

Stephen JD Kay

• EIC is an upcoming (~2030) accelerator based at BNL

Figure - Brookhaven National Lab, https://www.flickr.com/photos/brookhavenlab/ and Google Maps

Stephen JD Kay

- EIC is an upcoming (~2030) accelerator based at BNL
- Utilises existing Relativistic Heavy Ion Collider (RHIC) infrastructure

06/08/24

1/24

Figure - Brookhaven National Lab, https://www.flickr.com/photos/brookhavenlab/

Stephen JD Kay

- EIC is an upcoming (~2030) accelerator based at BNL
- Utilises existing Relativistic Heavy Ion Collider (RHIC) infrastructure
- New *e*⁻ accelerator ring and one *e*⁻ storage ring

06/08/24

1/24

Figure - Brookhaven National Lab, https://www.flickr.com/photos/brookhavenlab/

Stephen JD Kay

- EIC is an upcoming (~2030) accelerator based at BNL
- Utilises existing Relativistic Heavy Ion Collider (RHIC) infrastructure
- New *e*⁻ accelerator ring and one *e*⁻ storage ring
 - $\mathcal{L} \sim 10^{33} 10^{34} \ cm^{-2} s^{-1}$
 - \circ 5 18 GeV polarised e^-
 - ${\scriptstyle \circ }$ 41 275 GeV polarised p
 - Also d, Pb, ³He, Au...

- EIC is an upcoming (~2030) accelerator based at BNL
- Utilises existing Relativistic Heavy Ion Collider (RHIC) infrastructure
- New *e*⁻ accelerator ring and one *e*⁻ storage ring
 - $\mathcal{L} \sim 10^{33} 10^{34} \ cm^{-2} s^{-1}$
 - 5 18 GeV polarised e^-
 - $41 275 \ GeV$ polarised p
 - Also d, Pb, ³He, Au...
- $\bullet \ \mathsf{Project} \ \mathsf{detector} \to \mathsf{ePIC}$
 - Electron-Proton/Ion Collider (ePIC)

Stephen JD Kay University

University of York

06/08/24

• Our "normal" picture of ePIC is something like this

06/08/24

2 /24

• But, this is just the central detector...

06/08/24

2 /24

• Far forward (FF) and far backward (FB) detectors too!

06/08/24

2 /24

• Will focus on the FB region

Stephen JD Kay University of York

06/08/24

Far Backward Region

 Relatively simple, but very important, set of detectors systems in this region

University of York

06/08/24

3 /24

Stephen JD Kay

Far Backward Region

- Relatively simple, but very important, set of detectors systems in this region
 - Luminosity monitors
 - Low Q^2 tagger

06/08/24

3 /24

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

University of York

Stephen JD Kay

Luminosity monitoring systems for ePIC

Far Backward - Luminosity Monitors

$\, \bullet \,$ Luminosity \rightarrow normalisation for all physics studies

Stephen JD Kay University of York

06/08/24

Far Backward - Luminosity Monitors

${\, \bullet \,}$ Luminosity ${\, \rightarrow \,}$ normalisation for all physics studies

- Absolute cross sections
- Combining run periods
- Asymmetry measurements
 - Relative luminosity of different bunch crossings

Luminosity Requirements and Systematics

- Yellow Report Requirements
 - ${\sim}1\%$ uncertainty for absolute luminosity

06/08/24

5/24

• Less than 10^{-4} for relative luminosity

Luminosity Requirements and Systematics

Yellow Report Requirements

Stephen JD Kay

- ${\sim}1\%$ uncertainty for absolute luminosity
- $\,\circ\,$ Less than 10^{-4} for relative luminosity

University of York

• Compare to Zeus lumi systematics

Component	Sub-Component systematics	ePIC Improvements
Acceptance (1.6%: Total)	1.0%: Aperture and detector alignment	So obstruction free aperture. Low lumi runs with coincidences of low-Q ² tagger and pair spec
	1.2%: X-position of photon beam	
Photon conversion in exit window (0.7%: Total)	0.1%: Thickness	
	0.3%: chemical composition	
	0.6%: photon conversion cross section	
RMS-cut correction (0.5%: Total)	Rejection of proton gas interactions	Greatly reduced for ePIC – trackers with good pointing resolution
Total	1.8%	

