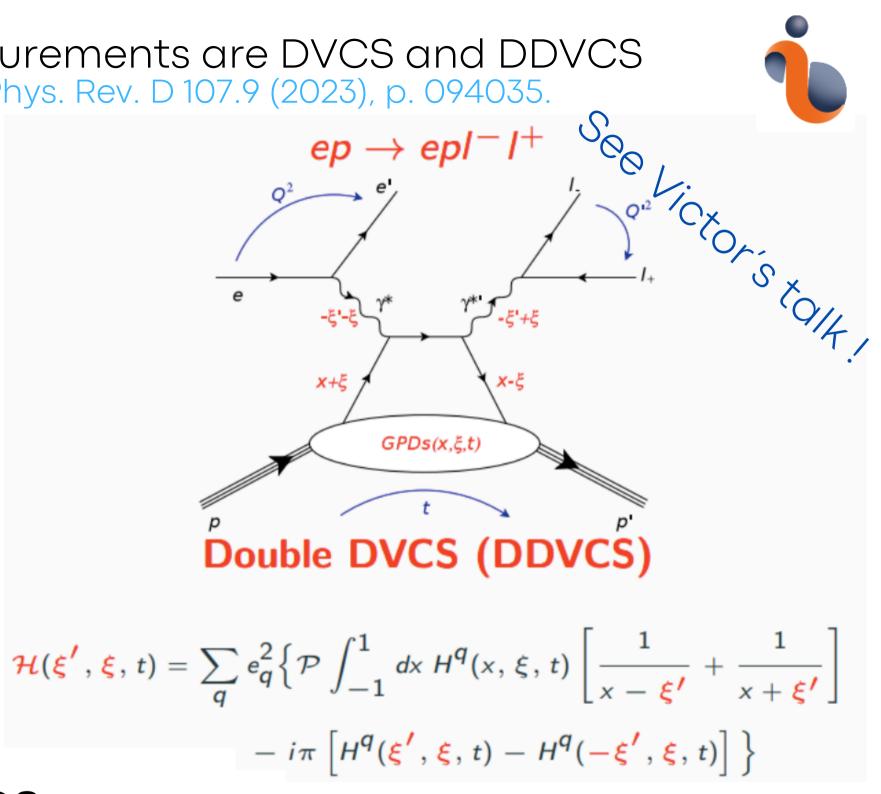
• Direct GPD measurement from Im(CFF).

### CONS:

• GPD measurements only at  $x = \pm \xi$ .

**PROS**:

- CONS:



• GPD measurement at  $\xi' \neq \xi$  values. Generalizes the results of DVCS and TCS.

5

Smaller cross section.



# INTRODUCTION

We consider a muon pair in the final state, polarized electron/positron beams and a polarized proton target.

- At JLab (12 GeV beam energy):
  - A muon detector is planned (SoLID collaboration)
  - A positron beam is planned (PEPPo, Ce+BAF and JLab positron working group)
- At EIC (140 GeV CoM energy):
  - Positron beams may exist
  - Muon detection might be possible
- We consider the following experimental observables\*:
  - $_\circ$  Beam Spin Asymmetry (BSA) $A_{LU}$
  - $\circ$  Target Spin Asymmetry (TSA)  $A_{III}$
  - $_{\circ}$  Double Spin Asymmetry (DSA)  $A_{LL}$
  - Beam Charge Asymmetry (BCA)  $A_{UU}^C$



Jefferson Lab Experiment LOI12-16-004 Jefferson Lab Experiment LOI12-23-012

A. Accardi et al. Eur. Phys. J. A 57 (2021), p. 261, J. Grames et al. arXiv preprint arXiv:2309.15581 (2023)

A. Accardi et al. In: The European Physical Journal A 52 (2016), pp. 1–100.

\*defined with the cross-section integrated over muon angles



### Such observables have the following CFF dependence

 $A_{LU} \propto \sin(\phi)$  ( $(F_1 \mathcal{H} - kF_2 \mathcal{E}) + \xi'(F_1 + F_2) \tilde{\mathcal{H}}$ )  $A_{UU}^{C} \propto \cos(\phi) \Re \left( \frac{\xi'}{\xi} \left( F_1 \mathcal{H} - kF_2 \mathcal{E} \right) + \xi (F_1 + F_2) \tilde{\mathcal{H}} \right)$  $A_{UL} \propto \sin(\phi) \Im \left( F_1 \tilde{\mathcal{H}} + \xi' (F_1 + F_2) \left( \mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) - \xi \left( \frac{\xi}{1+\xi} F_1 + kF_2 \right) \tilde{\mathcal{E}} \right)$  $A_{LL} \propto A + B\cos(\phi)$  $A \propto \Re \left( \xi (F_1 + F_2) \left( \mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) + F_1 \tilde{\mathcal{H}} - \xi \left( \frac{\xi}{1+\xi} F_1 + kF_2 \right) \tilde{\mathcal{E}} \right) \\ B \propto \Re \left( \xi (F_1 + F_2) \left( \mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) + \frac{\xi'}{\xi} F_1 \tilde{\mathcal{H}} - \xi' \left( \frac{\xi}{1+\xi} F_1 + kF_2 \right) \tilde{\mathcal{E}} \right)$ 

- $A_{LU}$  and  $A_{UU}^{C}$  are GPD H dominated.
- $A_{III}$  is GPD H dominated.
- Due to the  $\xi$  ' dependence, the coefficients in  $A_{LL}$  no longer have the same  $_{/}$ CFF dependence. Likewise for  $A_{LU}$  and  $A_{UU}^C$



- A. V. Belitsky et al. In: Physical Review D 68.11 (2003), p. 116005



# INTRODUCTION

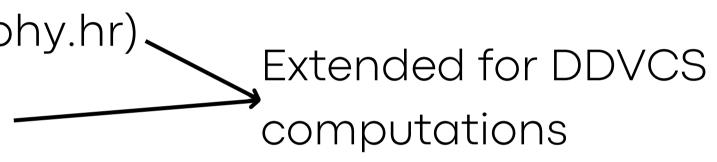
### To model GPDs, the models used for evaluations are:

- VGG: Orsay's code. For a review see M. Guidal et al. Rep. Prog. Phys. 76.6 (2013): 066202.
- GK19: Latest model from PARTONS (B. Berthou et al. Eur. Phys. J. C 78 (2018): 1-19.) S. Goloskokov et al. Eur. Phys. J. C 50 (2007), pp. 829-842.
- KM10, KM15: Models from Gepard (https://gepard.phy.hr) K. Kumerički and D. Mueller. Nuc. Phys. B 841.1-2 (2010), pp. 1–58.
- AFKM12: KM model adaptation for EIC kinematics E. Aschenauer et al. JHEP 2013.9 (2013), pp. 1–59

### The main goal of this study is to:

- Quantify the GPD dependence of the DDVCS observables within a reasonable kinematic window.
- Look for kinematic regions where models can be discriminated.
- Give preliminary projections for DDVCS measurements within the JLab and EIC experimental configurations.

