DVCS off the neutron with Super BigBite Spectrometer

Eric Fuchey William & Mary

Towards Improved Hadron Tomography with Hard Exclusive Reactions ECT*, Trento, Italy, August 5th-9th, 2024

Nucleon Spin Puzzle and GPDs

finite $X_{_{Ri}}$.

EMC: small $\Delta\Sigma$ [Phys. Lett. B 206 (1988) 364]

Compass: **0.26 < ΔΣ < 0.36** [Phys. Lett. B 753, pp 18-28, 2016]

 $L_{q,g}$? => needs "3D" parameterization

August 8th 2024

 $H, E, \widetilde{H},$

GPDs (x, ξ,

Ji sum rule: $\int dx x [H+E](t=0) = 2J$

[Phys. Rev. Lett. 78, 610 (1997)]

Ν

DVCS Off Neutron: Constraint on Quark AM

Hall A/C at Jefferson Lab 12 GeV

Jefferson Lab @ 12 GeV: Continuous wave electron beam, $I_{max} \sim 70 \mu A$, $PoI_{beam max} \ge 80 \%$, $E_{max} = 11 \text{ GeV}$ in Halls A, B, C (12 GeV for Hall D only).

Super BigBite Spectrometer

HCal Super BigBite spectrometer (SBS): * Major new project for Hall A @ Jefferson Lab 12 GeV; * Modular detector package behind a dipole magnet. * Program started in Fall 2021 with GMn, nTPE * May need to be relocated in Hall C after 2025 HCal **Physics programs:** (off-screen) - Form factors at high Q²: * G_F^p (LH₂, recoil pol); * G_{M}^{n} , G_{P}^{n} -RP (LD₂), G_{P}^{n} (pol. ³He); magnet * nTPE (two-photon exchange in *e-n* elastic scattering) - Transverse Momentum Distributions: **BigBite** Semi-Inclusive DIS off pol. ³He ECa GRINCH - Structure functions w tagged p: * TDIS (mesons (π, K)) BiaBite * TDISn (neutron PDFs) nagne - Generalized Parton Distributions: n-DVCS on deuterium with spectator proton tagging

Jefferson Lab

n-DVCS with Spectator Proton Tagging

* Unambiguous identification of $en \rightarrow en\gamma$ among $D(e, e'\gamma)X$

(highly desirable: without it, systematic uncertainty on n/p/d separation can be huge.)

* detection of spectator proton may provide better vertex and momentum resolution than e.g. detection of a neutron

=> spectator proton information may improve the resolution on the reconstructed missing mass of the system D(e, e' γ p_{spec})n

Example of D(e, e' γ)X data with no p/n disambiguation: data from Hall A 6 GeV [M. Benali *et al.*, Nature Phys. 16 (2020) 2, 191-198]

$$M_X^2 = (k + N(\vec{p} = \vec{0}) + k' - q')$$

SBS configuration for TDIS/nDVCS

Super BigBite Spectrometer: medium solid angle dipole with modular detector package. *Purpose:* measure scattered electrons: $(D(e, e'\gamma p_{spec})n)$ Detector package (for this expt): UVAGEMS, SBS (*HERMES*) RICH, Large Angle Calorimeter (Hall B CLAS6)

Multiple Time Projection Chamber (mTPC)

mTPC projected performance

Purpose: detect low momentum spectator proton $(D(e, e'\gamma p_{spec})n)$ in *high background*

Expected single tracks rate over the full mTPC for 25 uA on 40 cm D_2 at 300K, 4 atm: **550 tracks** mTPC design combined with appropriate tracking algorithm => $\geq 60\%$ tracking efficiency.