06/08/24

Luminosity Requirements and Systematics

- Yellow Report Requirements
 - ${\sim}1\%$ uncertainty for absolute luminosity
 - Less than 10^{-4} for relative luminosity
- Compare to Zeus lumi systematics

Component	Sub-Component systematics	ePIC Improvements
Acceptance (1.6%: Total)	1.0%: Aperture and detector alignment	50 obstruction free aperture. Low lumi runs with coincidences of low-Q ² tagger and pair spec
	1.2%: X-position of photon beam	
Photon conversion in exit window (0.7%: Total)	0.1%: Thickness	
	0.3%: chemical composition	
	0.6%: photon conversion cross section	
RMS-cut correction (0.5%: Total)	Rejection of proton gas interactions	Greatly reduced for ePIC – trackers with good pointing resolution
Total	1.8%	

 ${\scriptstyle \circ}$ With reductions, 1% absolute lumi precision within reach

Stephen JD Kay

University of York

06/08/24

• Use bremsstrahlung process to measure luminosity

$$e + p \rightarrow e + p + \gamma$$

 $e + A \rightarrow e + A + \gamma$

 Use bremsstrahlung process to measure luminosity

 $\begin{array}{l} e+p \rightarrow e+p+\gamma \\ e+A \rightarrow e+A+\gamma \end{array}$

06/08/24

6 /24

• σ known precisely from QED

 Use bremsstrahlung process to measure luminosity

$$\begin{array}{l} e+p \rightarrow e+p+\gamma \\ e+A \rightarrow e+A+\gamma \end{array}$$

• σ known precisely from QED • γ peaked in e^- beam direction

06/08/24

6/24

Figures - EIC Yellow Report - Section 11.7.1, p575

Stephen JD Kay

 Use bremsstrahlung process to measure luminosity

$$\begin{array}{l} e + p \rightarrow e + p + \gamma \\ e + A \rightarrow e + A + \gamma \end{array}$$

- σ known precisely from QED
 γ peaked in e⁻ beam direction
 - Beam divergence has a large effect - ~200µrad at IP6!

Figures - EIC Yellow Report - Section 11.7.1, p575

Stephen JD Kay

University of York

<u>06</u>/08/24

 Use bremsstrahlung process to measure luminosity

$$\begin{array}{l} e + p \rightarrow e + p + \gamma \\ e + A \rightarrow e + A + \gamma \end{array}$$

- σ known precisely from QED
- γ peaked in e^- beam direction
 - Beam divergence has a large effect $\sim 200 \mu$ rad at IP6!
- Two luminosity monitor systems
 - Direct Photon Detector (High rate calorimeter)
 - Pair Spectrometer

Stephen JD Kay

06/08/24

6 /24

 $\, \bullet \,$ In principle, direct bremmstrahlung γ measurement easy

06/08/24

7 /24

Simply count photons above some energy cutoff

- $\, \bullet \,$ In principle, direct bremmstrahlung γ measurement easy
- Simply count photons above some energy cutoff
 - Only possible at low luminosities

- $\, \bullet \,$ In principle, direct bremmstrahlung γ measurement easy
- Simply count photons above some energy cutoff
 Only possible at low luminosities
- At EIC luminosity, expect large number of photons
- At $\mathcal{L}\approx 10^{34} \rm cm^{-2} s^{-1},$ expect about 23 hard photons per bunch crossing

- $\, \bullet \,$ In principle, direct bremmstrahlung γ measurement easy
- Simply count photons above some energy cutoff
 Only possible at low luminosities
- At EIC luminosity, expect large number of photons
- At $\mathcal{L}\approx 10^{34} \rm cm^{-2} s^{-1},$ expect about 23 hard photons per bunch crossing
- Two separate Direct Photon Detectors proposed

