Polarized Deuteron GPD via coherent DVCS and BH

Wim Cosyn Kazuki Makino / Work

We have very simple Desire

We want to know…

Distribution of quarks & gluons inside a **polarized spin-1 hadron**

-> Structure of the cross section for **DVCS + BH** for a **polarized deuteron** to allow extraction of **GPDs** and do theory prediction of cross section

Outline.

1. We want to catalog independent structures in cross section. -polarization/geometry

- spin-1 has tensor polarization

Spin 1/2 ->Spin 1 = more FFs & more GPDs & more SF = much more involved

2. Provide Expressions for SF using

Spin1 EM FF (BH)

Spin 1 CFF/ GPD

(DVCS)

Outline

Spin1 EM FF

Spin 1 CFF/ GPD

1. Cataloging independent structures in cross section -polarization/geometry

- spin-1 has tensor polarization

2. Provide Expressions for SF using

Expressions exist but, Kirchner, Mueller, EPJC32 (2003)

- Not intuitive for spin 1
- & the BH expressions does not fully reflect geometry

General approach -to calculate DVCS structures

We can construct full basis from three vectors, p, p',q

Now, Construct DVCS hadron basis *explicitly!* EPHEIT CONTENT

In particular, we construct collinear basis where incoming hadron and exchanged photon are collinear

Polarization is described by Spin 1 density matrix

We consider deuteron polarization as ensemble and use spin-1 density matrix

The cross-section is weighted by polarization
$$
d\sigma = \sum_{\lambda, \lambda'} \rho(\lambda, \lambda') d\sigma(\lambda', \lambda)
$$
\n
$$
Spin_{density}
$$
\n
$$
Spin_{matrix}
$$
\n
$$
\rho(\lambda, \lambda') = \begin{bmatrix}\n\frac{1}{3} + \frac{1}{2}S_L + \frac{1}{2}T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi S)} & \frac{1}{2}T_{TT} e^{-i(2\phi_h - 2\phi_{T_T})} \\
+ \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h - \phi_{T_L})} & + \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h - \phi_{T_L})} \\
+ \frac{1}{\sqrt{2}}T_{LT} e^{i(\phi_h - \phi_{T_L})} & \frac{1}{3} - T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi_{T_L})} \\
+ \frac{1}{\sqrt{2}}T_{LT} e^{i(\phi_h - \phi_{T_L})} & - \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h - \phi_{T_L})} & \frac{1}{3} - \frac{1}{2}S_L + \frac{1}{2}T_{LL}\n\end{bmatrix}
$$
\n
$$
In polarized,
$$
\n
$$
Spin_{matrix}
$$

-> Polarization sums in terms of Covariant density matrix

Weighted polarization sums

Initial deuteron is polarized final deuteron is unpolarized

We define Covariant density matrix $\left[\rho^{\alpha\beta}\equiv\sum\limits \rho\left(\lambda,\lambda'\right)\epsilon^{\alpha}(\lambda)\epsilon^{\beta*}\left(\lambda'\right)\right]$ λ . λ'

Polarizations can be decomposed covariantly

$$
\rho^{\alpha\beta} = \frac{1}{3}\biggl(-g^{\alpha\beta} + \frac{p^\alpha p^\beta}{M^2}\biggr) + \frac{i}{2M}\epsilon^{\alpha\beta\gamma\delta}p_\gamma S_\delta - T^{\alpha\beta} \nonumber \\ \equiv \rho^{\alpha\beta}[\text{ unpol }] + \rho^{\alpha\beta}[\text{ vector }] + \rho^{\alpha\beta}[\text{ tensor }].
$$

Hadronic tensor is shown here weighted by density matrix

$$
\langle W^{\mu\nu} \rangle \equiv \sum_{\alpha,\beta} \rho^{\alpha\beta} W^{\mu\nu}_{\alpha\beta}
$$

Polarization and geometry

The polarizations and geometry determines the number of structure functions in DVCS

Spin

\n
$$
\text{Spin}\left(\text{Ans:}\right) = \begin{bmatrix}\n\frac{1}{3} + \frac{1}{2}S_L + \frac{1}{2}T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi_S)} & \frac{1}{2}T_{TT} e^{-i(2\phi_h - 2\phi_{T_T})} \\
+ \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h - \phi_{T_L})} & \frac{1}{3} - T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h - \phi_S)} \\
+ \frac{1}{\sqrt{2}}T_{LT} e^{i(\phi_h - \phi_{T_L})} & - \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h - \phi_{T_L})} \\
\frac{1}{2}T_{TT} e^{i(2\phi_h - 2\phi_{T_T})} & \frac{1}{2\sqrt{2}}S_T e^{i(\phi_h - \phi_S)} & \frac{1}{3} - \frac{1}{2}S_L + \frac{1}{2}T_{LL}\n\end{bmatrix}
$$
\nHadron Basis