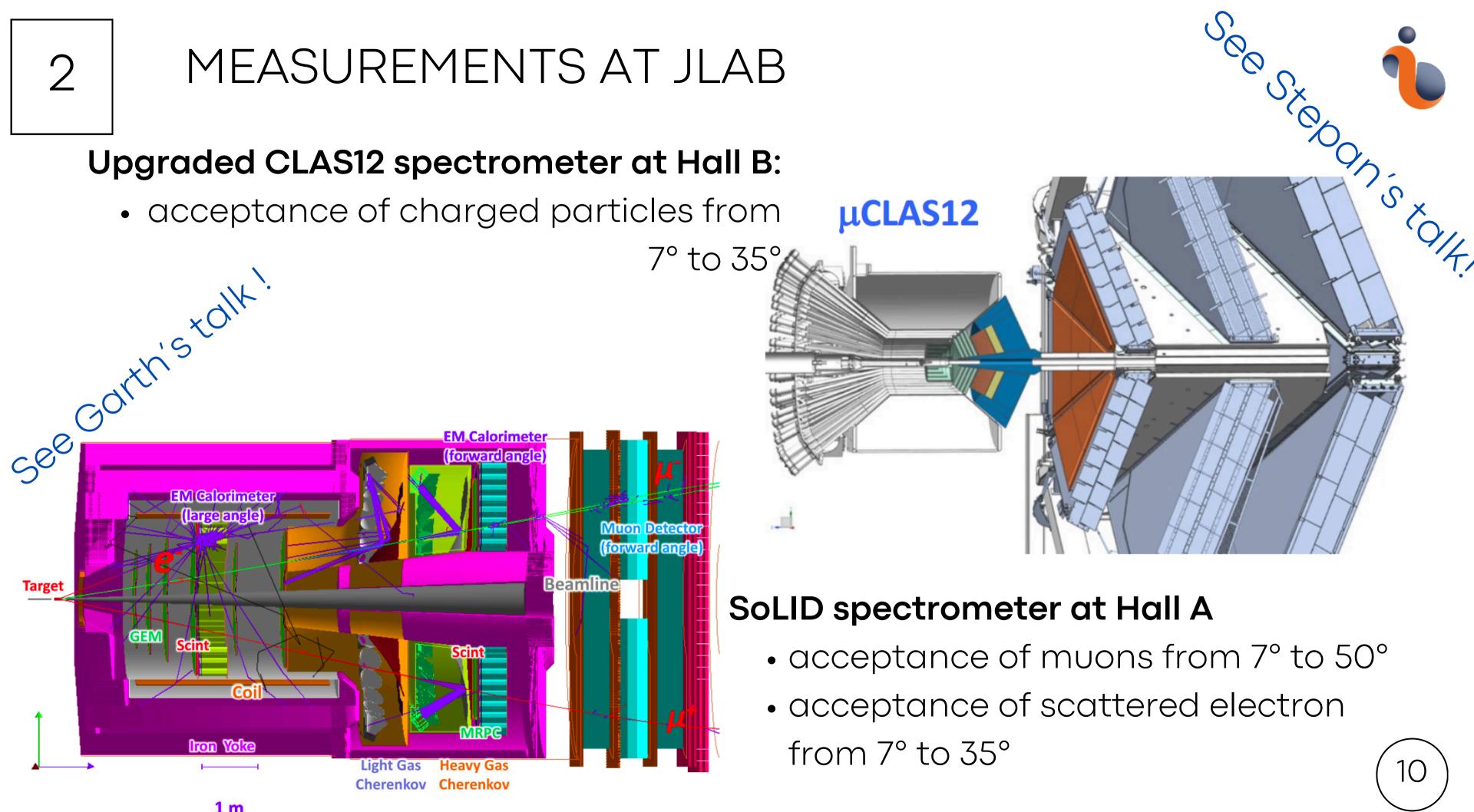




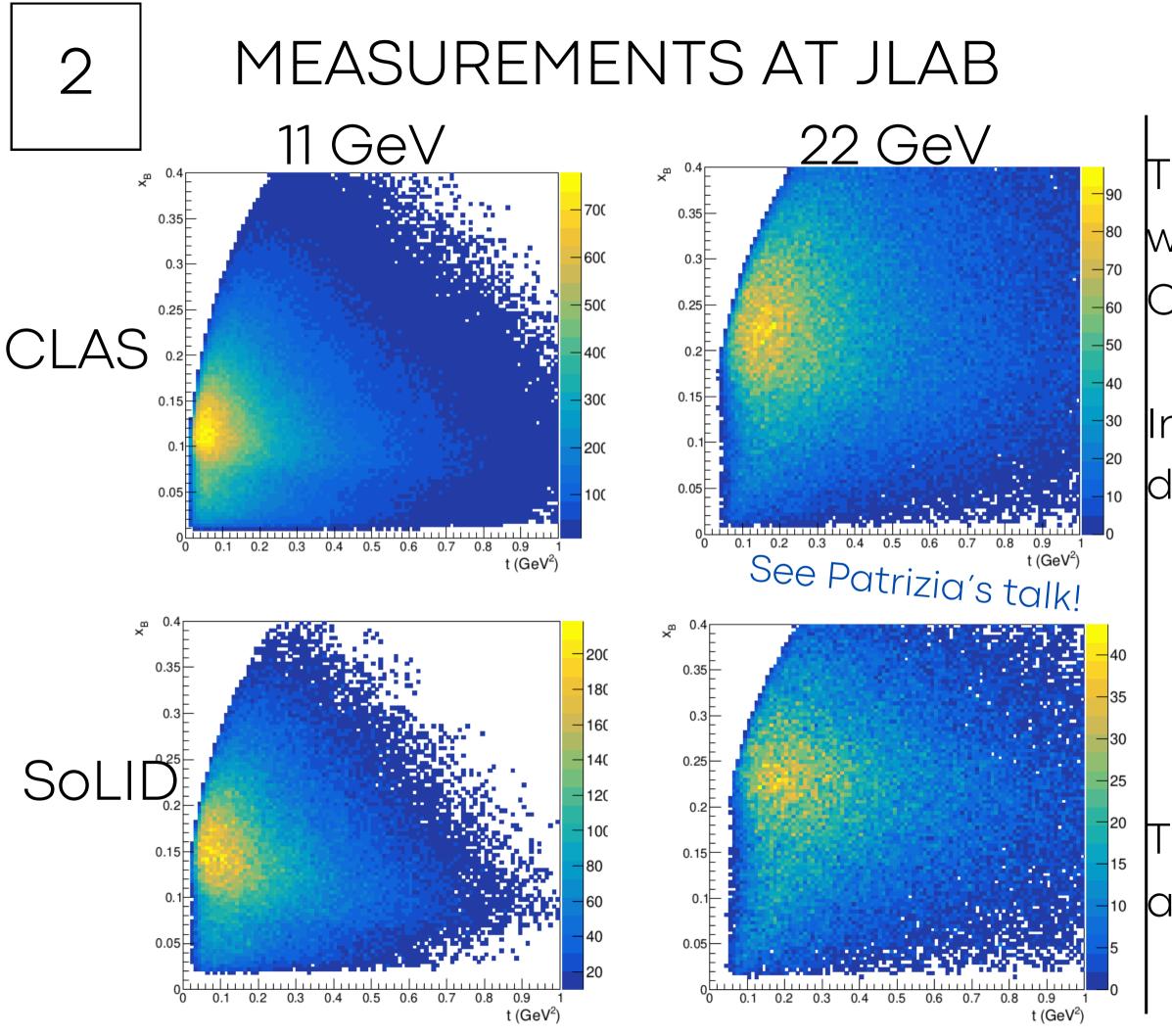
8



## MEASUREMENTS AT JLAB KINEMATICS The CLAS12 spectrometer The SoLID spectrometer The 22 GeV case



1 m





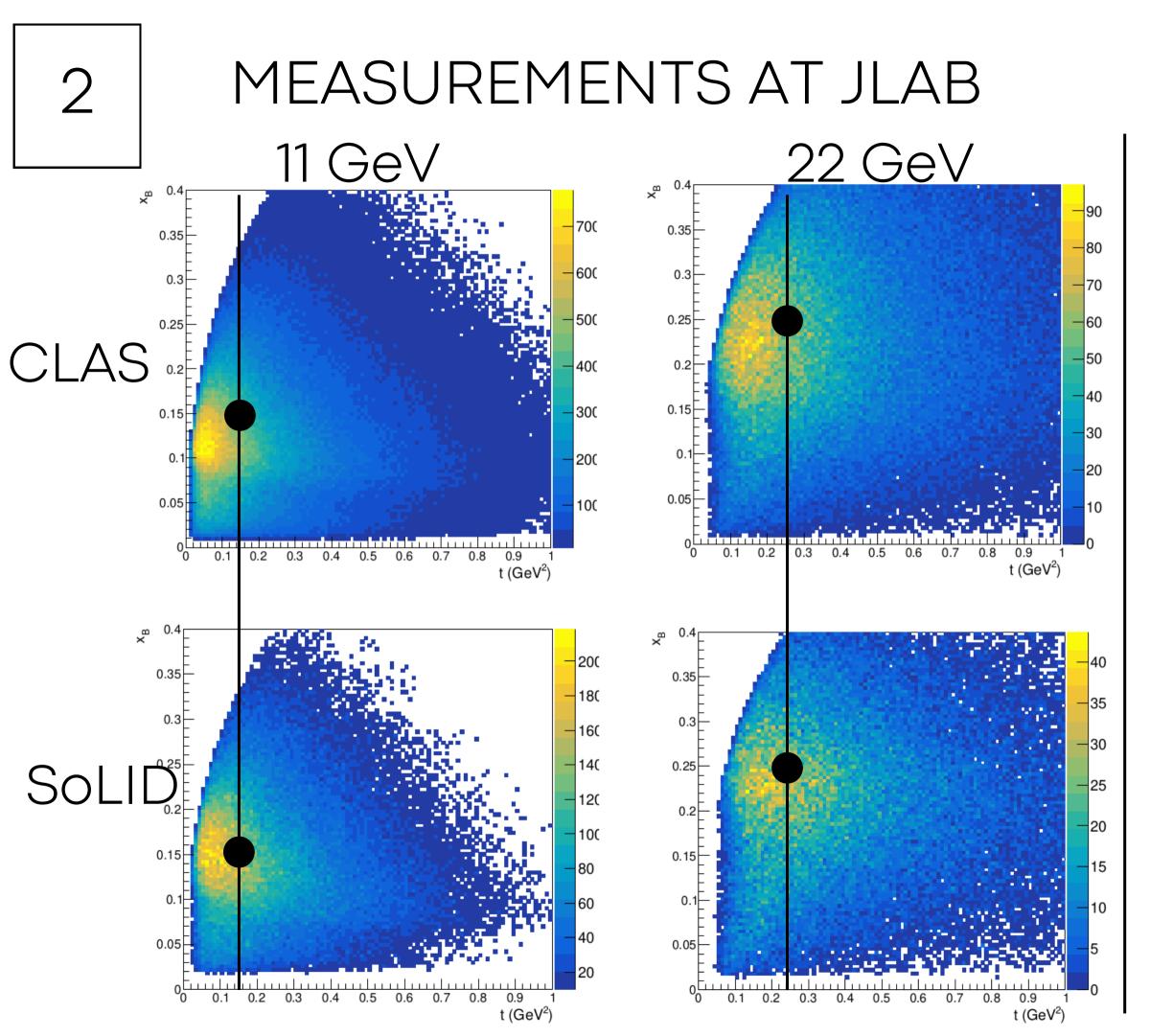
The kinematic reach for DDVCS was studied in the LOI12-16-004 for CLAS and LOI12-15-005 for SoLID.