- $\, \bullet \,$ In principle, direct bremmstrahlung γ measurement easy
- Simply count photons above some energy cutoff
 - Only possible at low luminosities
- At EIC luminosity, expect large number of photons
- At $\mathcal{L}\approx 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1},$ expect about 23 hard photons per bunch crossing
- Two separate Direct Photon Detectors proposed
 - $\,\circ\,$ One used only for special luminosity runs at low ${\cal L}$
 - $\circ~$ One capable of withstanding >1~ GHz rates, used for monitoring during nominal running at high ${\cal L}$

- $\, \bullet \,$ In principle, direct bremmstrahlung γ measurement easy
- Simply count photons above some energy cutoff
 - Only possible at low luminosities
- At EIC luminosity, expect large number of photons
- At $\mathcal{L}\approx 10^{34} \rm cm^{-2} s^{-1},$ expect about 23 hard photons per bunch crossing
- Two separate Direct Photon Detectors proposed
 - $\,$ o One used only for special luminosity runs at low ${\cal L}$
 - $\circ~$ One capable of withstanding $>1~{\rm GHz}$ rates, used for monitoring during nominal running at high ${\cal L}$
- Use a complementary Pair Spectrometer too

University of York

Stephen JD Kay

Figures - D. Gangadharan, University of Houston

Stephen JD Kay University of York

06/08/24

• Conversions in air before vacuum pipe, negligible effect

06/08/24

8 /24

Figures - D. Gangadharan, University of Houston

- Conversions in air before vacuum pipe, negligible effect
 - < 0.02% contribution to systematics

06/08/24

<u>8</u> /24

Figures - D. Gangadharan, University of Houston

• Conversion foil within vacuum pipe, between magnets

Figures - D. Gangadharan, University of Houston

Stephen JD Kay University of York

06/08/24

Direct Photon Detector

Figure - J. Nam, Temple University, ePIC Collaboration meeting January 2023

Stephen JD Kay University of York

06/08/24

Direct Photon Detector

Figure - J. Nam, Temple University, ePIC Collaboration meeting January 2023

Stephen JD Kay University of York

06/08/24

Direct Photon Detector

• Latest design, quartz fiber based calorimeter

University of York

06/08/24

9 /24

Stephen JD Kay
Direct Photon Detector

Stephen JD Kay

• Latest design, quartz fiber based calorimeter

University of York

- Studies show the need for very rad hard detector
- ~7 MGy from 100 fb^{-1}

06/08/24

Direct Photon Detector

- Latest design, quartz fiber based calorimeter
 - Studies show the need for very rad hard detector
 - \sim 7 MGy from 100 fb^{-1}
- For 18 GeV $e^-,$ may need ${\sim}35~{\rm cm}$ graphite absorbers to absorb synchrotron radiation
- Paper on radiation studies in preparation

Stephen JD Kay University of York

Direct Photon Detector - Details

• Latest design - spaghetti calorimeter (quartz fiber based)

Figures - Yasir Ali, AGH UST, Krakow (modified)

Stephen JD Kay

University of York

06/08/24

Direct Photon Detector - Details

- Latest design spaghetti calorimeter (quartz fiber based)
- Inclined to avoid events directly hitting (and propagating along) direction of fiber

5 degree

06/08/24

10/24

Stephen JD Kay University of York

Pair Spectrometer Overview

• Pair spectrometer outside of main synchrotron radiation fan

Stephen JD Kay University of York

06/08/24

Pair Spectrometer Overview

• Pair spectrometer outside of main synchrotron radiation fan • 5σ gap

Stephen JD Kay University

University of York

06/08/24

Pair Spectrometer Overview

- Pair spectrometer outside of main synchrotron radiation fan • 5σ gap
- Bremmstrahlung photons converted to e^+e^- pairs

University of York

Figure - D. Gangadharan, University of Houston

Stephen JD Kay

11 /24

06/08/24

12 /24

• Exit window and conversion foils

- Exit window and conversion foils
 - Well known composition and thickness

06/08/24

12 /24

Stephen JD Kay University of York

- Exit window and conversion foils
 - Well known composition and thickness
 - Foil needs to withstand heat load!