\n
$$
W^{\mu\nu} = (\text{modulation}) \{S_L, S_T, T_{LL} \dots\} \times A_h^{\mu\nu}
$$
\nFunctions

Geometry of Lepton/Hadron plane -Two plane rotated by an angle *Contraction of Leptonic tensor (basis)/hadron basis is parametrized by Rosenbluth variable Hadron Basis* $\Phi_{\epsilon} \equiv \frac{e^{\mu}_{qL}e^{\nu}_{qL}L_{\mu\nu}[\text{ unpol}] }{g^{\mu\nu}_{\perp\text{DVCS}}\ L_{\mu\nu}\;[\text{unpol}]}.$ $L^{\mu\nu}{\cal A}_h^{\mu\nu}$ *Leptonic tensor* **Hadron plane** Lepton plane $1 - y - \gamma^2 y^2/4$ x' $1 - y + y^2/2 + \gamma^2 y^2/4$ y' *"Inelasticity" y*

DVCS

Cross section expression for DVCS/SIDIS

Cross section expression for DVCS/SIDIS

Bacchetta et al. JHEP02 (2007) Diehl, Sapeta, EPJC41 (2005) Liuti, Kriesten et al. PRD101

SPIN-1 GPD parametrizations

GPDs

Berger, et al, PRL 2001

Spin 1 matrix elements are parametrized by spin1 GPDs as follows

$$
V_{\lambda'\lambda} = -(\epsilon'^{*} \cdot \epsilon) H_1 + \frac{(\epsilon \cdot n) (\epsilon'^{*} \cdot P) + (\epsilon'^{*} \cdot n) (\epsilon \cdot P)}{P.n} H_2 - \frac{(\epsilon \cdot P) (\epsilon'^{*} \cdot P)}{2M^2} H_3
$$

GPDs

$$
+ \frac{(\epsilon \cdot n) (\epsilon'^{*} \cdot P) - (\epsilon'^{*} \cdot n) (\epsilon \cdot P)}{P.n} H_4 + \left\{ 4M^2 \frac{(\epsilon \cdot n) (\epsilon'^{*} \cdot n)}{(P.n)^2} + \frac{1}{3} (\epsilon'^{*} \cdot \epsilon) \right\} H_5,
$$

Axial

\n
$$
A_{\lambda'\lambda} = -i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \epsilon'^{* \alpha} \epsilon^{\beta} P^{\gamma}}{P.n} \tilde{H}_1 + i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \Delta^{\alpha} P^{\beta}}{P.n} \frac{\epsilon^{\gamma} (\epsilon'^{*}.P) + \epsilon'^{* \gamma} (\epsilon.P)}{M^2} \tilde{H}_2
$$
\nGPDs

\n
$$
+ i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \Delta^{\alpha} P^{\beta}}{P.n} \frac{\epsilon^{\gamma} (\epsilon'^{*}.P) - \epsilon'^{* \gamma} (\epsilon.P)}{M^2} \tilde{H}_3 + i \frac{\epsilon_{\mu\alpha\beta\gamma} n^{\mu} \Delta^{\alpha} P^{\beta}}{P.n} \frac{\epsilon^{\gamma} (\epsilon'^{*}.n) + \epsilon'^{* \gamma} (\epsilon.n)}{P.n} \tilde{H}_4
$$

GPD Structure in DVCS

Expression of DVCS Hadronic tensor are in terms of the matrix elements (parametrized by CFFs) & geometric structures

 $T^{\nu\rho} =$
 $V_{\rm CFF}^* V_{\rm CFF} g^{\nu\rho}_\perp - i A_{\rm CFF}^* V_{\rm CFF} \epsilon^{\nu\rho+-} + i V_{\rm CFF}^* A_{\rm CFF} \epsilon^{\rho\nu+-} + A_{\rm CFF}^* A_{\rm CFF} \epsilon^{\alpha\nu+-} \epsilon^{\alpha\rho+-}$

GPD Structure in DVCS

Matrix elements (parametrized by CFFs) and geometric structures are completely separated in DVCS hadronic tensor

Polarizations appears in the spin -1 polarization sum of CFF parametrization

GPD Structure in DVCS

GPD Structures

Basis Construction – BH -analogous to DVCS

Analogous construction as DVCS, but different basis and polarization parametrization

BH Leptonic tensor decomposed in BH lepton basis

Geometry of Lepton/Hadron plane

Contraction of Lepton/hadron basis is parametrized by BH Rosenbluth variable

can be decomposed in the lepton basis

BH Structure functions, eg

Azimuthal dependence is separated out from structure functions.

Lastly, number of structures is… 28

We now have…

• Intuitive spin 1 structure function for DVCS and BH that reflects geometry, by suitable basis decomposition

Outlook BH+DVCS Interference term

Provide numerical estimates