~25 % n(e, e' γ)X events correctly tagged with spectator proton (*no dependence in t*)

August 8th 2024

NPS Electromagnetic Calorimeter

August 8th 2024

Missing Mass Resolution

August 8th 2024

WILLIAM & MARY

Inclusion of spectator proton in final state gives modest improvement on missing mass squared likely due to magnitude of radiative tail

Kinematic Coverage

 Q^2 , x_{Bi} coverage at **11 GeV**, 25 μ A on 40 cm, 4 atm gas D_2 after selection on SBS and calorimeter, spectator proton association, exclusivity cut n(e, e'{SBS} γ {ECal}, p_{spec})n', W > 2 GeV, $M_{\chi}^2 < 1.15 \text{ GeV}^2$ 10 Scattered electron selection: 9 * Electron through all 5 GEM planes; 10⁴ * at least 2 PMT hits in RICH. 8 * E >1:5 GeV: **Real Photon selection:** * reconstructed cluster position in inner calorimeter blocks 7 * E > 1 GeV 10^{3} Virtual photon selection: Q^2 (GeV²) 6 Counts Dynamic as a function of t5 4 5 3 10 2 1 00 0.2 0.5 0.3 0.4 0.6 0.7 0.8 0.9 0.1 x_{Bj}

August 8th 2024

Beam Spin Asymmetries

11 GeV, 5 days beam at 25 μ A on 4atm D₂ gas target: **1.5 10³⁶ cm⁻² s⁻¹ n⁻¹**.

Additional Settings DVCS data at different beam energies

* Extend run at other beam energies (8.8, 6.6 GeV) for DVCS²/DVCS-BH interference

* Requires enough overlap between respective x_{Bj}^2 -Q² coverages of different beam energies;

- may require moving SBS i.e. may require input from Hall A/C engineers

* Work In Progress:

August 8th 2024

- settings may be adjusted for 8.8 GeV
- rates for 8.8 GeV, 6.6 GeV to be evaluated

Additional Settings: NPS calorimeter calibration

- * Electron arm at the same angle, SBS polarity reversed to measure protons;
- * NPS at 80 degrees to detect electron (electron calcuated from proton info);
- * 4.4 GeV beam, 5 μ A on 40 cm water target;

List of items for a full proposal

* Input from Hall A/C engineers to ensure mechanical compatibility between the exisiting TDIS setup and the NPS calorimeter (and stand)

* Comprehensive rate calculations for 8.8 and 6.6 GeV:

- moving SBS may be needed to ensure significant overlap in Q², $x_{_{Bj}}$ between all 3 beam energies;

- requires input from engineers;

* Evaluation of π^0 background with inclusive π^0 generator from P. Bosted updated with NPS data;

Comparison with ALERT

Comparison with ALERT

 $(0.25 < x_{Bj} < 0.35, 0.0 < P_s (GeV/c) < 0.2)$

Bin units	x	Q^2 GeV ²	t GeV ²	$egin{array}{c} heta_s \ \circ \end{array}$	P_s GeV/c
	$\begin{array}{c} 0.05 \\ \hline 0.25 \\ 0.35 \\ 0.5 \\ 0.8 \end{array}$	$ \begin{array}{c c} 1 \\ 1.5 \\ 2.0 \\ 3.0 \\ 10 \\ \end{array} $	$ \begin{array}{c} 0 \\ 0.75 \\ 1.5 \\ 2.5 \\ 6.0 \\ \end{array} $	0.0 50 100 180	$ \begin{array}{c} 0.0 \\ 0.2 \\ 0.35 \\ 0.5 \end{array} $

Our projections are in green

Alert proposal, 0.25 < x $_{_{\rm Bi}}$ < 0.35, 2.0 < Q² (GeV²) < 3.0, 0.0<p _(GeV/c)<0.2 50<0_∗ (deg)<100 0<θ_{*} (deg)<50 100<0, (deg)<180 Hall A, 0.00<-t(GeV²)<0.75</p> Hall A, 0.00<-t(GeV2)<0.75 Hall A, 0.00<-t(GeV²)<0.75</p> 0.08 + ALERT, 0.00<-t(GeV²)<0.75 ALERT, 0.00<-t(GeV²)<0.75</p> ALERT, 0.00<-t(GeV²)<0.75</p> ALERT, 0.75<-t(GeV²)<1.50</p> ALERT, 0.75<-t(GeV²)<1.50</p> ALERT, 0.75<-t(GeV²)<1.50</p> ALERT, 1.50<-t(GeV²)<2.50</p> ALERT, 1.50<-t(GeV²)<2.50</p> ALERT, 1.50<-t(GeV²)<2.50 0.06 ALERT, 2.50<-t(GeV2)<6.00 ALERT, 2.50<-t(GeV²)<6.00</p> ALERT, 2.50<-t(GeV²)<6.00 0.04 0.02 0.00<-t(GeV²)<0.20 ರ -0.020.20<-t(GeV2)<0.35 0.35 -t(GeV2) < 0.50 -0.04-0.06-0.080.50<-t(GeV2)<0.75 -0.10.2 0.22 0.24 0.26 0.3 0.32 0.28 0.34 х

nDVCS Hall A SBS vs ALERT CLAS12: Lower kinematic coverage but higher statistics 19 Jefferson Lab