06/08/24

12 /24

Stephen JD Kay University of York

- Exit window and conversion foils
 - Well known composition and thickness
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets

- Exit window and conversion foils
 - Well known composition and thickness

University of York

- Foil needs to withstand heat load!
- Sweeper and analyser magnets

Stephen JD Kay

 $\circ~\textit{BdL}\approx 1~\mathrm{Tm},$ compact system, $\sim 15~\mathrm{cm}$ bore diameter

06/08/24

12 /24

• Allows placement far from central region

- Exit window and conversion foils
 - Well known composition and thickness
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets
 - $\circ~\textit{BdL}\approx 1~\mathrm{Tm},$ compact system, $\sim 15~\mathrm{cm}$ bore diameter
 - Allows placement far from central region
 - Small fringe fields
 - Good vacuum for minimal air conversions

- Exit window and conversion foils
 - Well known composition and thickness
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets
 - $\circ~\textit{BdL}\approx 1~\mathrm{Tm},$ compact system, $\sim 15~\mathrm{cm}$ bore diameter
 - Allows placement far from central region
 - Small fringe fields
 - Good vacuum for minimal air conversions
- Calorimeter

- Exit window and conversion foils
 - Well known composition and thickness
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets
 - $\circ~\textit{BdL} \approx 1~\mathrm{Tm}$, compact system, $\sim 15~\mathrm{cm}$ bore diameter

06/08/24

12 /24

- Allows placement far from central region
- Small fringe fields
- Good vacuum for minimal air conversions
- Calorimeter

Stephen JD Kay

- $17\%/\sqrt{E}$ energy resolution sufficient
 - Based upon ZEUS experience

University of York

• Achieve $\sim 8.8\%/\sqrt{E}$ with latest design

- Exit window and conversion foils
 - Well known composition and thickness
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets
 - $\circ~\textit{BdL} \approx 1~\mathrm{Tm}$, compact system, $\sim 15~\mathrm{cm}$ bore diameter
 - Allows placement far from central region
 - Small fringe fields
 - Good vacuum for minimal air conversions
- Calorimeter
 - $17\%/\sqrt{E}$ energy resolution sufficient
 - Based upon ZEUS experience
 - Achieve $\sim 8.8\%/\sqrt{E}$ with latest design

06/08/24

12 /24

- Segmented readout, disentangle pileup
- $\, \bullet \, \sim$ ns timing resolution, bunch-by bunch ${\cal L}$

Stephen JD Kay

University of York

Pair Spectrometer - Magnet Design and Positioning

 $\bullet\,$ Based upon recent feedback from magnet designers, 1 ${\rm Tm}\,$ fields and 15 ${\rm cm}\,$ bore diameter possible

Pair Spectrometer - Magnet Design and Positioning

- $\bullet\,$ Based upon recent feedback from magnet designers, 1 ${\rm Tm}\,$ fields and 15 ${\rm cm}\,$ bore diameter possible
- $\,$ $\,$ New baseline design with sweeper magnet $\sim 65~{\rm m}$ from IP

06/08/24

13/24

University of York

Figure - D. Gangadharan, University of Houston

Stephen JD Kay

 Updated design - tungsten scintillating fiber calorimeter (WSciFi)

14 /24

University of York

Stephen JD Kay

- Updated design tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy

14/24

06/08/24

University of York

Stephen JD Kay

- Updated design tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius

Stephen JD Kay

- Sampling fraction
- Energy resolution

14/24

University of York

- Updated design tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius

Stephen JD Kay

- Sampling fraction
- Energy resolution
- XY orientated fiber design

14/24

University of York

- Updated design tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius

Stephen JD Kay

- Sampling fraction
- Energy resolution
- XY orientated fiber design
 - 3D shower profile possible
 - Potential AI/ML applications

14/24

University of York

Preliminary design guided by work on sPHENIX calorimeters

06/08/24

15/24

Stephen JD Kay University of York

Preliminary design guided by work on sPHENIX calorimeters

06/08/24

- Recent R&D work by O.Tsai et al.
 - o doi:10.1088/1742-6596/404/1/012023

- Preliminary design guided by work on sPHENIX calorimeters
- Recent R&D work by O.Tsai et al.
 - o doi:10.1088/1742-6596/404/1/012023
- Materials for prototyping acquired at York

