Polarized Deuteron GPD via coherent DVCS and BH

Wim Cosyn

Kazuki Makino

Work In progress

We have very simple Desire

We want to know

Distribution of quarks & gluons inside a **polarized spin-1 hadron**

-> Structure of the cross section for **DVCS + BH** for a **polarized deuteron** to allow extraction of **GPDs** and do theory prediction of cross section

Outline.

We want to catalog independent structures in cross section.
 -polarization/geometry

- spin-1 has tensor polarization

Spín 1/2 ->Spín 1 = more FFs & more GPDs & more SF = much more ínvolved

2. Provide Expressions for SF using

Spin1 EM FF (BH)

Spin 1 CFF/ GPD (DVCS)

Outline

 Cataloging independent structures in cross section -polarization/geometry

- spin-1 has tensor polarization

2. Provide Expressions for SF using

Expressions exist but, Kirchner, Mueller, EPJC32 (2003)

- Not intuitive for spin 1
- & the BH expressions does not fully reflect geometry

Spin 1 CFF/ GPD

Spin1 EM FF

General approach -to calculate DVCS structures

We can construct full basis from three vectors, p, p',q

Now, Construct DVCS hadron basis explicitly! EXPLICIT CONTENT

In particular, we construct collinear basis where incoming hadron and exchanged photon are collinear

Polarization is described by Spin 1 density matrix

We consider deuteron polarization as ensemble and use spin-1 density matrix

The cross-section is weighted by polarization
$$d\sigma = \sum_{\lambda,\lambda'} \rho(\lambda,\lambda') d\sigma(\lambda',\lambda)$$

Spini
density
matrix $\rho(\lambda,\lambda') = \begin{bmatrix} \frac{1}{3} + \frac{1}{2}S_L + \frac{1}{2}T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi_S)} & \frac{1}{2}T_{TT} e^{-i(2\phi_h - 2\phi_{T_T})} \\ & + \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h - \phi_{T_L})} \\ \frac{1}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_S)} & \frac{1}{3} - T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi_S)} \\ & + \frac{1}{\sqrt{2}}T_{LT} e^{i(\phi_h - \phi_{T_L})} & - \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h - \phi_{T_L})} \\ \frac{1}{2}T_{TT} e^{i(2\phi_h - 2\phi_{T_T})} & \frac{1}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_S)} & \frac{1}{3} - \frac{1}{2}S_L + \frac{1}{2}T_{LL} \end{bmatrix}$. Unpolarized,
Vector & Tensor pol

-> Polarization sums in terms of Covariant density matrix

Weighted polarization sums

Initial deuteron is polarized final deuteron is unpolarized

We define Covariant density matrix $\rho^{\alpha\beta} \equiv \sum_{\lambda,\lambda'} \rho(\lambda,\lambda') \epsilon^{\alpha}(\lambda) \epsilon^{\beta*}(\lambda')$

Polarizations can be decomposed covariantly

$$egin{aligned} &
ho^{lphaeta} = rac{1}{3}igg(-g^{lphaeta}+rac{p^lpha p^eta}{M^2}igg) + rac{i}{2M}\epsilon^{lphaeta\gamma\delta}p_\gamma S_\delta - T^{lphaeta} \ &\equiv
ho^{lphaeta}[ext{ unpol }] +
ho^{lphaeta}[ext{ vector }] +
ho^{lphaeta}[ext{ tensor }]. \end{aligned}$$

Hadronic tensor is shown here weighted by density matrix

$$\langle W^{\mu
u}
angle\equiv\sum_{lpha,eta}
ho^{lphaeta}W^{\mu
u}_{lphaeta}$$

Polarization and geometry

The polarizations and geometry determines the number of structure functions in DVCS

$$V^{\mu\nu} = \begin{pmatrix} Angular \\ modulation \end{pmatrix} \{S_L, S_T, T_{LL} \dots\} \times \mathcal{A}_h^{\mu\nu} \end{pmatrix} \stackrel{\frac{1}{2}T_{TT}e^{-i(2\phi_h - 2\phi_{T_T})}}{\frac{1}{2}T_{TT}e^{-i(2\phi_h - 2\phi_{T_T})}} \\ + \frac{1}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_{T_L})} \\ + \frac{1}{\sqrt{2}}T_{LT}e^{i(\phi_h - \phi_{T_L})} \\ + \frac{1}{\sqrt{2}}T_{LT}e^{i(\phi_h - \phi_{T_L})} \\ + \frac{1}{\sqrt{2}}T_{TT}e^{i(2\phi_h - 2\phi_{T_T})} \\ + \frac{1}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_{S})} \\ + \frac{1}{2}T_{TT}e^{i(2\phi_h - 2\phi_{T_T})} \\ + \frac{1}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_{S})} \\ + \frac{1}{2}S_L + \frac{1}{2}T_{LL} \\ + \frac{1}{2}S_T e^{i(\phi_h - \phi_{S})} \\ + \frac{1}{2}T_{TT}e^{i(2\phi_h - 2\phi_{T_T})} \\ + \frac{1}{2}T_{TT}e^{i(2\phi_h -$$