Summary

* nDVCS with spectator proton tagging constitutes a great addition to the existing and future nDVCS experiments:

- unambiguous nDVCS detection;

* Proposed experiment would run jointly with TDIS on deuterium for 5 days, and take additional beam time for NPS calibration (1 day) and nDVCS at other beam energies (5 days per beam energy):

- estimated ~700 k tagged $en \rightarrow en\gamma$ counts total at 11 GeV;
- 8.8, 6.6 GeV to be prepared;

* **Complementarity** with ALERT and other neutron DVCS experiments such as *n*DVCS with recoil neutron detection:

- Hall B experiments have better kinematic coverage;
- nDVCS has sigificantly better statistics namely at higher Q² and will record several beam energies
- * Overall positive feedback from PAC!
- PAC values the scientific case and recommends preparation of a full proposal;
 - very constructive discussions with PAC referee (Kresimir);
 - working to transform it into a full proposal next year!

Thank you for your attention !

Expected results: Projections

Beam time, luminosity:

We wish to run at the same time as Tagged DIS experiment in Hall A => 5 days beam on deuterium target at 25μ A on 4atm D₂ gas= **1.5** 10³⁶ cm⁻² s⁻¹ n⁻¹.

TDIS existing beam time request								
Target	Current	Beam Energy	Beam Time	Notes				
	(μA)	(GeV)	(hrs)					
Hydrogen	50	11	264	includes 1 day for commissioning				
Deuterium	25	11	144	includes 1 day for commissioning				
Hydrogen	5	11	120					
Deuterium	5	4.4	16	mTPC calibration with HCAL				
			8	Beam Energy Changes				
Total (TDIS)			552	23 days				
Preliminary additional beam time request for n-DVCS								
			24	SBS move				
Hydrogen	6	4.4	24	DVCS calorimeter calibration				
			12	Møller measurements				
Total $(n$ -DVCS only)			60	$2.5 \mathrm{~days}$				
Total (TDIS $+ n$ DVCS)			612	25.5 days				

NB: additional time requested for:

- DVCS calorimeter calibration (implies SBS movement...)
- Beam Polarimetry (2-3 Møller runs, 4 hours each)

Kinematic coverage

t, o coverage (no XS weight) after selection on SBS and calorimeter, spectator proton association, exclusivity cut for each $x_{_{Ri}}$, Q² bin

Real Photon selection: * reconstructed cluster position in inner calorimeter blocks * E_> 1 GeV Virtual photon selection: Dynamic as a function of thadronic plane

e-

leptonic plane

Expected results: Experimental effects: SBS resolution

Electron reconstruction:

Smearing "by-hand" with SBS claimed resolutions:

- does not include reconstruction/optics model ;

- includes electron energy loss between vertex and GEMs

(uses the GEM hit mometum info for the scattered electron)

"by-hand smearing" might be a tad too clean, but an independent study showed that it was not completely unreasonable.

Expected results: Fermi momentum correction for BoNuS

August 8th 2024 WILLIAM & MARY 25 Jefferson Lab

nDVCS experimental setup: mTPC projected performance

mTPC efficiency: (Courtesy from Marco Carmignotto, JLab)

Semi-empirical efficiency:

proportion of protons reaching active gas volume and reconstructed within 10 % of generated momentum

26

Jefferson Lab

Expected results:

Experimental effects: Fermi Momentum/ radiative corrections

Missing mass squared, radiative effects (Mo/Tsai) + Fermi momentum only

n(e, e' γ (p_spec))n

Radiative tail past neutron peak not negligible wrt Fermi Momentum smearing