- Preliminary design guided by work on sPHENIX calorimeters
- Recent R&D work by O.Tsai et al.
 - o doi:10.1088/1742-6596/404/1/012023
- Materials for prototyping acquired at York
- Prototype beam tests planned for late 2024/early 2025

- Preliminary design guided by work on sPHENIX calorimeters
- Recent R&D work by O.Tsai et al.
 - o doi:10.1088/1742-6596/404/1/012023
- Materials for prototyping acquired at York

University of York

- Prototype beam tests planned for late 2024/early 2025
 - Construction underway

Stephen JD Kay

06/08/24

- Trackers enable easy calibration of calorimeters
- $\,$ $\,$ Trackers could be used to obtain $\sim 1\%$ energy resolution

- Trackers enable easy calibration of calorimeters
- $\,$ $\,$ Trackers could be used to obtain $\sim 1\%$ energy resolution
- Resolution strongly affected by end cap thickness and material

Stephen JD Kay

University of York

06/08/24

- Trackers enable easy calibration of calorimeters
- \circ Trackers could be used to obtain $\sim 1\%$ energy resolution
- Resolution strongly affected by end cap thickness and material
- Excellent tracking possible
 - Excellent energy resolution
 - Excellent pointing resolution

Stephen JD Kay

University of York

06/08/24

- Trackers enable easy calibration of calorimeters
- \circ Trackers could be used to obtain $\sim 1\%$ energy resolution
- Resolution strongly affected by end cap thickness and material
- Excellent tracking possible
 - Excellent energy resolution
 - Excellent pointing resolution
- Likely AC-LGAD pixel detector
 - Synergy with other systems using this technology

Stephen JD Kay University of York

06/08/24

ePIC Low Q^2 Tagger

Low Q^2 Tagger - Overview/Positioning

Stephen JD Kay

• Two tagger detectors along outgoing e^- beam pipe

Figure - J. Adam, CTU Prague, ePIC Collaboration meeting July 2023, S. Gardner, University of Glasgow, EIC UK Meeting 2024

06/08/24

17/24

University of York

Low Q^2 Tagger - Overview/Positioning

- Two tagger detectors along outgoing e^- beam pipe
- Roughly -24 m and -36 m from IP

06/08/24

<u>1</u>7 /24

University of York

Stephen JD Kay

Low Q^2 Tagger - Overview/Positioning

- Two tagger detectors along outgoing e⁻ beam pipe
- Roughly -24 m and -36 m from IP
- Integration with beamline/beampipe critical

University of York

06/08/24

17/24

Stephen JD Kay
• Quasi-real tagging (low Q^2), $\theta_e < 10 \text{ mrad}$ • $Q^2 \sim 10^{-2} \text{ GeV}^2$

- Quasi-real tagging (low Q^2), $\theta_e < 10 \text{ mrad}$
 - $\circ~Q^2 \sim 10^{-2}~{
 m GeV^2}$
- Detector goals
 - Large acceptance (> 10%)
 - $\,\circ\,$ Good energy resolution $\leqslant 1\%$
 - Reconstruction of scattering plane (polarisation)

- Quasi-real tagging (low Q^2), $\theta_e < 10 \text{ mrad}$
 - $\circ~Q^2 \sim 10^{-2}~{
 m GeV^2}$
- Detector goals

Stephen JD Kay

- Large acceptance (> 10%)
- $\,\circ\,$ Good energy resolution $\leqslant 1\%$
- Reconstruction of scattering plane (polarisation)
- Two tagger modules
- Timepix4+SPIDR4 detectors

06/08/24

18 /24

Figures - J. Adam, CTU Prague, ePIC Collaboration meeting July 2023, S. Gardner, University of Glasgow

- Quasi-real tagging (low Q^2), $\theta_e < 10 \text{ mrad}$
 - $\circ~Q^2 \sim 10^{-2}~{
 m GeV^2}$
- Detector goals