Geometry of Lepton/Hadron plane -Two plane rotated by an angle Contraction of Leptonic tensor (basis)/hadron basis is parametrized by Rosenbluth variable - Hadron Basís $\epsilon \equiv \frac{e_{qL}^{\mu} e_{qL}^{\nu} L_{\mu\nu} [\text{ unpol }]}{g_{\perp_{\text{DVCS}}}^{\mu\nu} L_{\mu\nu} [\text{ unpol }]}$ $L^{\mu u}\mathcal{A}^{\mu u}_{\iota}$ Leptoníc tensor Hadron plane Lepton plane $1 - y - \gamma^2 y^2 / 4$ x' $1 - y + y^2/2 + \gamma^2 y^2/4$ **y** y' "Inelasticity" y

DVCS

Cross section expression for DVCS/SIDIS

Cross section expression for DVCS/SIDIS

Bacchetta et al. JHEP02 (2007) Diehl, Sapeta, EPJC41 (2005) Liuti, Kriesten et al. PRD101

SPIN-1 GPD parametrizations

GPDs

Berger, et al, PRL 2001

Spin 1 matrix elements are parametrized by spin1 GPDs as follows

$$\begin{array}{l} \text{Vector} \\ \text{GPDs} \end{array} \qquad \begin{array}{l} V_{\lambda'\lambda} = -\left(\epsilon'^* \cdot \epsilon\right) H_1 + \frac{\left(\epsilon \cdot n\right) \left(\epsilon'^* \cdot P\right) + \left(\epsilon'^* \cdot n\right) \left(\epsilon \cdot P\right)}{P.n} H_2 - \frac{\left(\epsilon \cdot P\right) \left(\epsilon'^* \cdot P\right)}{2M^2} H_3 \\ + \frac{\left(\epsilon \cdot n\right) \left(\epsilon'^* \cdot P\right) - \left(\epsilon'^* \cdot n\right) \left(\epsilon \cdot P\right)}{P.n} H_4 + \left\{ 4M^2 \frac{\left(\epsilon \cdot n\right) \left(\epsilon'^* \cdot n\right)}{\left(P.n\right)^2} + \frac{1}{3} \left(\epsilon'^* \cdot \epsilon\right) \right\} H_5, \end{array}$$

$$\begin{array}{l} \text{Axial} \quad A_{\lambda'\lambda} = -i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \epsilon'^{*\alpha} \epsilon^{\beta} P^{\gamma}}{P.n} \tilde{H}_{1} + i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \Delta^{\alpha} P^{\beta}}{P.n} \frac{\epsilon^{\gamma} \left(\epsilon'^{*}.P\right) + \epsilon'^{*\gamma} (\epsilon.P)}{M^{2}} \tilde{H}_{2} \\ \text{GPDs} \quad + i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \Delta^{\alpha} P^{\beta}}{P.n} \frac{\epsilon^{\gamma} \left(\epsilon'^{*}.P\right) - \epsilon'^{*\gamma} (\epsilon.P)}{M^{2}} \tilde{H}_{3} + i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \Delta^{\alpha} P^{\beta}}{P.n} \frac{\epsilon^{\gamma} \left(\epsilon'^{*}.n\right) + \epsilon'^{*\gamma} (\epsilon.n)}{P.n} \tilde{H}_{4} \end{array}$$

GPD Structure in DVCS

Axial Vector

Expression of DVCS Hadronic tensor are in terms of the matrix elements (parametrized by CFFs) & geometric structures

 $T^{\nu\rho} = V_{\rm CFF}^* V_{\rm CFF} g^{\nu\rho}_{\perp} - iA_{\rm CFF}^* V_{\rm CFF} \epsilon^{\nu\rho+-} + iV_{\rm CFF}^* A_{\rm CFF} \epsilon^{\rho\nu+-} + A_{\rm CFF}^* A_{\rm CFF} \epsilon^{\alpha\nu+-} \epsilon^{\alpha\rho+-}$

GPD Structure in DVCS

Matrix elements (parametrized by CFFs) and geometric structures are completely separated in DVCS hadronic tensor

Polarizations appears in the spin -1 polarization sum of CFF parametrization

GPD Structure in DVCS

GPD Structures

BH and DVCS geometries are analogous ->Express DVCS and BH in analogous kinematic invariants

Analogous kinematics variables *relation between* $\psi \leftrightarrow \phi$ ~ illustrated in terms of invariants $t, y, x, Q^2, \phi \leftrightarrow Q^2, y_h, x_e, t, \psi$ We define analogous BH kinematics variables $\frac{p \cdot q}{p \cdot k}$ Spin Hadron plane Lepton plane $W^{2} = M^{2} + Q^{2} \left(\frac{1}{x} - 1\right)$ $\chi \frac{Q^{2}}{2(pq)}$ p and g are collinear (DVCS) $\mathbf{Y}_{h} \quad \frac{k \cdot \Delta}{k \cdot p'}$ $W_e^2 = m_e^2 - t\left(rac{1}{x_e} - 1 ight)$ k and \triangle are collinear (BH)

Basis Construction - BH -analogous to DVCS

Analogous construction as DVCS, but different basis and polarization parametrization

BH Leptonic tensor decomposed in BH lepton basis

Geometry of Lepton/Hadron plane

Contraction of Lepton/hadron basis is parametrized by BH Rosenbluth variable

BH Structure functions, eg

Azímuthal dependence ís separated out from structure functíons.