In both cases, the detectors are designed to support a luminosity of

## ${\cal L} = 10^{37} { m cm}^{-2} { m s} - 1$

(although SoLID can go up to 10<sup>39</sup>)

They would allow measurements at small t and  $0.1 < x_B < 0.3$  (11)





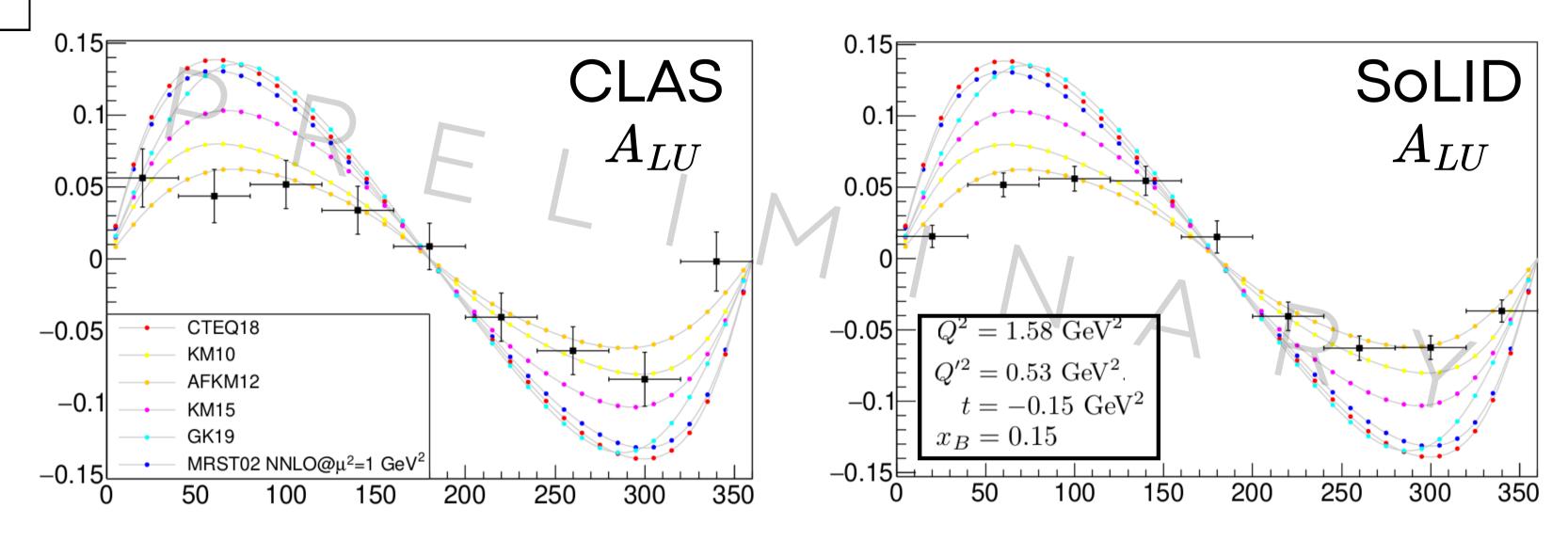
We perform an exploration of the DDVCS observables at:

- t=-0.15 GeV<sup>2</sup> and xB=0.15
   @ 11 GeV
- t=-0.25 GeV<sup>2</sup> and xB=0.25
   @ 22 GeV

While Q<sup>2</sup> and Q'<sup>2</sup> are explored in the allowed kinematic range:

$$0 < Q^2 < 2M x_B E$$
  $4m_\mu^2 < Q'^2$ 





At 11 GeV, measurements are possible within 100 days of beam time

Bins widths are given by:

•  $\Delta Q^2 = 1 \text{ GeV}^2$ ,

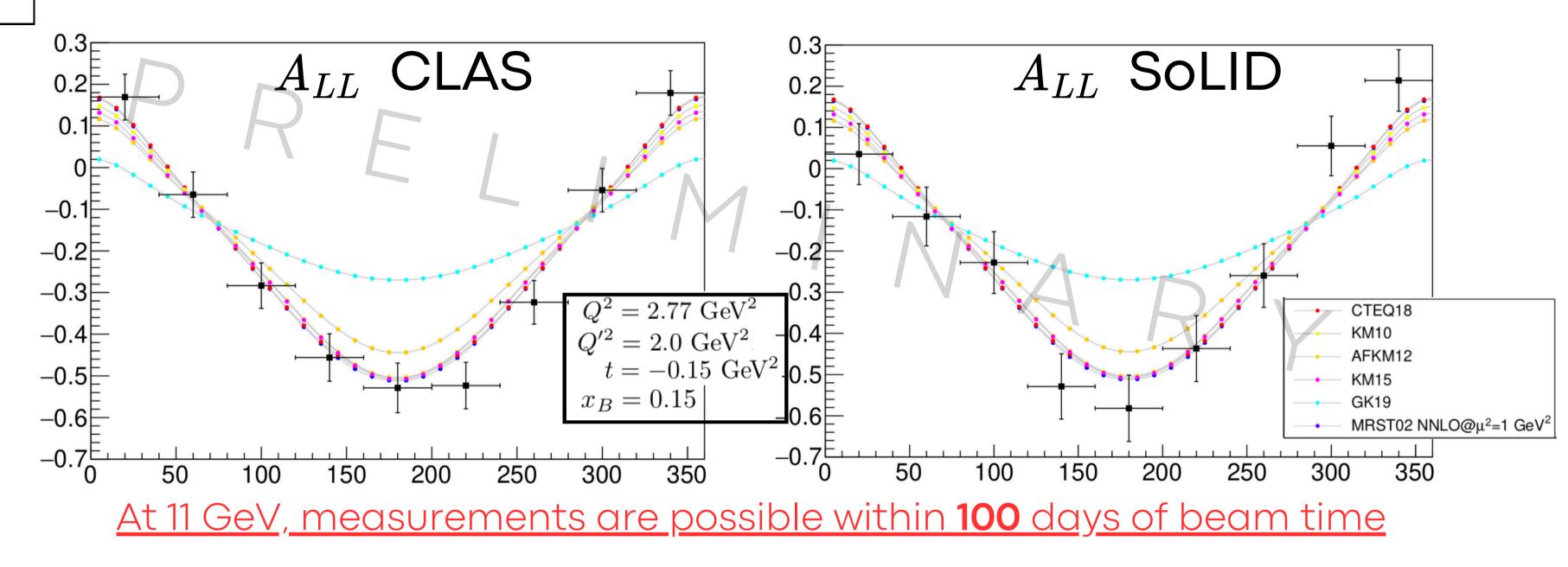
2

- $\Delta Q'^2 = 1 \text{ GeV}^2$ ,
- $\Delta t = 0.05 \text{ GeV}^2$ ,
- $\Delta x_B = 0.1.$



### Statistics from EpIC and





Bins widths are given by:

•  $\Delta Q^2 = 1 \text{ GeV}^2$ ,

2

- $\Delta Q'^2 = 1 \text{ GeV}^2$ ,
- $\Delta t = 0.05 \text{ GeV}^2$ ,
- $\Delta x_B = 0.1$ .

Here we assume a polarized NH3 target

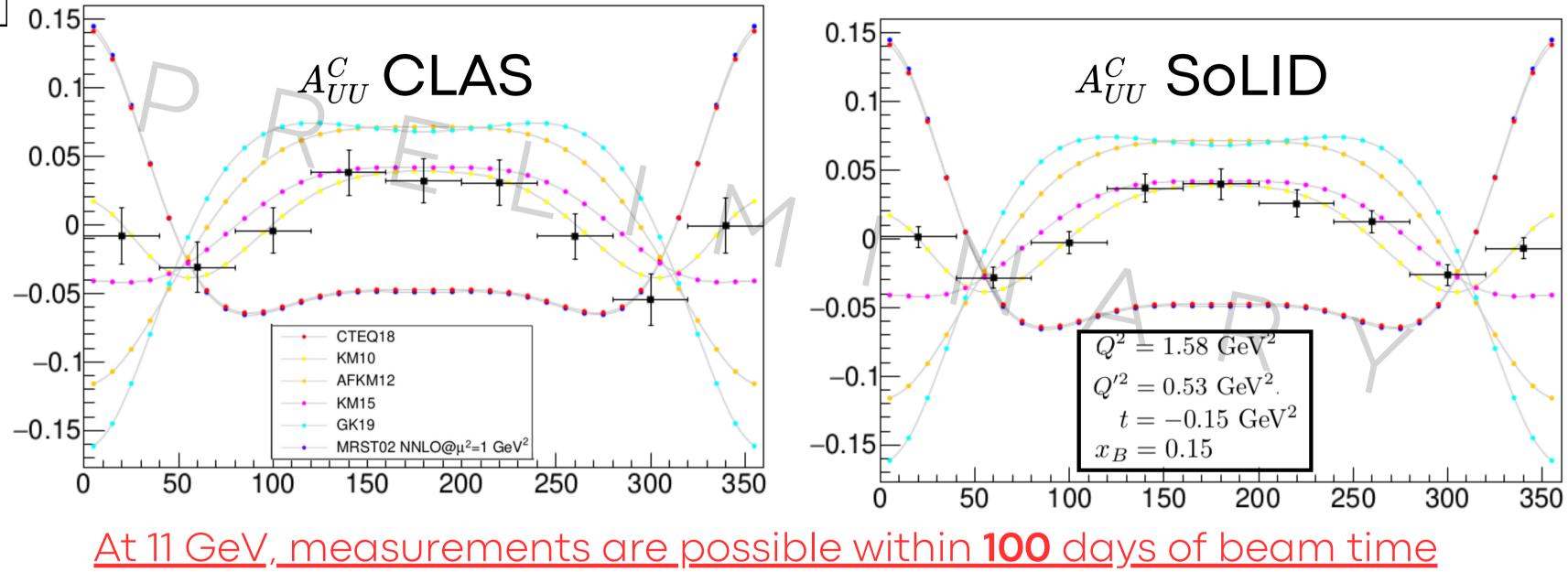


### Statistics from EpIC and

detector acceptance E. C. Aschenauer, et al. Eur. Phys. J C

82.9 (2022): 1-12.