Stephen JD Kay

- Large acceptance (> 10%)
- $\,\circ\,$ Good energy resolution $\leqslant 1\%$
- Reconstruction of scattering plane (polarisation)
- Two tagger modules
- Timepix4+SPIDR4 detectors
- Investigating neural networks for kinematic reconstruction

University of York

06/08/24

Low Q^2 Tagger - Tracking Station Details

- $\,$ 4 tracking layers per station, \sim 30 cm apart
- Timepix4 + Si hybrids, 55x55 μm pixels, 448x512 pixels per sensor (6.94 cm²)

06/08/24

19 /24

Figure - S.Gardner, University of Glasgow, EIC UK Meeting 2024

University of York

Stephen JD Kay

Low Q^2 Tagger - Tracking Station Details

 $\,$ 4 tracking layers per station, \sim 30 cm apart

University of York

- Timepix4 + Si hybrids, 55x55 μm pixels, 448x512 pixels per sensor (6.94 cm²)
- 2 ns timing resolution

Stephen JD Kay

 $\,$ o Singles rate capability high, > 20 kHz per 55 μm pixel

06/08/24

 $\bullet\,$ Typical bunch crossings at 18GeV (e^) on 275 GeV (p/A)

06/08/24

20 /24

 ${\scriptstyle \circ }~{\scriptstyle \sim 12}$ electrons

- $\bullet\,$ Typical bunch crossings at 18GeV (e^) on 275 GeV (p/A)
 - $\circ~{\sim}12$ electrons
 - ${\scriptstyle \circ } \sim 7$ accepted by tagger 2
 - 95% reconstruction efficiency

- $\circ\,$ Typical bunch crossings at 18GeV (e^) on 275 GeV (p/A)
 - $\circ~{\sim}12$ electrons

Stephen JD Kay

- ${\scriptstyle \circ } \sim 7$ accepted by tagger 2
- 95% reconstruction efficiency

Tagger 2 Brem Hit Distribution [Hz/ 55µm pixel

06/08/24

20 /24

Figures - S.Gardner, University of Glasgow, ePIC Collaboration meeting January 2023

- $\circ\,$ Typical bunch crossings at 18GeV (e^) on 275 GeV (p/A)
 - $\circ~{\sim}12$ electrons
 - ${\scriptstyle \circ } ~{\sim}7$ accepted by tagger 2
 - 95% reconstruction efficiency

Tagger 2 Brem Hit Distribution [Hz/ 55µm pixel]

06/08/24

20 /24

- Quasi-real e⁻ amongst bremsstrahlung e⁻
- $\,$ Max rate per pixel ${\sim}20~kHz$

Stephen JD Kay

Low Q^2 Tagger - Acceptance

• Acceptance for each tagger station

Figures - S.Gardner, University of Glasgow

Stephen JD Kay

University of York

06/08/24

Low Q^2 Tagger - Acceptance

- Acceptance for each tagger station
- Overall acceptance, including double counting region
 - Double counting region only possible if taggers in same vacuum

06/08/24

21 /24

University of York

Stephen JD Kay

Low Q^2 Tagger - Acceptance

- Acceptance for each tagger station
- Overall acceptance, including double counting region
 - Double counting region only possible if taggers in same vacuum
 - Also requires <u>no calorimeter</u>
 - Gap in acceptance if double counting region not available

06/08/24

Far backward physics, quick examples

• Far backward detectors also enable some unique physics measurements

06/08/24

- Far backward detectors also enable some unique physics measurements
- Meson spectroscopy

 $\,\circ\,$ J/ ψ , XY etc

- Far backward detectors also enable some unique physics measurements
- Meson spectroscopy
 - J/ ψ , XY etc
- Example final state

• $J/\psi + \pi^+ + \pi^- + e'$ and nucleons

22 /24

Figures - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Stephen JD Kay

University of York

06/08/24

- Far backward detectors also enable some unique physics measurements
- Meson spectroscopy
 - J/ ψ , XY etc
- Example final state

