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Outline

. Strangeness and charm in the sea: effect on BSM searches

ll. Baryon spectroscopy re-examined:
how does QCD work for hadrons?

ll. QCD from atomic nuclei to neutron stars:
how does QCD work for nuclei?
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Charm and Strangeness in the Nucleon
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Knowledge of these features is totally unsatisfactory

« s + sbhar very uncertain:
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Fig. 4 Comparison of the light and strange sea quark PDFs in the
JAM19 Monte Carlo global QCD analysis (red lines), with fits exclud-
ing SIDIS and STIA data (yellow lines) at the input scale, Q = m,. =
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Strangeness extraction: Note difference in scale!
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Wang et al., is based on chiral calculation: N to K A etc.

The same approach that originally predicted dbar > ubar
(AWT Phys Lett B126 (1983) 97) and also first predicted
s not equal to sbar (Signal and Thomas Phys Lett B191 (1987) 205)
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Recent NNPDF Extraction of charm
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Crucial for tests of BSM Physics in PV DIS
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Test of BSM Physics in PV DIS
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PV DIS e* - e~ asymmetry on D: Tests AA uniquely
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Uncertainties in ¢ and s imply many TeV
reduction in exclusion limits

+ Reduction from 10.7 GeV to 6.2 TeV for (295 — 95,
with uncertainties shown

« But the C-odd strange and charm PDFs are
essentially undetermined experimentally

* Errors could be much bigger

« Could mimic effects on new physics, such as a
dark photon
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JAM Collaboration Analysis of World DIS Data
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Global QCD analysis and dark photons

N. T. Hunt-Smith,” W. Melnitchouk,®® N. Sato,” A. W. Thomas,* X. G. Wang®
and M. J. White® on behalf of the Jefferson Lab Angular Momentum (JAM)

collaboration
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Allow for Existence of a Dark Photon: SURPRISE
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Figure 3: Results of an hypothesis test for the likelihood that the SM is the correct
theory to describe this data, c::)mpared with the case where a dark photon is included. The
hypothesis that the SM is the correct theory is excluded at 6.50 for the best dark photon
fit at the red point.
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Testing new ideas in Baryon Spectroscopy
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Recent suggestions from CSSM that old mysteries in the

quark model have been clarified by lattice QCD and HEFT

N(1/2+) 2ho y
]
~2.0 GeV
A(1/2-) A*(1670)
lho
N(1/2-) N*(1535)
~1.5 GeV N*(1440) 7N-A-GN
A#(1405) KN-7X
Mainl
A(1/2+) A(1115) Y
Oho Dynamical
N(1/2+) me— N(940) e generated
~1GeV Quark Model Experiment Lattice states
Not in the
Quark Model
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Example: A(1405)
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First calculation after QCD incorporating chiral symmetry

PHYSICAL REVIEW D VOLUME 31, NUMBER 5 1 MARCH 1985

S-wave meson-nucleon scattering in an SU(3) cloudy bag model

E. A. Veit* and B. K. Jennings
TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 243

A. W, Thomas
Physics Department, University of Adelaide, Adelaide, South Australia 5001

R. C. Barrett
Physics Department, University of Surrey, Guildford GU2 5XH, United Kingdom
(Received 8 June 1984)

The cloudy bag model (CBM) is extended to incorporate chiral SU(3) X SU(3) symmetry, in order
to describe S-wave KN and KN scattering. In spite of the large mass of the kaon, the model yields
reasonable results once the physical masses of the mesons are used. We use that version of the CBM
in which the mesons couple to the quarks with an axial-vector coupling throughout the bag volume.
This version also has a meson-quark contact interaction with the same spin-flavor structure as the
exchange of the octet of vector mesons. The present model strongly supports the contention that the

A*(1405) is a KN bound state.
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Hamiltonian fit to existing data

Zhan-wei Liu etc. Phys
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Low lying negative parity state : A(1405)

Clear evidence that it is a Kbar-N bound state

— matrix Hamiltonian model

— - non-—int. m¥ energy
non—int. KN energy

- - non-—int. K= energy

x  A(1405) Lattice results
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Lattice Magnetic Form Factor Calculations

Calculation of the individual quark contributions to the
magnetic form factor confirms that it is a Kbar-N bound state
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Only an L=0 Kbar-N state gives vanishing strange moment
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Similar (more controversial) conclusion for Roper
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Comparison of HEFT Results with Lattice Energy Levels

 Blue indicates high “bare state”
(i.e. 3-quark) content. This matches
the lowest state found with a
3-quark interpolating field

« Lattice calculations of Lang et al.,
Phys. Rev. D 95, 014510 (2017),
using baryon-meson interpolating
fields, especially No

* Matched by Hamiltonian levels but
with little or no 3-quark content
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The first scenario with a bare state for P11
around the pole at 2.0 GeV can fit both
Lattice data and experimental data well, it
indicates that N*(1440) seems a molecule
state, and first radial excitation of nucleon
should be around 2.0 GeV.




How can we test this experimentally?

 New suggestion: 2303.00119

Deeply-virtual Compton process e~ N — ¢ 7N to study nucleon to resonance transitions

Kirill M. Semenov-Tian-Shansky' and Marc Vanderhaeghen?