Bins widths are given by:

•  $\Delta Q^2 = 1 \text{ GeV}^2$ ,

2

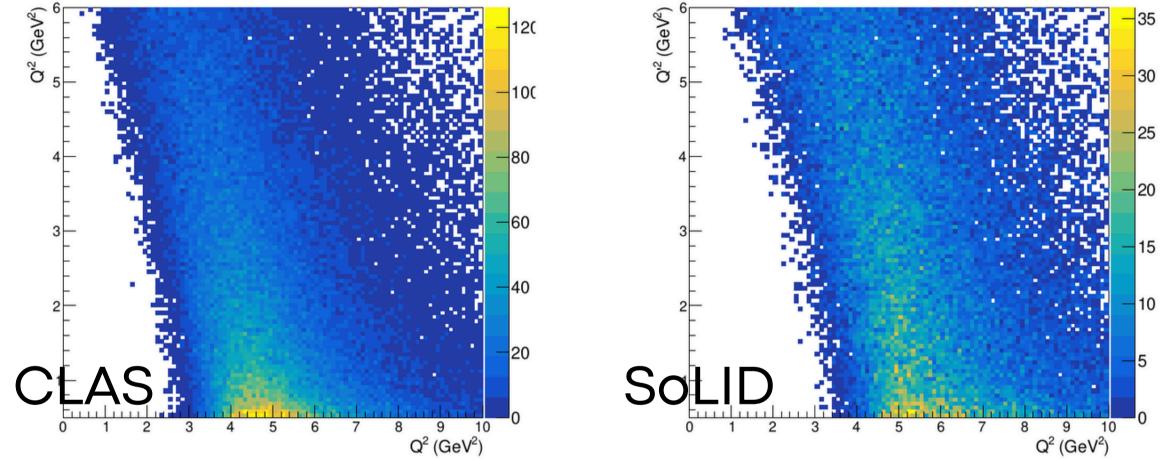
- $\Delta Q'^2 = 1 \text{ GeV}^2$ ,
- $\Delta t = 0.05 \text{ GeV}^2$ ,
- $\Delta x_B = 0.1.$



### Statistics from EpIC and



At 22 GeV we are restricted to larger values in Q<sup>2</sup> due to electron acceptance



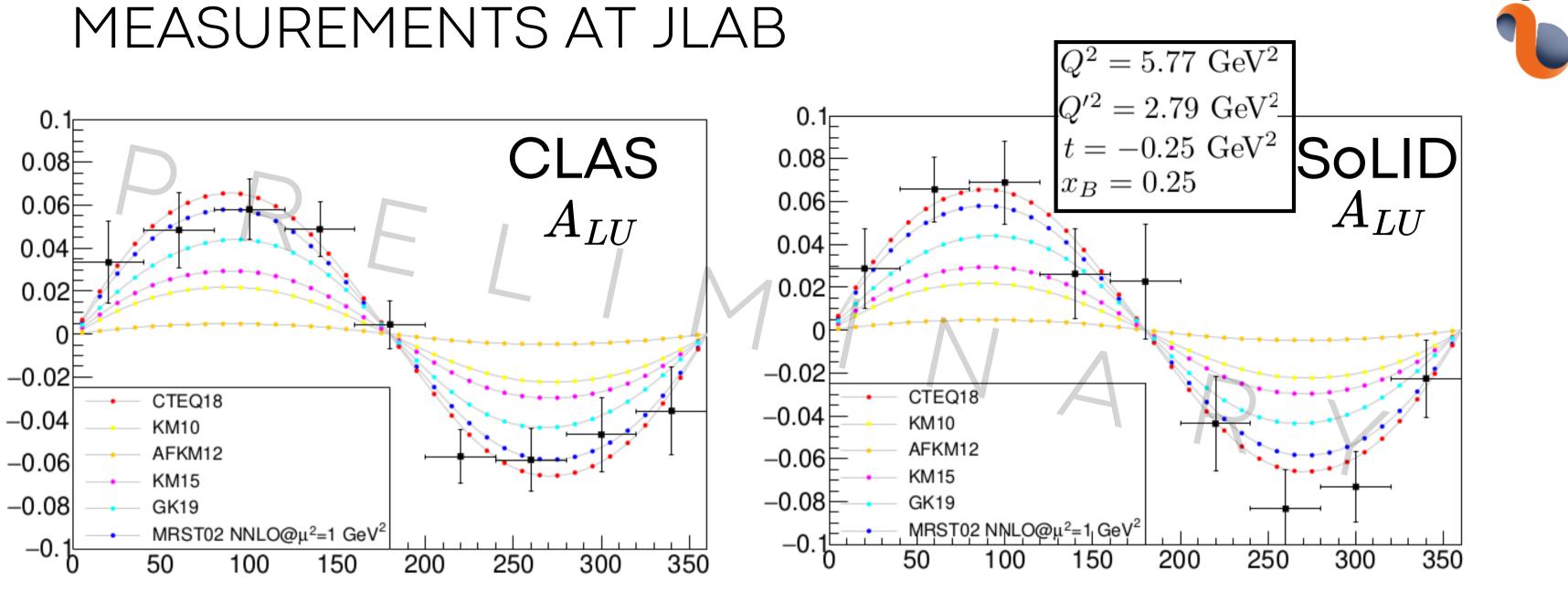
To compensate the smaller cross-section and explore regions of relative large Q'<sup>2</sup> we need to consider larger bins.

Let us consider the case of a single bin in t and xB :

$$t>-0.4~{
m GeV}^2$$
 $x_B < 0.4$ 



0



At 22 GeV, measurements are possible within 200 days of beam time

Bins widths are given by:

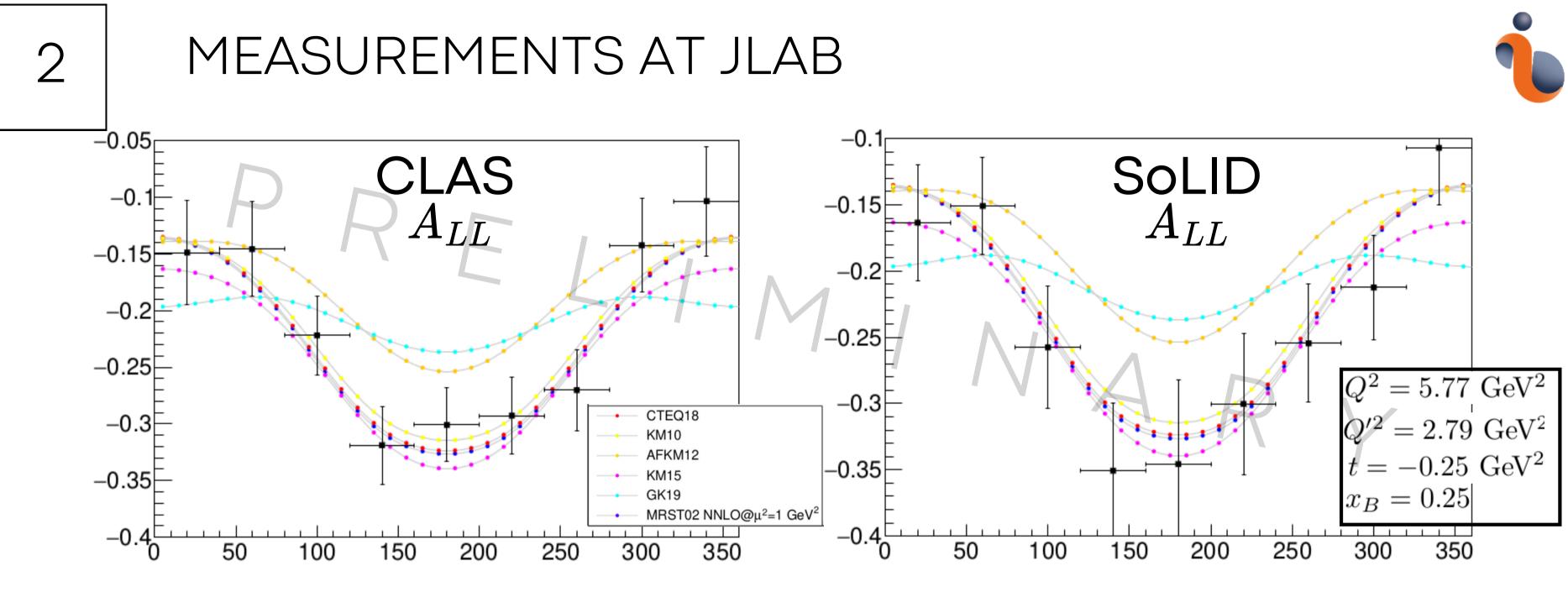
•  $\Delta Q^2 = 1 \text{ GeV}^2$ ,

2

- $\Delta Q'^2 = 1 \text{ GeV}^2$ ,
- $t > -0.4 \text{ GeV}^2$

### Statistics from EpIC and





At 22 GeV, measurements are possible within 200 days of beam time

Bins widths are given by:

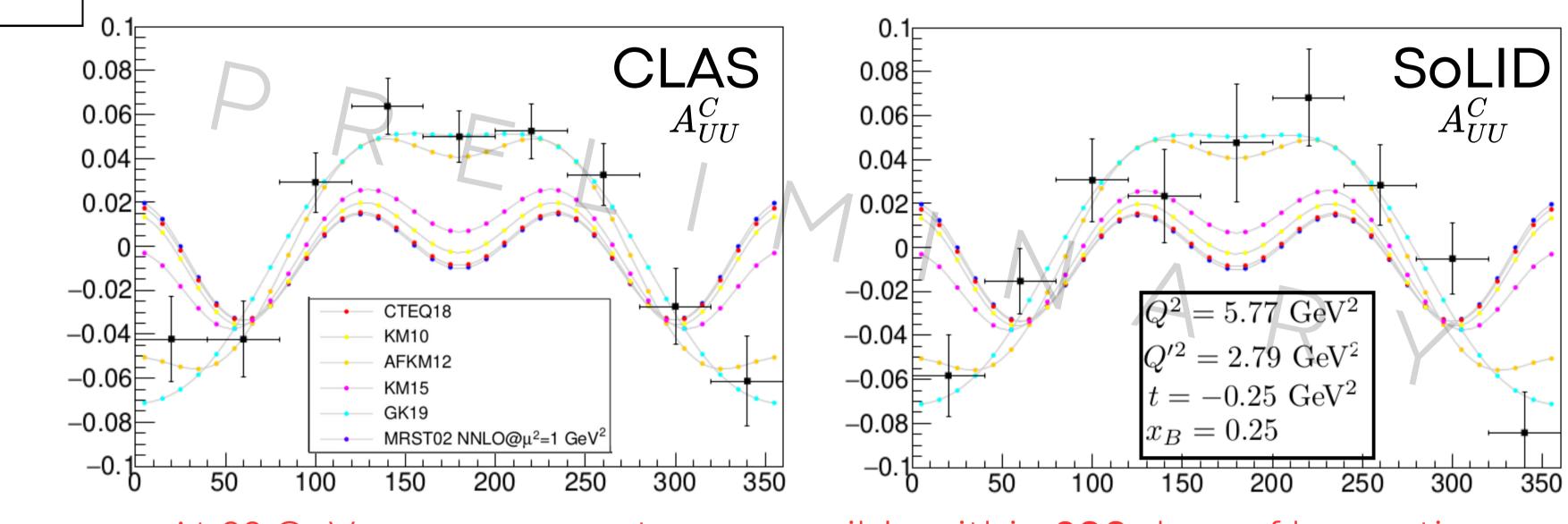
- $\Delta Q^2 = 1 \text{ GeV}^2$ ,
- $\Delta Q'^2 = 1 \text{ GeV}^2$ ,
- $t > -0.4 \text{ GeV}^2$