Stephen JD Kay

• ${\sf J}/\psi$ + π^+ + π^- + e' and nucleons

 $\, \bullet \,$ Events at both low Q^2 and t

22 /24

University of York

06/08/24

- Far backward detectors also enable some unique physics measurements
- Meson spectroscopy
 - J/ ψ , XY etc
- Example final state
 - ${\sf J}/\psi+\pi^++\pi^-+{\sf e'}$ and nucleons
- $\, \bullet \,$ Events at both low Q^2 and t
- $\int \mathcal{L}$ at EIC very high

Stephen JD Kay

• Study rare exclusive processes, not accessible at HERA

22 /24

University of York

06/08/24

- Dilepton production channels
 - Utilises FF and FB detectors

- Dilepton production channels
 - Utilises FF and FB detectors
 - FB taggers detect e'
 - $\pi \theta_e < 1 \text{ mrad}$
 - Scattered proton in FF
 - $\theta_p < 6 \text{ mrad}$

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Stephen JD Kay University of York

06/08/24

- Dilepton production channels
 - Utilises FF and FB detectors

- FB taggers detect e'
 - $\pi \theta_e < 1 \text{ mrad}$
- Scattered proton in FF
 - $\theta_p < 6 \text{ mrad}$
- All lepton pairs, ${\rm e}^{\pm},\,\mu^{\pm},\,\tau^{\pm}$ can reach central detector

Stephen JD Kay

University of York

06/08/24

- Dilepton production channels
 - Utilises FF and FB detectors

Stephen JD Kay

- FB taggers detect e'
 - $\pi \theta_e < 1 \text{ mrad}$
- Scattered proton in FF
 - $\theta_{p} < 6 \text{ mrad}$
- All lepton pairs, ${\rm e}^{\pm},\,\mu^{\pm},\,\tau^{\pm}$ can reach central detector

06/08/24

23 /24

- $\bullet\,$ Background for ${\rm J}/\psi$ or $\upsilon\,$ production
- μ^{\pm} sensitive to proton charge radius

University of York

Opportunity for data-driven calibrations with two-photon exclusive processes

• Far backward detectors vital for luminosity monitoring and for unique physics measurements

06/08/24

- Far backward detectors vital for luminosity monitoring and for unique physics measurements
- Direct photon detector design crystallising
 - Detailed radiation studies being written up for paper

Stephen JD Kay

- Far backward detectors vital for luminosity monitoring and for unique physics measurements
- Direct photon detector design crystallising

University of York

- Detailed radiation studies being written up for paper
- ePIC luminosity systems in advanced stage of development

06/08/24

Stephen JD Kay

- Far backward detectors vital for luminosity monitoring and for unique physics measurements
- Direct photon detector design crystallising
 - Detailed radiation studies being written up for paper
- ePIC luminosity systems in advanced stage of development
 - Pair spectrometer calorimeter prototype construction underway!

06/08/24

24 /24

Beam tests planned for late 2024/early 2025

- Far backward detectors vital for luminosity monitoring and for unique physics measurements
- Direct photon detector design crystallising
 - Detailed radiation studies being written up for paper
- ePIC luminosity systems in advanced stage of development
 - Pair spectrometer calorimeter prototype construction underway!
 - Beam tests planned for late 2024/early 2025
- ePIC low Q^2 tagger design/prototyping progressing well

- Far backward detectors vital for luminosity monitoring and for unique physics measurements
- Direct photon detector design crystallising
 - Detailed radiation studies being written up for paper
- ePIC luminosity systems in advanced stage of development
 - Pair spectrometer calorimeter prototype construction underway!
 - Beam tests planned for late 2024/early 2025
- ePIC low Q^2 tagger design/prototyping progressing well
 - Detailed simulations for beamline integration ongoing

<u>06/08/24</u>

<u>2</u>4 /24

• Calorimeter incorporation under assessment

Thanks for listening, any questions?