May provide a way to test the molecular idea......
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A new paradigm for nuclear physics

— anathema to traditional nuclear physicists!
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Quark structure of nucleon changes in-medium

Nuclear matter has strong Lorentz scalar mean-field
« Comparable with the mass of the nucleon

* This naturally modifies the quark structure of the
bound nucleon (Guichon et al., PPNP 100 (2018) 262)

 Know since 1980s that this naturally explains the EMC
effect (Thomas et al., Phys Lett B 233 (1989) 43) and recently using
covariant NJL model (cioét et al., Phys Lett B642 (2006) 210)

 Has been used to generate a remarkably successful
EDF with just 5 parameters (martinez et al., PR C102 (2020) 065801)
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Proton number, Z

Proton number, Z
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Binding Energies — All Known Even-Even Nuclei

Neutron number, N

140

Model rms residual (MeV) rms % deviation
OMC -1 1.59 0.29
OMCr-I1 2.34 0.39
QMCr-1 2.78 0.50

QOMC-I 3.84 0.69

SV-min 3.64 0.38
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Charge Radii
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Ways to test this new paradigm:

Coulomb sum rule

Spin dependent EMC effect

Parity violating DIS on nuclei

But what about GPDs? e.g. 4He
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Incoherent DVCS on 4He

Physics Letters B 673 (2009) 9-14

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Medium modifications of the bound nucleon GPDs and incoherent DVCS
on nuclear targets

V. Guzey **, AW. Thomas®P, K. Tsushima®
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New opportunity to probe medium modifications

A.V. Belitsky et al. / Nuclear Physics B 629 (2002) 323392
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Finally: A different lattice method

arXiv: 2405.06256 ADP-24-08/T1247, DESY-24-065, Liverpool LTH 1370

Reconstructing generalised parton distributions from the lattice off-forward
Compton amplitude

A. Hannaford-Gunn,! K. U. Can,’ J. A. Crawford,! R. Horsley,?
P. E. L. Rakow,®> G. Schierholz,* H. Stiiben,” R. D. Young,! and J. M. Zanotti!
(CSSM/QCDSF/UKQCD Collaborations)

LOSSM, Department of Physics, The University of Adelaide, Adelaide SA 5005, Australia
2School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 377, UK
3 Theoretical Physics Division, Department of Mathematical Sciences,
University of Liwverpool, Liverpool L69 3BX, UK
4Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

5 Regionales Rechenzentrum, Universitit Hamburg, 20146 Hamburg, Germany
(Dated:)

We present a determination of the structure functions of the off-forward Compton amplitude
H, and &; from the Feynman-Hellmann method in lattice QCD. At leading twist, these structure

8 F
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Summary

 Our knowledge of s and sbhar and c and cbar is very poor
— This hampers searches for BSM physics: must be fixed!

 DVCS to excited baryon states: possible insight into how
QCD works

« Studies of GPDs in nuclei may provide insight into
changes of structure of bound nucleons
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Remarkable given uncertainty in s* let alone s-

0.06+ == Fluctuation model
BEEE LFHQCD(massless)
= 0.04F B8 LFHQCD(massive)
[ NNPDF3.0
ool B MMHT2014

i =1GeV
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PV DIS cont. A,
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The A(1405)

We have unambiguous evidence that it is a Kbar-N bound state!
50 years after speculation by Dalitz et al.

To be fair Dalitz had no quark model then so there was not much else
it could be at that time.

Rather than the Luscher method we apply Hamiltonian Effective Field
Theory

— shown to be equivalent for phase shifts’

— BUT also provides information on eigenstates

Carry out a Hamiltonian analysis of lattice data

Examine the strange magnetic form factor of A(1405)
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DVCS on a bound nucleon

« (Calculate incoherent DVCS in terms of DVCS from a bound

nucleon:
(@) T |2
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(%) Y2
~J
%‘/u o
N cdee N
=/ o (a, ) Xy
all ‘|‘§A]/ N* N

a(l+E€a) — 264
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1+ &4

« Assume:

- FP
HI/P (x,g,r.qz):;p—gﬁq(x.g,r.az).
1
p*
EII.-'JP*(X= §,f= QZ) _ %EQ(‘X’.&,E: QE)
2 (
fa/p* (x.&.t, Qz) _ gizﬁq(x £t Qz):

with modification of bound nucleon form factors calculated
o 1IN the QMC model
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Nuclear DIS Structure Functions :
The EMC Effect

The QMC approach is ideal as one MUST start
with a theory that quantitatively describes
nuclear structure and allows calculation of
structure functions
— there are no other examples.....
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The EMC Effect: Nuclear PDFs

* Observation stunned and electrified the
HEP and Nuclear communities 39 years ago

 What is it that alters the quark momentum in the nucleus?

: e SLAC E139 (Fe)
1.2 F * EMC (Cu) .

J. Ashman et al., Z.
Phys. C57, 211 (1993)
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% % 3T,
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% ‘s .%. s ® J. Gomez et al., Phys.
2 Rev. D49, 4348 (1994)
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EMC Effect for Finite Nuclei

(There is also a spin dependent EMC effect - as large as unpolarized)
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FIG. 7: The EMC and polarized EMC effect in "'B. The

empirical data is from Ref. [31].

FIG. 9: The EMC and polarized EMC effect in Al The
empirical data is from Ref. [31].
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Spin-EMC Effect is a crucial test

Tensor correlations leading to high momentum
components in nuclear wave function have been
proposed as an alternate explanation of the EMC
effect

The tensor force scatters 3S, pairs almost entirely into
3D, at high momentum (~84% at p > 400 MeV/c)

Nucleons in SRC are depolarized — simple Clebsch-
Gordan coefficients - and cannot contribute to spin-
EMC effect

That is, SRC idea gives essentially NO spin-EMC effect
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Approved JLab Experiment

@ Effectin “Liis slightly suppressed because it is a light nucleus and proton
does not carry all the spin  (simple WE: P, = 13/15 & F, =2/15)

@ LExperiment now approved at JLab [E12-14-001] to measure spin structure
functions of 'LLi (GFMC: P, =086 & P, =0.04)

@ Everyone with their favourite explanation for the EMC effect should make a
prediction for the polarized EMC effect in "Li
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