Here we assume a polarized NH3 target



### Statistics from EpIC and





At 22 GeV, measurements are possible within 200 days of beam time

Bins widths are given by:

•  $\Delta Q^2 = 1 \text{ GeV}^2$ ,

2

- $\Delta Q'^2 = 1 \text{ GeV}^2$ ,
- $t > -0.4 \text{ GeV}^2$



### Statistics from EpIC and



## SENSITIVITY AT EIC KINEMATICS

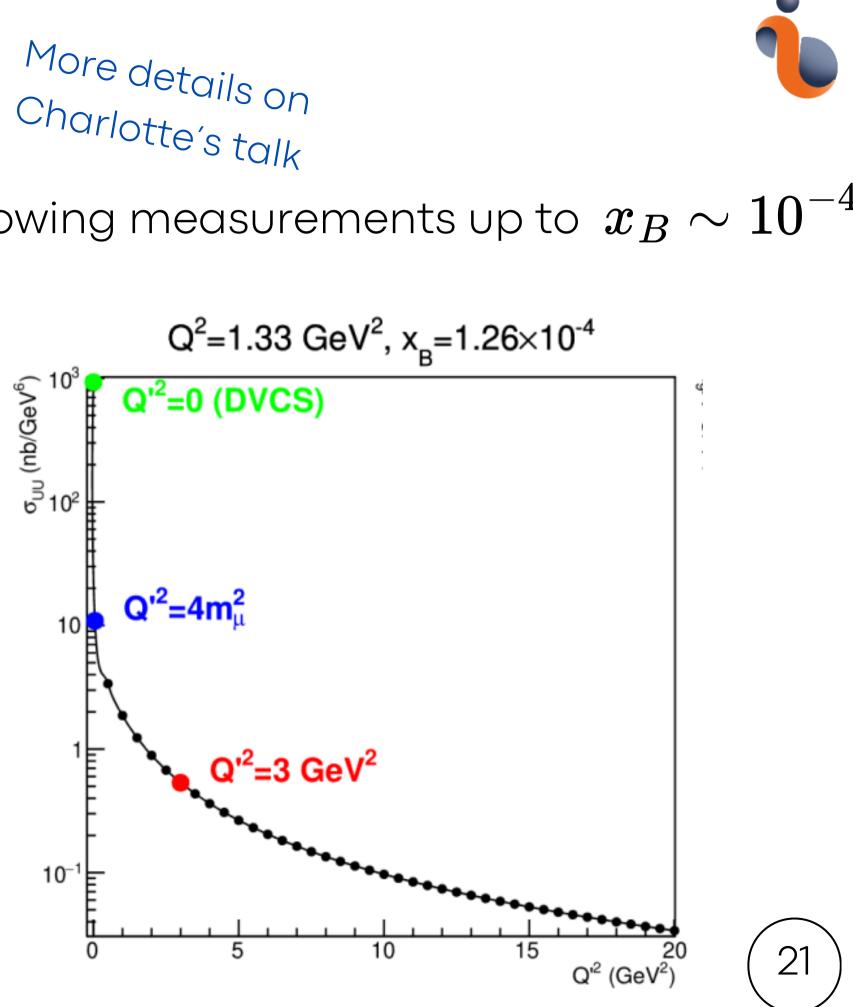
# MEASUREMENTS AT EIC

At EIC we expect:

- Maximum CoM energy of 140 GeV, allowing measurements up to  $\,x_B \sim 10^{-4}$
- $\mathcal{L} = 10 \ \mathrm{fb}^{-1} \mathrm{year}^{-1} < \mathcal{L}_\mathrm{JLab}$

The DDVCS cross section drops quickly with Q<sup>2</sup> and Q'<sup>2</sup>.

Thus, we require measurements at relatively small Q<sup>2</sup> and Q<sup>2</sup> values to compensate the smaller luminosity.



# MEASUREMENTS AT EIC

- At large center of mass energies, we can access smaller xB values.
- As  $x_B o 0, \xi(\xi') o 0$  as well. Then, the experimental observables simplify to:

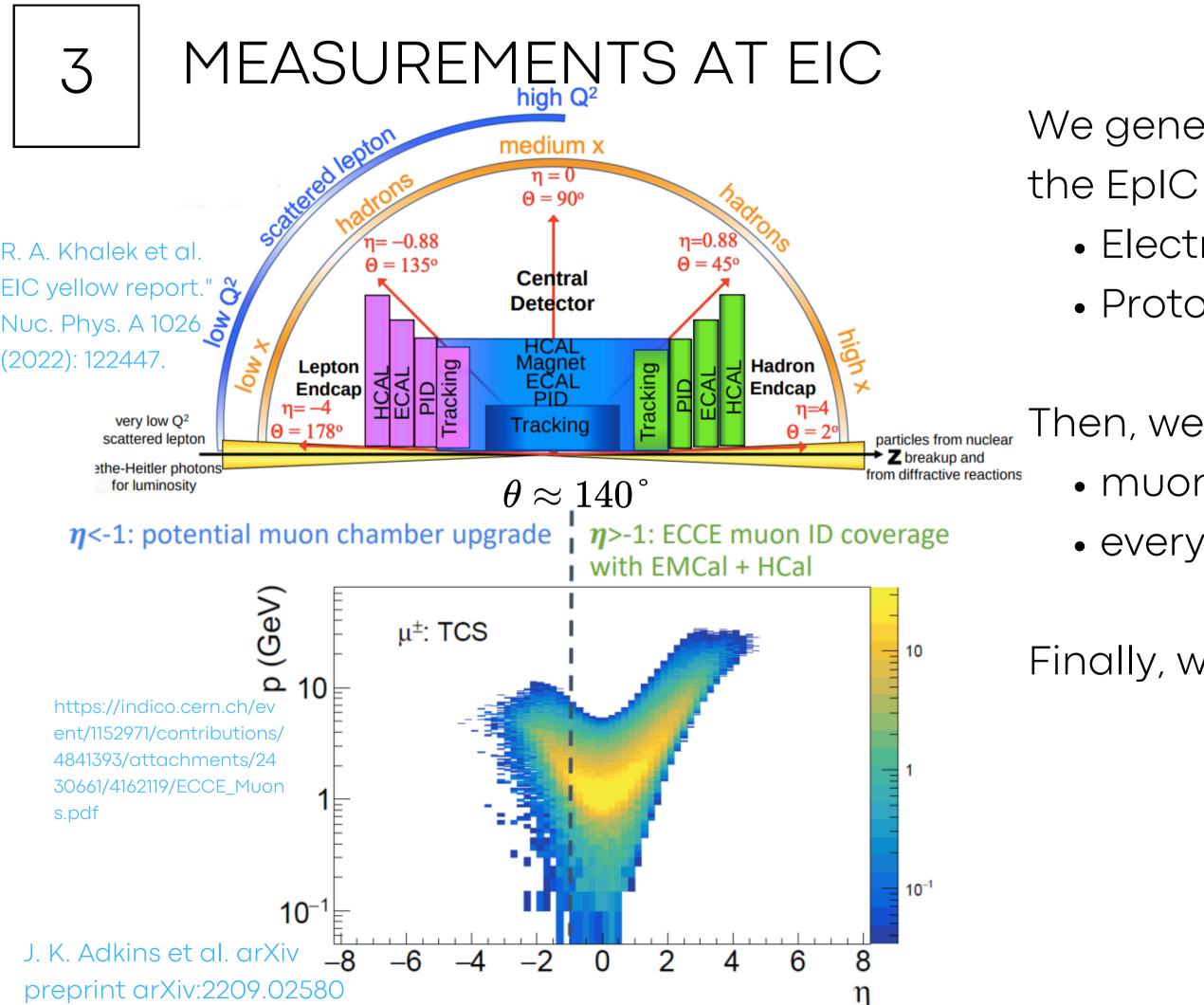
 $A_{LU} \propto \sin(\phi) \Im ( (F_1 \mathcal{H} - kF_2 \mathcal{E}))$   $A_{UU}^C \propto \cos(\phi) \Re \left(\frac{\xi'}{\xi} (F_1 \mathcal{H} - kF_2 \mathcal{E})\right)$   $A_{UL} \propto \sin(\phi) \Im (F_1 \tilde{\mathcal{H}})$   $A_{LL} \propto A + B\cos(\phi)$   $= A, B \propto \Re (F_1 \tilde{\mathcal{H}})$ 



# Allowing then cleaner measurements of GPDs.

However, only  $A_{LU}$  and  $A_{UU}^C$  have amplitudes above 1% on the explored region