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1

Backup Zone

Pair Spectrometer - Expected Rates

- ${\ensuremath{\,\circ\,}}$ Expected signal rates using nominal ${\ensuremath{\mathcal L}}$, accounting for -
- 1 cm conversion at exit window, (9% conversion probability, swept away
- 37 m air, 9% conversion, swept away
- 1 cm Al vacuum chamber entrance cap, 9% conversion, swept away
- 1 mm Al conversion foil, 1%, detected in pair spec

Stephen JD Kay

 $\,$ $\,$ At most, $\,\sim$ 0.2 electrons per bunch crossing on average

<u>06/08</u>/24

25 /24

Pair Spectrometer - Radiation Dose

- Using DD4HEP simulation, evaluated dose
- ullet In highest rate config, max fiber dose $\sim 1~{
 m MGy}/100~{
 m fb}^{-1}$
- Dose is predominantly along a strip in middle of detector

Dose per day (Gy/day) per 0.9 cm x 0.9 cm x 18 cm element, Top Det

Stephen JD Kay

University of York

06/08/24

Pair Spectrometer - Sampling Fraction

- Sampling fraction strongly depends upon W:SciFi ratio
- 4 : 1 W:SciFi ratio in current design
- Yields $\sim 2\%$ sampling fraction
- \sim 18 cm \times 18 cm \times 18 cm detector
- $\bullet \ \sim 23 X_0$

Stephen JD Kay

 $\circ~X_0\sim 8~mm$

06/08/24

• Can quickly tweak design and re-evaluate sampling fraction and energy/position resolution with DD4HEP simulation

Low Q^2 Tagger - Quasi Real Photoproduction

- Clean photoproduction signal over a limited region
 10⁻³ < Q² < 10⁻¹ (GeV/c²)
- Large background from Bethe-Heitler bremsstrahlung
 - High event rates

Stephen JD Kay

• Mitigate with good tracking and Q^2 resolution

06/08/24

28 / 24

- Two different ML algorithms give similar results
- Reconstruct tracks with e' kinematics
- Q^2 from e' energy and θ

Stephen JD Kay

 Compare to truth info in taggers and central detector

Figure - J. Adam, CTU Prague, ePIC Collaboration meeting July 2023

06/08/24

29 / 24
Low Q^2 Tagger - Calorimeter

- For ePIC, calorimeter still in baseline design
 - Being costed
- Some open questions/challenges
 - Needs to handle very high rates
 - Taggers already provide very high resolution
 - Could degrade if exit windows too thick.

06/08/24

30 /24

Stephen JD Kay University of York

Far Backwards - Physics, Spectroscopy Distributions

Figures - D. Glazier, University of Glasgow

Stephen JD Kay

University of York

06/08/24

31 /24

Detector 2 - Low Q^2 Tagger - Ideas/Options

- Include the low Q2 tagger calorimeter
 - $\circ~$ "Distinctive" if ePIC drops the low Q^2 tagger calorimeters
 - Need to decide if this is "worth" doing or not in either case
- Decision between in/out of vacuum is a big one
 - Det2 could deliberately go the other way
- Try to bridge the acceptance gap in e' energy and Q^2 reach between central detector and low Q^2 tagger
 - More on this in the next talk!
- Acceptance gap is consequence of the magnet configuration and arrangement

06/08/24

32 /24

- Low energy e^- are bent into the dipoles
- Low(ish) $Q^2 e^-$ go into the beampipe
- Broad solutions to this include
 - A "B0" equivalent, a detectors inside the magnet
 - A beampipe with a significantly larger radius
 - Neither option is straightforward

Stephen JD Kay

University of York

Detector 2 - Low Q^2 Tagger - Ideas/Options

- To improve high energy acceptance, get detectors as close to the beam as possible
 - Challenging! Radiation environment, vacuum, detector access concerns...
 - If this is worked in early, more likely
 - Integrated active/passive radiation monitoring critical
- For some physics channels, filling the acceptance gap between Q^2 0.1 and 0.01 is very important
- For others channels, getting lots of events with energies as close to the beam energy is more crucial
 - Lots of events near threshold
 - $\, \bullet \,$ These events have zero energy $\gamma \,$
 - This would again, likely mean detectors within the beamline vacuum

33 /24