BH Structure functions and geometric factors	
$d\sigma \sim \sum_{ij} f(arepsilon) G_i F_j$ sym & sym, unpolarized	Reflecting on BH geometry leads to intuitive structure functions $F_{UL} = \frac{8}{2}M^2(\tau+1)\left(9G_C^2 + 8\tau^2G_Q^2\right)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$F_{UT} = \frac{16}{3}M^{2}\tau(\tau+1)G_{M}^{2}$ $F_{S_{L}} = 4M^{2}\tau(\tau+1)G_{M}^{2}$ $F_{G_{L}} = -\frac{8}{3}M^{2}\sqrt{\tau}(\tau+1)G_{M}(3G_{M}+\tau G_{M})$
anti-sym & anti-sym, vector polarized	$F_{T_{LL,L}} = -\frac{32}{3}M^2\tau(\tau+1)G_M(3G_C+\tau G_Q)$ $F_{T_{LL,L}} = -\frac{32}{3}M^2\tau(\tau+1)G_Q(3G_C+\tau G_Q)$ $F_{T_{LL,L}} = -4M^2\tau(\tau+1)G^2$
$Q^{[\mu u]}_{\Delta LT^{\prime\prime\prime\prime}} \qquad \qquad Q^{[\mu u]}_{\Delta TT^{\prime\prime\prime}}$	$T_{LL,T} = 4M / (7 + 1)G_M$
$P^{[\mu}_{\Delta T} S^{ u]}_L \qquad \qquad \sqrt{rac{2\epsilon_{ m BH}}{1-\epsilon_{ m BH}}} \cos(\psi) \qquad \qquad -\sqrt{rac{1+\epsilon_{ m BH}}{1-\epsilon_{ m BH}}}$	$F_{T_{LT}} = -10M^{-}\tau^{-}(\tau+1)G_{M}G_{Q}$
$P_{\Delta T}^{[\mu} S_T^{\nu]} - \sqrt{\frac{1+\epsilon_{\rm BH}}{1-\epsilon_{\rm BH}}} S_T \cos\psi \cos\omega_S - S_T \sin\psi \sin\omega_S \sqrt{\frac{2\epsilon_{\rm BH}}{1-\epsilon_{\rm BH}}} S_T \cos\left[\omega_{\rm S}\right]$	$r_{T_{TT}} = -4M \ \tau(\tau+1)G_M$

Lastly, number of structures is... 28

$d\sigma \sim \sum_{ij} f(\varepsilon) G_i F_j$ sym & sym basis 4×2 = 8	sym & sym (tensor basis) $4 \times 4 = 16$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$F_{UL} = \frac{8}{9}M^{2}(\tau+1)\left(9G_{C}^{2}+8\tau^{2}G_{Q}^{2}\right)$ $F_{UT} = \frac{16}{3}M^{2}\tau(\tau+1)G_{M}^{2}$ $F_{S_{L}} = 4M^{2}\tau(\tau+1)G_{M}^{2}$ $F_{S_{T}} = -\frac{8}{9}M^{2}\sqrt{\tau}(\tau+1)G_{M}\left(3G_{C}+\tau G_{Q}\right)$
Anti-sym & anti-sym basis $2 \times 2 = 4$ $Q_{\Delta LT'''}^{[\mu\nu]}$ $Q_{\Delta TT''}^{[\mu\nu]}$ $P_{\Delta T}^{[\mu}S_L^{\nu]}$ $\sqrt{\frac{2\epsilon_{BH}}{1-\epsilon_{BH}}\cos(\psi)}$ $-\sqrt{\frac{1+\epsilon_{BH}}{1-\epsilon_{BH}}S_T}\cos\psi\cos\omega_S - S_T\sin\psi\sin\omega_S$ $\sqrt{\frac{2\epsilon_{BH}}{1-\epsilon_{BH}}S_T\cos[\omega_S]}$	$F_{T_{LL,L}} = -\frac{32}{3}M^{2}\tau(\tau+1)G_{Q}\left(3G_{C}+\tau G_{Q}\right)$ $F_{T_{LL,T}} = -4M^{2}\tau(\tau+1)G_{M}^{2}$ $F_{T_{LT}} = -16M^{2}\tau^{3/2}(\tau+1)G_{M}G_{Q}$ $F_{T_{TT}} = -4M^{2}\tau(\tau+1)G_{M}^{2}$

We now have...

• Intuitive spin 1 structure function for DVCS and BH that reflects geometry, by suitable basis decomposition

Outlook BH+DVCS Interference term

Provide numerical estimates