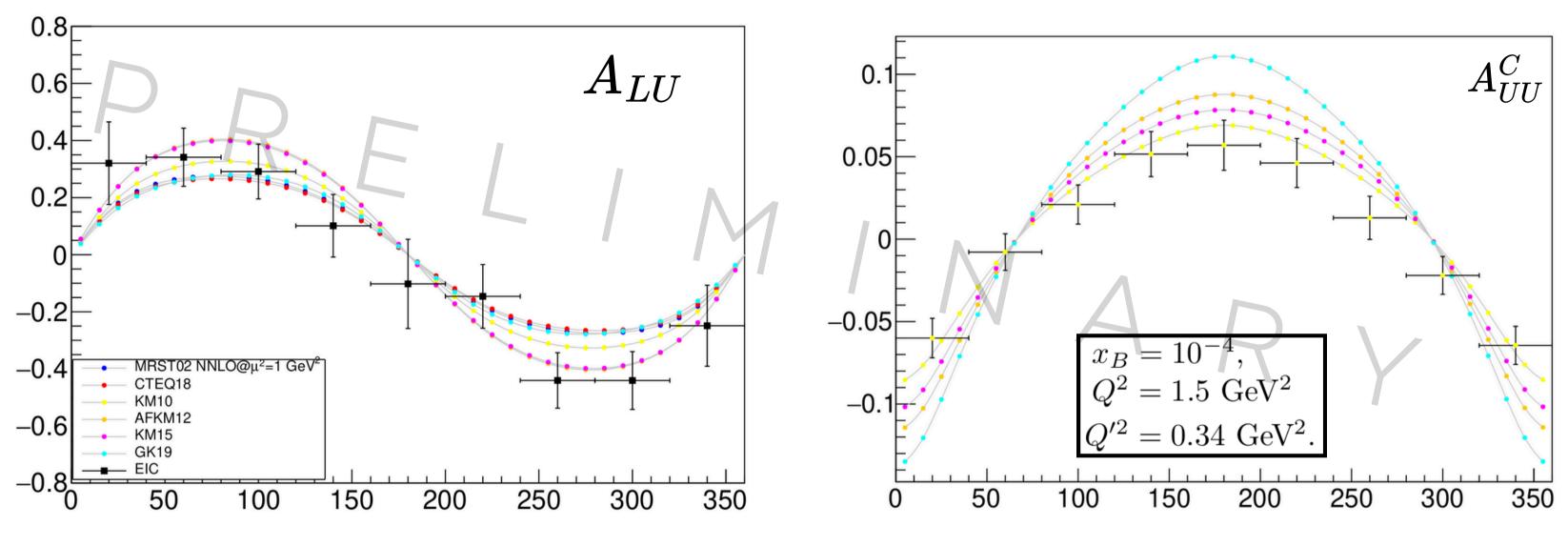
/e explored the region
$$0.5 < Q^2 ({
m GeV}^2) < 3 \ 4m_\mu^2 < Q'^2 ({
m GeV}^2) < 3 \ t = -0.025 \ {
m GeV}^2 \ x_B = 10^{-4}$$

Then, we assumme muon detection of muons in the range 2°-140° • everything else in the range 2°-178°

the EpIC generator considering Electrons @ 18 GeV Protons @ 275 GeV

We generated DDVCS events using

# MEASUREMENTS AT EIC



### At EIC, measurements are possible within 1 year of beam time

Bins widths are given by:  $\Delta Q^2 = 1~{
m GeV}^2$  $\Delta Q'^2 = 1~{
m GeV}^2$  $\Delta x_B = 0.5 imes 10^{-4}$  $\Delta t = 0.025~{
m GeV}^2$ 

3



Statistics from EpIC and detector acceptance



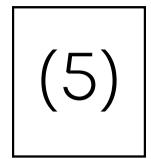


# SUMMARY

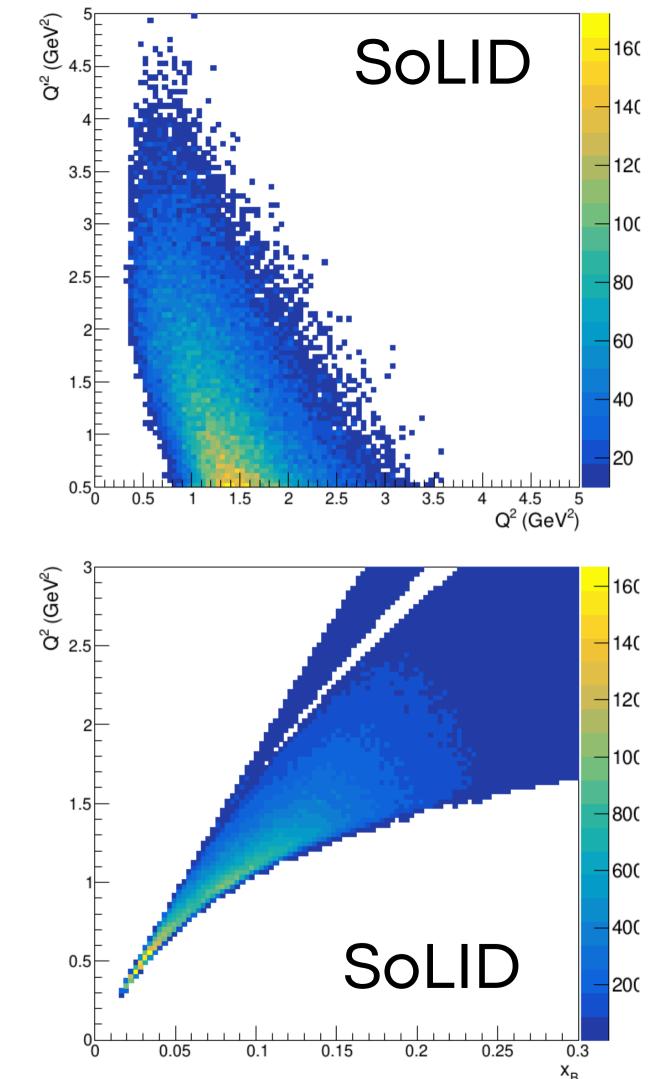
- DDVCS is a golden channel for GPD studies as it allows to explore them at independent  $\xi' \neq \xi$  values
- At JLab:
  - measurements of DDVCS observables can be achieved within
    - 100 days with a 11 GeV beam.
    - 200 days with a 22 GeV beam and large bins.
  - $\circ$  A 22 GeV beam would allow measurements at larger Q<sup>2</sup> and Q'<sup>2</sup> values.
  - DDVCS observables show an important model sensitivity
- At EIC:
  - Measurements of BSA and BCA can be achieved within 1 year of data taking

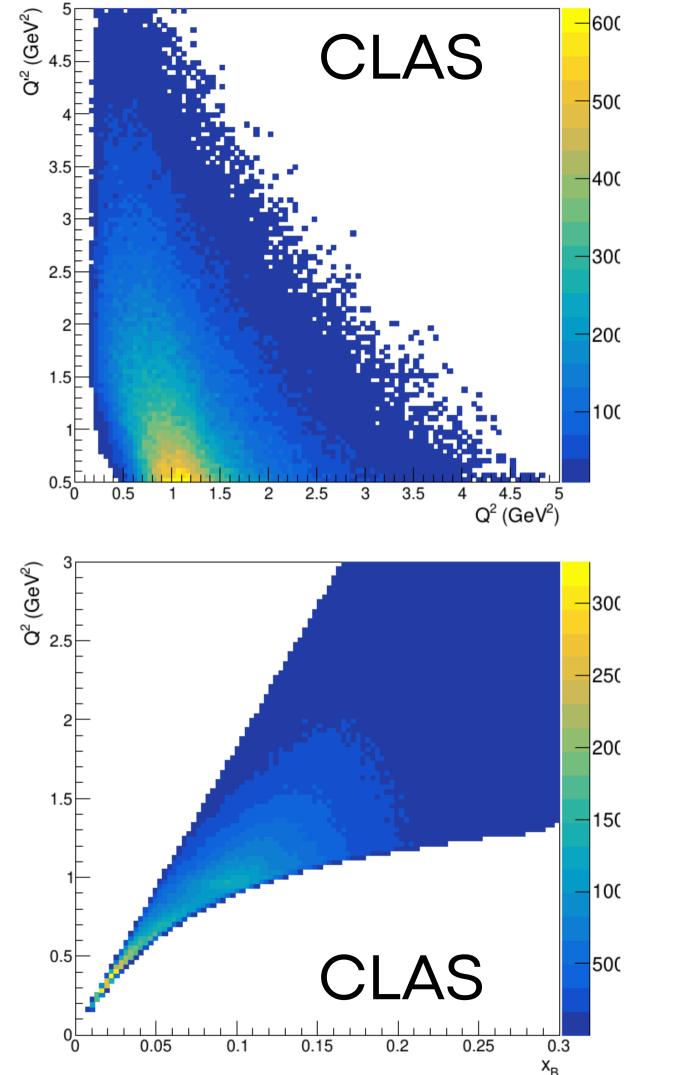


# THANKS

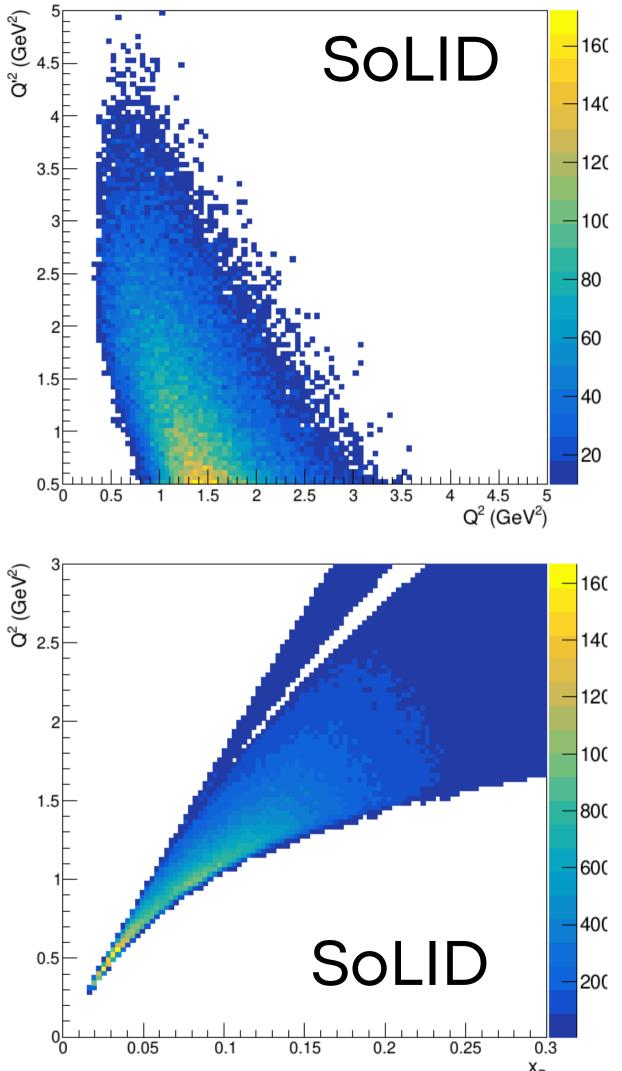


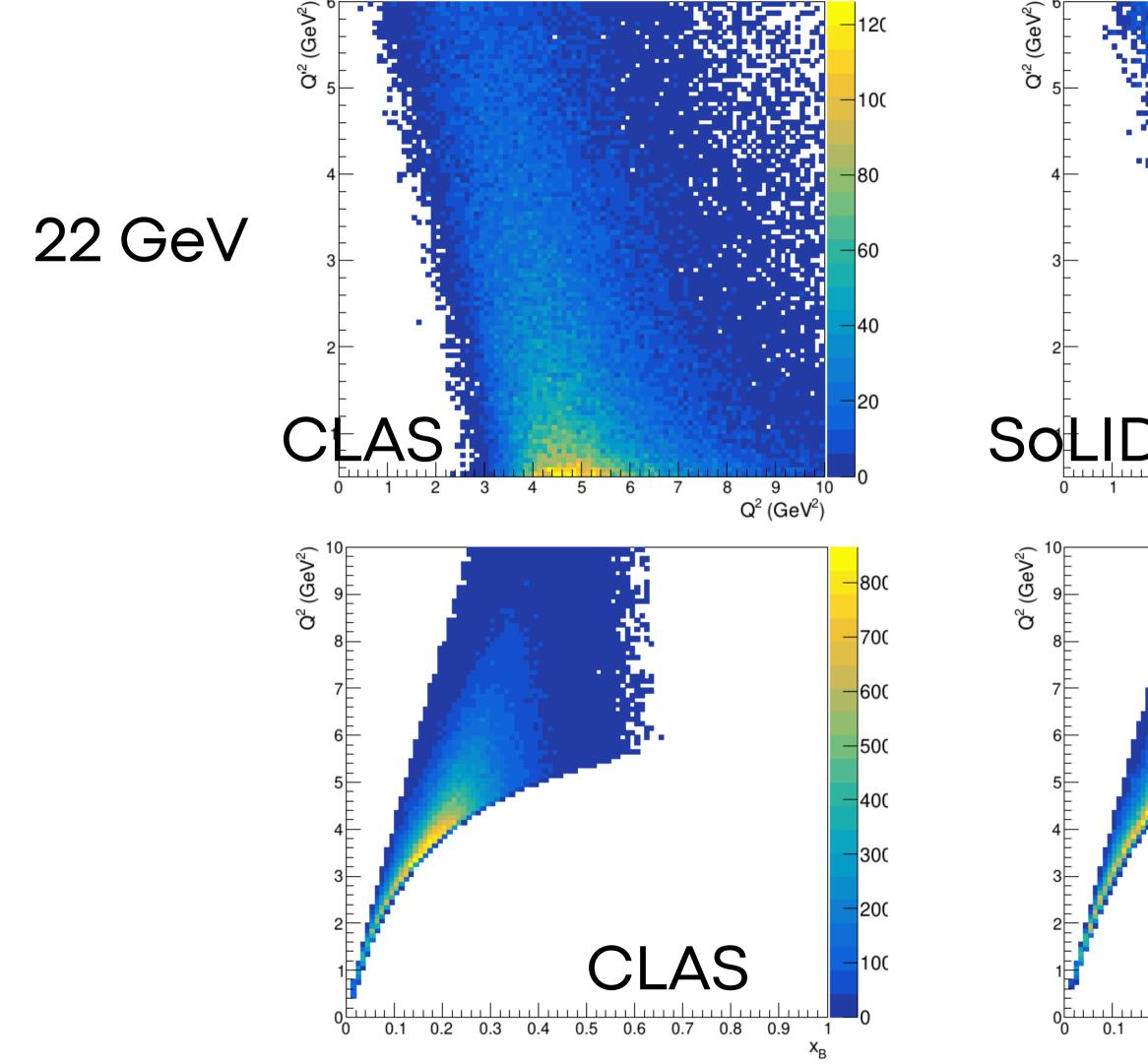
## BACK UP

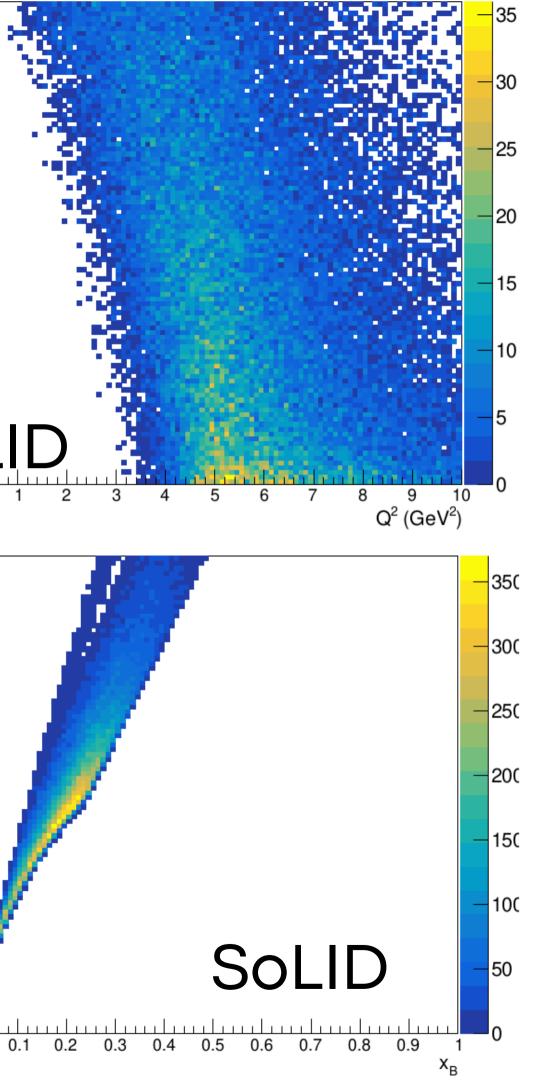


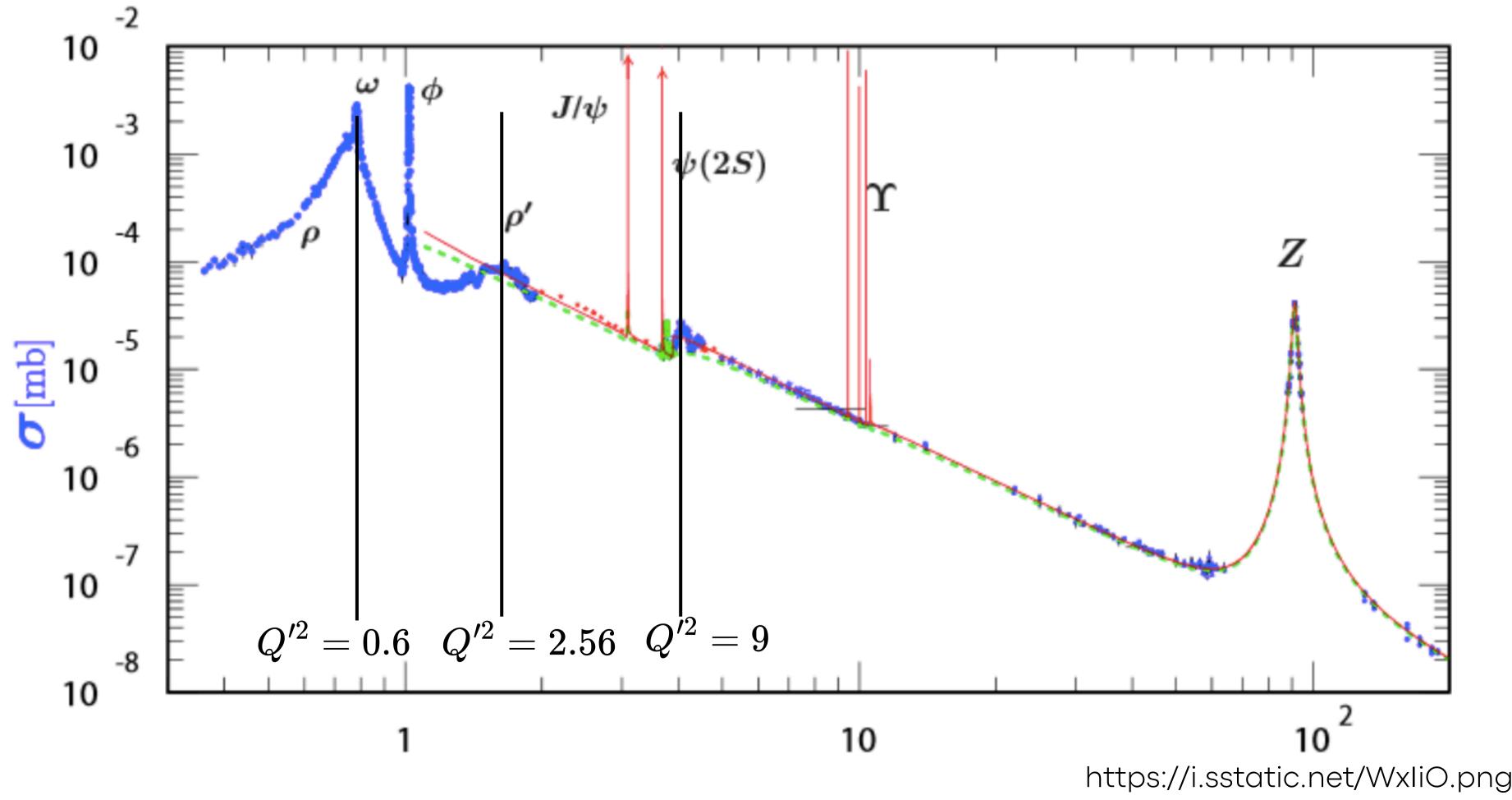


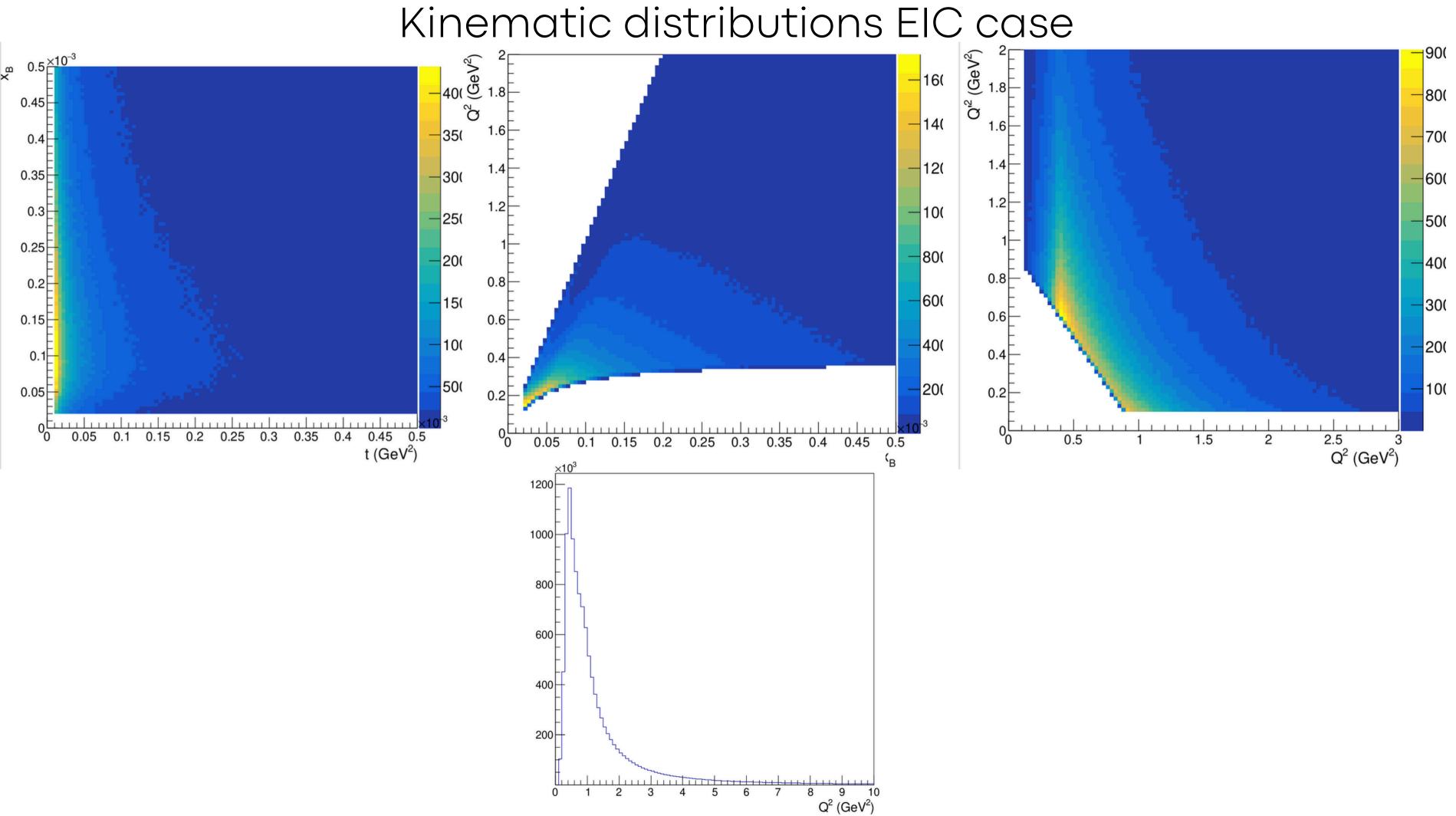
11 GeV











# **IMAGINARY PART**

### VALENCE QUARK GPD CONTRIBUTION

### For DVCS, GPD H is modeled on the cross-over line using the DD representation: K. Kumerički and D. Mueller. Nuclear Physics B 841.1-2 (2010): 1-58.

taken at an "input scale" of  $Q^2 = 2 \,\mathrm{GeV}^2$ . We model the GPD on the cross-over line using the DD representation (23),

$$F(x, x, t) = \frac{2}{1+x} \int_0^1 du \, f\left(\frac{ux}{1+x}, \frac{1-2u+x}{1+x}, t\right), \qquad (106)$$
  
dence from the quark spectator model [88]. This suggests the following  
 $f(x, x, t) = \frac{n \, r}{1+x} \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^b \frac{1}{(1-\frac{1-x}{t-x})^p}. \qquad (107)$ 

and take the *t*-de functional form:

$$F(x, x, t) = \frac{2}{1+x} \int_0^1 du \, f\left(\frac{ux}{1+x}, \frac{1-2u+x}{1+x}, t\right) \,, \tag{106}$$
r is an skewness ratio  
related to an  
hypergeometric function.  
H(x, x, t) =  $\frac{n \, r}{1+x} \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^b \frac{1}{\left(1-\frac{1-x}{1+x}\frac{t}{M^2}\right)^p} \,. \tag{107}$ 

## It suggest that:

• There is an analytically integrable DD • If I can find such DD, I can generalize it.



# **INAGINARY PART**

### VALENCE QUARK GPD CONTRIBUTION

# Let us see how the DVCS results might be obtained **1.** Consider the DD profile

$$h(y, z, t = 0) = \frac{\Gamma(3/2 + b)}{\Gamma(1/2)\Gamma(1 + b)} \frac{q(y)}{1 - y}$$

### 2. The t dependence is taken from the spectator model D. S. Hwang and D. Mueller. Physics Letters B 660.4 (2008): 350-359.

$$q(y) \to q(y,t) \propto y^{-\alpha} (1-y)^{3} \text{ and a factor}$$

$$\frac{1}{1-y} \left\{ \frac{1}{\frac{-(1-y)^{2}-((1-y)^{2}-z^{2})*k}{-(1-y)^{2}}} \right\}$$

 $\mathbf{a}$ 





 $\left(1-\frac{z^2}{(1-u)^2}\right)^{o}$ .

 $\sim \left(1 - rac{t}{M^2}
ight)^{ho}$ 

 $\frac{1}{\left(1-\frac{z^2}{\left(1-y\right)^2}\right)^b};$ 

# **INAGINARY PART**

VALENCE QUARK GPD CONTRIBUTION

3. Variable change  $y = \frac{x+1}{2}u$ Exact integration can be achieved by taking only linear terms on 'u'.

$$= 2^{2b-\alpha} \left( -\frac{u(-1+x)}{1+x} \right)^{b} \left( \frac{ux}{1+x} \right)^{-\alpha} \left( \frac{u}{1+x} \right)^{-\alpha} \left( \frac{u}{1+$$

4. It now matches the definition of an Hypergeometric function

$$\mathrm{B}(b,c-b)\,_2F_1(a,b;c;z) = \int_0^1 x^{b-1}(1-x)^{c-b-1}(1-zx)^{-a}\,_2$$

5. As a result, we obtain the H(x,x,t) functional dependence, times an hypergeometric function (say 'r').

$$H(x,x,t) = \frac{n r}{1+x} \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^{b} \frac{1}{\left(1-\frac{1-x}{1+x}\frac{t}{M^{2}}\right)^{p}}.$$





# 4 k u (-1+x)

 $\Re(c) > \Re(b) > 0$ , c-b-1=0 dx

# **IMAGINARY PART**

### VALENCE QUARK GPD CONTRIBUTION

## Now I re-compute the integral for the general case:

$$H(x,\xi,t) = \frac{nr\vartheta}{\vartheta+x}\frac{1+\vartheta}{2}\left(\frac{(1+\vartheta)x}{\vartheta+x}\right)^{-\alpha(t)}\left(\frac{\vartheta^2(1+\vartheta)}{2}\frac{1-x}{\vartheta+x}\right)^{b}\frac{1-\alpha(t)}{(1-(1-\vartheta)^2)^{2}}\frac{1-\alpha(t)}{\vartheta+x}$$

And it has the correct  $\vartheta \to 1$  limit

$$H(x, x, t) = \frac{n r}{1 + x} \left(\frac{2x}{1 + x}\right)^{-\alpha(t)} \left(\frac{1 - x}{1 + x}\right)^{b} \frac{1}{\left(1 - \frac{1 - x}{1 + x}\frac{t}{M^{2}}\right)^{p}}.$$





